1
|
Williams NLR, Siboni N, Potts J, Scanes P, Johnson C, James M, McCann V, Reun NL, King WL, Seymour JR. Faecal contamination determines bacterial assemblages over natural environmental parameters within intermittently opened and closed lagoons (ICOLLs) during high rainfall. WATER RESEARCH 2024; 268:122670. [PMID: 39486150 DOI: 10.1016/j.watres.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Intermittently closed and opened lakes and lagoons (ICOLLs) provide important ecosystem services, including food provision and nutrient cycling. These ecosystems generally experience low watershed outflow, resulting in substantial fluctuations in physicochemical parameters that are often compounded by anthropogenic contamination, however, how this impacts the patterns in microbiology within these environments remains uncharacterised. Therefore, we aimed to determine how seasonal heterogeneity in the physicochemical parameters, in comparison to faecal contamination, alter the dynamics of bacterial communities inhabiting ICOLLs on the eastern Australian coast. To address these aims, we sampled four ICOLLs on a monthly basis for one year, using 16S rRNA gene amplicon sequencing to monitor patterns in bacterial diversity and qPCR-based methods to measure faecal contamination from humans (sewage), dogs, and birds. Additionally, we used qPCR to monitor patterns of a suite of antibiotic resistance genes (ARGs) including sulI, tetA, qnrS, dfrA1, and vanB. Differences in bacterial community composition were often associated with temporal shifts in salinity, temperature, pH, dissolved oxygen, and dissolved organic matter, but following periods of high rainfall, bacterial assemblages in two of four ICOLLs changed in direct response to sewage inputs. Within these ICOLLs, indicator taxa for stormwater identified using the 16S rRNA amplicon sequencing data, as well as markers for sewage and dog faeces, and levels of the antibiotic resistance genes (ARGs) sulI, tetA, and dfrA1 were significantly more abundant after rainfall. Notably many of the stormwater indicator taxa were potential human pathogens including Arcobacter and Aeromonas hydrophilia, which also displayed significant correlations, albeit weak to moderate, with levels of the ARGs sulI, tetA, and dfrA1. This broad-scale shift in the nature of the bacterial community following rainfall will likely lead to a substantial, and perhaps detrimental, divergence in the ecosystem services provided by the bacterial assemblages within these ICOLLs. We conclude that following rainfall events, sewage was a principal driver of shifts in the microbiology of ICOLLs exposed to stormwater, while natural seasonal shifts in the physicochemical parameters controlled bacterial communities at other times. Increased occurrence of intense precipitation events is predicted as a ramification of climate change, which will lead to increased impacts of stormwater and sewage contamination on important ICOLL ecosystems in the future.
Collapse
Affiliation(s)
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Melanie James
- Central Coast Council, Hely Street Wyong, NSW, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street Wyong, NSW, Australia
| | - Nine Le Reun
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - William L King
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
2
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
3
|
Sacristán-Soriano O, Jarma D, Sánchez MI, Romero N, Alonso E, Green AJ, Sànchez-Melsió A, Hortas F, Balcázar JL, Peralta-Sánchez JM, Borrego CM. Winged resistance: Storks and gulls increase carriage of antibiotic resistance by shifting from paddy fields to landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169946. [PMID: 38199372 DOI: 10.1016/j.scitotenv.2024.169946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Waterbirds are vectors for the dissemination of antimicrobial resistance across environments, with some species increasingly reliant on highly anthropized habitats for feeding. However, data on the impact of their feeding habits on the carriage of antibiotic resistance genes (ARGs) are still scarce. To fill this gap, we examined the microbiota (16S rRNA amplicon gene sequencing) and the prevalence of ARG (high-throughput qPCR of 47 genes) in faeces from white storks (Ciconia ciconia) and lesser black-backed gulls (Larus fuscus) feeding in highly (landfill) and less (paddy fields) polluted habitats. Faecal bacterial richness and diversity were higher in gulls feeding upon landfills and showed a greater abundance of potential pathogens, such as Staphylococcus. In contrast, faecal bacterial communities from storks were similar regardless of habitat preferences, maybe due to a less intense habitat use compared to gulls. In addition, birds feeding in the landfill carried a higher burden of ARGs compared to the surrounding soil and surface waters. Network analysis revealed strong correlations between ARGs and potential pathogens, particularly between tetM (resistance to tetracyclines), blaCMY (beta-lactam resistance), sul1 (sulfonamide resistance) and members of the genera Streptococcus, Peptostreptococcus, and Peptoclostridium. Our work demonstrates how transitioning from paddy fields to landfills fosters the carriage of ARGs and potential pathogens in the bird gut, shedding light on the ecological role of these avian vectors in antimicrobial resistance dissemination.
Collapse
Affiliation(s)
| | - Dayana Jarma
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain; Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Marta I Sánchez
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | - Noelia Romero
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011 Sevilla, Spain
| | - Andy J Green
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | | | - Francisco Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain
| | - José Luis Balcázar
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain
| | - Juan Manuel Peralta-Sánchez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain; Departamento de Zoología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Carles M Borrego
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain; Grup d'Ecologia Microbiana Molecular, Institut d'Ecologia Aquàtica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Spain
| |
Collapse
|
4
|
Martín-Vélez V, Navarro J, Figuerola J, Aymí R, Sabaté S, Planell R, Vila J, Montalvo T. A spatial analysis of urban gulls contribution to the potential spread of zoonotic and antibiotic-resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168762. [PMID: 38007121 DOI: 10.1016/j.scitotenv.2023.168762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Wildlife human interactions within cities are becoming more common with consequences for pathogen transmission and human health. Large gulls are opportunistic feeders, adapted to coexist with humans in urban environments, and are potential vectors for spread and transmission of pathogens, including antimicrobial-resistant bacteria. We investigated the potential role that urban gulls play in the spread and dispersal of these bacteria. We analysed 129 faecal swabs from yellow-legged gulls (Larus michahellis) of different ages (56 adults and 73 immatures) during the breeding period from three years in the highly populated city of Barcelona (northeastern Spain). Thirteen individuals tested positive for the pathogenic bacteria (Escherichia coli, Listeria monocytogenes, Campylobacter jejuni), including antibiotic-resistant strains. We modelled the potential spatial spread of pathogens using the GPS trajectories of 58 yellow-legged gulls (23 adults, 35 immature individuals), which included the thirteen individuals that tested positive for pathogenic bacteria. By overlapping the spatially explicit pathogen dispersal maps with the distribution of urban installations sensitive at risk of possible pathogen spillover (e.g. elder and medical centres, markets, food industries, kindergartens, or public water sources), we identified potential areas at risk of pathogen spillover. Pathogens may be potentially spread to municipalities beyond Barcelona city borders. The results revealed that immature gulls dispersed pathogens over larger areas than adults (maximum dispersal distances of 167 km versus 53.2 km, respectively). Recreational urban water sources were the most sensitive habitats visited by GPS-tagged gulls that tested positive, followed by schools. Combining GPS movement data with pathogen analytics allows spatially explicit maps to be generated using a One Health approach that can help urban and public health management within large cities, such as Barcelona, and identify areas used by humans that are sensitive to pathogen spillover from gulls.
Collapse
Affiliation(s)
- Víctor Martín-Vélez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD), CSIC, Avenida Américo Vespucio 26, 41092 Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Raül Aymí
- Institut Català d'Ornitologia, Museu de Ciències Naturals de Barcelona, Pl. Leonardo da Vinci, 4-5, a, Barcelona 08019, Spain
| | - Sara Sabaté
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain
| | - Raquel Planell
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, Center for Biomedical Diagnosis (CDB), Hospital Clinic-Universitat de Barcelona, Barcelona, Spain.; ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Tomás Montalvo
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain
| |
Collapse
|
5
|
Kumar N, Shukla P. Microalgal-based bioremediation of emerging contaminants: Mechanisms and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122591. [PMID: 37739258 DOI: 10.1016/j.envpol.2023.122591] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Emerging contaminants (ECs) in different ecosystems have consistently been acknowledged as a global issue due to toxicity, human health implications, and potential role in generating and disseminating antimicrobial resistance. The existing wastewater treatment system is incompetent at eliminating ECs since the effluent water contains significant concentrations of ECs, viz., antibiotics (0.03-13.0 μg L-1), paracetamol (50 μg L-1), and many others in varying concentrations. Microalgae are considered as a prospective and sustainable candidate for mitigating of ECs owing to some peculiar features. In addition, the microalgal-based processes also offer cost and energy-efficient solutions for the bioremediation of ECs than conventional treatment systems. It is pertinent that, microalgal-based processes also provides waste valorization benefits as microalgal biomass obtained after ECs treatment can be potentially applied to generate biofuels. Moreover, microalgae can effectively utilize alternative metabolic (cometabolism) routes for enhanced degradation of ECs. Additionally, the ECs removal via the microalgal biodegradation route is highly promising as it can transform the ECs into less toxic compounds. The present review comprehensively discusses different mechanisms involved in removing ECs and various factors that affect their removal. Also, the technoeconomic feasibility of microalgae than other conventional wastewater treatment methods is summarised. The review also highlighted the different molecular and genetic tools that can augment the activity and robustness of microalgae for better removal of organic contaminants. Finally, we have summarised the challenges and future research required towards microalgal-based bioremediation of emerging contaminants (ECs) as a holistic approach.
Collapse
Affiliation(s)
- Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Tarabai H, Krejci S, Karyakin I, Bitar I, Literak I, Dolejska M. Clinically relevant antibiotic resistance in Escherichia coli from black kites in southwestern Siberia: a genetic and phenotypic investigation. mSphere 2023; 8:e0009923. [PMID: 37310717 PMCID: PMC10449506 DOI: 10.1128/msphere.00099-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023] Open
Abstract
Wild birds including raptors can act as vectors of clinically relevant bacteria with antibiotic resistance. The aim of this study was to investigate the occurrence of antibiotic-resistant Escherichia coli in black kites (Milvus migrans) inhabiting localities in proximity to human-influenced environments in southwestern Siberia and investigate their virulence and plasmid contents. A total of 51 E. coli isolates mostly with multidrug resistance (MDR) profiles were obtained from cloacal swabs of 35 (64%, n = 55) kites. Genomic analyses of 36 whole genome sequenced E. coli isolates showed: (i) high prevalence and diversity of their antibiotic resistance genes (ARGs) and common association with ESBL/AmpC production (27/36, 75%), (ii) carriage of mcr-1 for colistin resistance on IncI2 plasmids in kites residing in proximity of two large cities, (iii) frequent association with class one integrase (IntI1, 22/36, 61%), and (iv) presence of sequence types (STs) linked to avian-pathogenic (APEC) and extra-intestinal pathogenic E. coli (ExPEC). Notably, numerous isolates had significant virulence content. One E. coli with APEC-associated ST354 carried qnrE1 encoding fluoroquinolone resistance on IncHI2-ST3 plasmid, the first detection of such a gene in E. coli from wildlife. Our results implicate black kites in southwestern Siberia as reservoirs for antibiotic-resistant E. coli. It also highlights the existing link between proximity of wildlife to human activities and their carriage of MDR bacteria including pathogenic STs with significant and clinically relevant antibiotic resistance determinants. IMPORTANCE Migratory birds have the potential to acquire and disperse clinically relevant antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs) through vast geographical regions. The opportunistic feeding behavior associated with some raptors including black kites and the growing anthropogenic influence on their natural habitats increase the transmission risk of multidrug resistance (MDR) and pathogenic bacteria from human and agricultural sources into the environment and wildlife. Thus, monitoring studies investigating antibiotic resistance in raptors may provide essential data that facilitate understanding the fate and evolution of ARB and ARGs in the environment and possible health risks for humans and animals associated with the acquisition of these resistance determinants by wildlife.
Collapse
Affiliation(s)
- Hassan Tarabai
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Parasitology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Simon Krejci
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | | | - Ibrahim Bitar
- Biomedical Center, Charles University, Prague, Czech Republic
| | - Ivan Literak
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
- Biomedical Center, Charles University, Prague, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital, Brno, Czech Republic
| |
Collapse
|
7
|
Nordhoff K, Scharlach M, Effelsberg N, Knorr C, Rocker D, Claussen K, Egelkamp R, Mellmann AC, Moss A, Müller I, Roth SA, Werckenthin C, Wöhlke A, Ehlers J, Köck R. Epidemiology and zoonotic transmission of mcr-positive and carbapenemase-producing Enterobacterales on German turkey farms. Front Microbiol 2023; 14:1183984. [PMID: 37346748 PMCID: PMC10280733 DOI: 10.3389/fmicb.2023.1183984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction The emergence of carbapenem-resistant bacteria causing serious infections may lead to more frequent use of previously abandoned antibiotics like colistin. However, mobile colistin resistance genes (mcr) can jeopardise its effectiveness in both human and veterinary medicine. In Germany, turkeys have been identified as the food-producing animal most likely to harbour mcr-positive colistin-resistant Enterobacterales (mcr-Col-E). Therefore, the aim of the present study was to assess the prevalence of both mcr-Col-E and carbapenemase-producing Enterobacterales (CPE) in German turkey herds and humans in contact with these herds. Methods In 2018 and 2019, 175 environmental (boot swabs of turkey faeces) and 46 human stool samples were analysed using a combination of enrichment-based culture, PCR, core genome multilocus sequence typing (cgMLST) and plasmid typing. Results mcr-Col-E were detected in 123 of the 175 turkey farms in this study (70.3%). mcr-Col-E isolates were Escherichia coli (98.4%) and Klebsiella spp. (1.6%). Herds that had been treated with colistin were more likely to harbour mcr-Col-E, with 82.2% compared to 66.2% in untreated herds (p = 0.0298). Prevalence also depended on husbandry, with 7.1% mcr-Col-E in organic farms compared to 74.5% in conventional ones (p < 0.001). In addition, four of the 46 (8.7%) human participants were colonised with mcr-Col-E. mcr-Col-E isolates from stables had minimum inhibitory concentrations (MICs) from 4 to ≥ 32 mg/l, human isolates ranged from 4 to 8 mg/l. cgMLST showed no clonal transmission of isolates. For one farm, plasmid typing revealed great similarities between plasmids from an environmental and a human sample. No CPE were found in turkey herds or humans. Discussion These findings confirm that mcr-Col-E-prevalence is high in turkey farms, but no evidence of direct zoonotic transmission of clonal mcr-Col-E strains was found. However, the results indicate that plasmids may be transmitted between E. coli isolates from animals and humans.
Collapse
Affiliation(s)
- Katja Nordhoff
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
- Perioperative Inflammation and Infection, Department of Human Medicine, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | | | | | - Carolin Knorr
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Dagmar Rocker
- Public Health Agency of Lower Saxony (NLGA), Hanover, Germany
| | - Katja Claussen
- Public Health Agency of Lower Saxony (NLGA), Hanover, Germany
| | | | | | - Andreas Moss
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Ilona Müller
- Public Health Agency of Lower Saxony (NLGA), Hanover, Germany
| | | | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Anne Wöhlke
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Joachim Ehlers
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Robin Köck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- Hygiene and Environmental Medicine, University Medicine Essen, Essen, Germany
| |
Collapse
|
8
|
López-Calderón C, Martín-Vélez V, Blas J, Höfle U, Sánchez MI, Flack A, Fiedler W, Wikelski M, Green AJ. White stork movements reveal the ecological connectivity between landfills and different habitats. MOVEMENT ECOLOGY 2023; 11:18. [PMID: 36978169 PMCID: PMC10045253 DOI: 10.1186/s40462-023-00380-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Connections between habitats are key to a full understanding of anthropic impacts on ecosystems. Freshwater habitats are especially biodiverse, yet depend on exchange with terrestrial habitats. White storks (Ciconia ciconia) are widespread opportunists that often forage in landfills and then visit wetlands, among other habitats. It is well known that white storks ingest contaminants at landfills (such as plastics and antibiotic resistant bacteria), which can be then deposited in other habitats through their faeces and regurgitated pellets. METHODS We characterized the role of white storks in habitat connectivity by analyzing GPS data from populations breeding in Germany and wintering from Spain to Morocco. We overlaid GPS tracks on a land-use surface to construct a spatially-explicit network in which nodes were sites, and links were direct flights. We then calculated centrality metrics, identified spatial modules, and quantified overall connections between habitat types. For regional networks in southern Spain and northern Morocco, we built Exponential Random Graph Models (ERGMs) to explain network topologies as a response to node habitat. RESULTS For Spain and Morocco combined, we built a directed spatial network with 114 nodes and 370 valued links. Landfills were the habitat type most connected to others, as measured by direct flights. The relevance of landfills was confirmed in both ERGMs, with significant positive effects of this habitat as a source of flights. In the ERGM for southern Spain, we found significant positive effects of rice fields and salines (solar saltworks) as sinks for flights. By contrast, in the ERGM for northern Morocco, we found a significant positive effect of marshes as a sink for flights. CONCLUSIONS These results illustrate how white storks connect landfills with terrestrial and aquatic habitats, some of which are managed for food production. We identified specific interconnected habitat patches across Spain and Morocco that could be used for further studies on biovectoring of pollutants, pathogens and other propagules.
Collapse
Affiliation(s)
- Cosme López-Calderón
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Seville, Spain.
| | - Víctor Martín-Vélez
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Seville, Spain
| | - Julio Blas
- Department of Conservation Biology, Estación Biológica de Doñana CSIC, Seville, Spain
| | - Ursula Höfle
- SaBio Health and Biotechnology Research Group, Institute for Game and Wildlife Research (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Marta I Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Seville, Spain
| | - Andrea Flack
- Collective Migration Group, Max Planck Institute of Animal Behavior, 78315, Radolfzell, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78468, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Wolfgang Fiedler
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78468, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78468, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Seville, Spain
| |
Collapse
|
9
|
Mukerji S, Sahibzada S, Abraham R, Stegger M, Jordan D, Hampson DJ, O'Dea M, Lee T, Abraham S. Proximity to human settlement is directly related to carriage of critically important antimicrobial-resistant Escherichia coli and Klebsiella pneumoniae in Silver Gulls. Vet Microbiol 2023; 280:109702. [PMID: 36848814 DOI: 10.1016/j.vetmic.2023.109702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Human population and activities play an important role in dissemination of antimicrobial resistant bacteria. This study investigated the relationship between carriage rates of critically important antimicrobial-resistant (CIA-R) Escherichia coli and Klebsiella pneumoniae by Silver Gulls and their proximity to human populations. Faecal swabs (n = 229) were collected from Silver Gulls across 10 southern coastline locations in Western Australia (WA) traversing 650 kms. The sampling locations included main town centres and remote areas. Fluoroquinolone and extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae were isolated and tested for antimicrobial sensitivity. Genome sequencing was performed on n = 40 subset out of 98 E. coli and n = 14 subset out of 27 K. pneumoniae isolates to validate phenotypic resistance profiles and determine the molecular characteristics of strains. CIA-R E. coli and K. pneumoniae were detected in 69 (30.1 %) and 20 (8.73 %) of the faecal swabs respectively. Two large urban locations tested positive for CIA-R E. coli (frequency ranging from 34.3 % to 84.3 %), and/or for CIA-R K. pneumoniae (frequency ranging from 12.5 % to 50.0 %). A small number of CIA-R E. coli (3/31, 9.7 %) were identified at a small tourist town, but no CIA-R bacteria were recovered from gulls at remote sites. Commonly detected E. coli sequence types (STs) included ST131 (12.5 %) and ST1193 (10.0 %). Five K. pneumoniae STs were detected which included ST4568, ST6, ST485, ST967 and ST307. Resistance genes including blaCTX-M-3, blaCTX-M-15 and blaCTX-M-27 were identified in both bacterial species. High-level colonisation of CIA-R E. coli and K. pneumoniae in Silver Gulls in and around urban areas compared to remote locations substantiates that anthropogenic activities are strongly associated with acquisition of resistant bacteria by gulls.
Collapse
Affiliation(s)
- Shewli Mukerji
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia; School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia 5371, Australia
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Marc Stegger
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia; Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - David Jordan
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia; New South Wales Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - David J Hampson
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Terence Lee
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
10
|
Liu G, Xu N, Feng J. Metagenomic analysis of gut microbiota and antibiotic-resistant genes in Anser erythropus wintering at Shengjin and Caizi Lakes in China. Front Microbiol 2023; 13:1081468. [PMID: 36699586 PMCID: PMC9868308 DOI: 10.3389/fmicb.2022.1081468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Migratory birds are the primary source and reservoir of antibiotic-resistant genes (ARGs) related to their gut microbes. In this study, we performed metagenomics analysis to study the gut microbial communities and ARGs of Anser erythropus wintering at Shengjin (SJ) and Caizi (CZ) Lakes. The results showed that bacteria, fungi, viruses, and archaea were the dominant gut microbes. Principal component analysis (PCA) indicated that the microbiota compositions significantly differed between the two populations. Diet may be the most crucial driver of the gut microbial communities for A. erythropus. This species fed exclusively on Poaceae spp. at Shengjin Lake and primarily on Carex spp. at Caizi Lake. Tetracycline, macrolide, fluoroquinolone, phenicol, and peptide antibiotics were the dominant resistant types. ARGs had a significantly higher abundance of operational taxonomic units (OTUs) in the Shengjin Lake samples than in Caizi Lake samples. PCA indicated that most Shengjin Lake samples significantly differed in gut microbiota composition from those obtained at Caizi Lake. This difference in gut microbiota composition between the two lakes' samples is attributed to more extensive aquaculture operations and poultry farms surrounding Shengjin Lake than Caizi Lake. ARGs-microbes associations indicated that 24 bacterial species, commonly used as indicators of antibiotic resistance in surveillance efforts, were abundant in wintering A. erythropus. The results revealed the composition and structural characteristics of the gut microbiota and ARGs of A. erythropus, pointing to their high sensitivities to diet habits at both lakes. This study also provides primary data for risk prevention and control of potential harmful pathogens that could endanger public health and therefore are of major significance to epidemiological and public health.
Collapse
|
11
|
Ahmed W, Bivins A, Payyappat S, Cassidy M, Harrison N, Besley C. Distribution of human fecal marker genes and their association with pathogenic viruses in untreated wastewater determined using quantitative PCR. WATER RESEARCH 2022; 226:119093. [PMID: 36252296 DOI: 10.1016/j.watres.2022.119093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Quantitative microbial risk assessment (QMRA) of human health risks using human fecal marker genes (HFMGs) is an useful water quality management tool. To inform accurate QMRA analysis, generation of probability distribution functions for HFMGs, and reference pathogenic viruses can be improved by input of correlation and ratios based upon measurement of HFMGs and gene copies (GC) of pathogenic viruses in untreated wastewater. The concentrations of four HFMGs (Bacteroides HF183, Lachnospiraceae Lachno3, CrAssphage and pepper mild mottle virus (PMMoV)), and GC of three reference pathogenic viruses human adenovirus 40/41 (HAdV 40/41), human norovirus GI + GII HNoV GI + GII and enterovirus (EV) were measured in untreated wastewater samples collected over a period of 12 months from two wastewater treatment plants in Sydney, Australia using quantitative polymerase chain reaction (qPCR) and reverse transcription qPCR (RT-qPCR). Over the course of the study, the GC of potential pathogenic viruses were 3-5 orders of magnitude lower than HFMGs in untreated wastewater. The GC of pathogenic viruses were highly variable over the course of the study, which contrasted with the concentrations of HFMGs that were quite stable with little variation observed within and between WWTPs. Among the HFMGs, HF183, CrAssphage and PMMoV correlated well with pathogenic virus GC, whereas weak or negative correlations were observed between Lachno3 and pathogenic virus GC. While the two assessed WWTPs had dissimilar population service sizes, the ratios between log10 transformed pathogenic virus GC and HFMGs demonstrated similar central tendency and variability for the same combinations between WWTP A and WWTP B with no difference between the WWTPs. This suggests the widespread presence of these HFMGs in both populations serviced by these two WWTPs. The observed correlation and ratios of HFMGs and GC of reference pathogenic viruses can contribute to improved QMRA of human health risks in environmental waters subject to fresh sewer overflows.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
12
|
Ewbank AC, Fuentes-Castillo D, Sacristán C, Esposito F, Fuga B, Cardoso B, Godoy SN, Zamana RR, Gattamorta MA, Catão-Dias JL, Lincopan N. World Health Organization critical priority Escherichia coli clone ST648 in magnificent frigatebird (Fregata magnificens) of an uninhabited insular environment. Front Microbiol 2022; 13:940600. [PMID: 36033868 PMCID: PMC9410367 DOI: 10.3389/fmicb.2022.940600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance is an ancient natural phenomenon increasingly pressured by anthropogenic activities. Escherichia coli has been used as markers of environmental contamination and human-related activity. Seabirds may be bioindicators of clinically relevant bacterial pathogens and their antimicrobial resistance genes, including extended-spectrum-beta-lactamase (ESBL) and/or plasmid-encoded AmpC (pAmpC), in anthropized and remote areas. We evaluated cloacal swabs of 20 wild magnificent frigatebirds (Fregata magnificens) of the Alcatrazes Archipelago, the biggest breeding colony of magnificent frigatebirds in the southern Atlantic and a natural protected area with no history of human occupation, located in the anthropized southeastern Brazilian coast. We characterized a highly virulent multidrug-resistant ST648 (O153:H9) pandemic clone, harboring blaCTX–M–2, blaCMY–2, qnrB, tetB, sul1, sul2, aadA1, aac(3)-VIa and mdfA, and virulence genes characteristic of avian pathogenic (APEC) (hlyF, iroN, iss, iutA, and ompT) and other extraintestinal E. coli (ExPEC) (chuA, kpsMII, and papC). To our knowledge, this is the first report of ST648 E. coli co-producing ESBL and pAmpC in wild birds inhabiting insular environments. We suggest this potentially zoonotic and pathogenic lineage was likely acquired through indirect anthropogenic contamination of the marine environment, ingestion of contaminated seafood, or by intra and/or interspecific contact. Our findings reinforce the role of wild birds as anthropization sentinels in insular environments and the importance of wildlife surveillance studies on pathogens of critical priority classified by the World Health Organization.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Ana Carolina Ewbank,
| | - Danny Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos-Alalpardo, Spain
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Silvia Neri Godoy
- Refúgio de Vida Silvestre do Arquipélago de Alcatrazes – Instituto Chico Mendes de Conservação da Biodiversidade, São Paulo, Brazil
| | - Roberta Ramblas Zamana
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Marco Aurélio Gattamorta
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Vittecoq M, Brazier L, Elguero E, Bravo IG, Renaud N, Manzano‐Marín A, Prugnolle F, Godreuil S, Blanchon T, Roux F, Durand P, Renaud F, Thomas F. Multiresistant Enterobacteriaceae in yellow-legged gull chicks in their first weeks of life. Ecol Evol 2022; 12:e8974. [PMID: 35784041 PMCID: PMC9188031 DOI: 10.1002/ece3.8974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Wild animal species living in anthropogenic areas are commonly carriers of antimicrobial-resistant bacteria (AMRB), but their role in the epidemiology of these bacteria is unclear. Several studies on AMRB in wildlife have been cross-sectional in design and sampled individual animals at only one point in time. To further understand the role of wildlife in maintaining and potentially transmitting these bacteria to humans and livestock, longitudinal studies are needed in which samples are collected from individual animals over multiple time periods. In Europe, free-ranging yellow-legged gulls (Larus michahellis) commonly live in industrialized areas, forage in landfills, and have been found to carry AMRB in their feces. Using bacterial metagenomics and antimicrobial resistance characterization, we investigated the spatial and temporal patterns of AMRB in a nesting colony of yellow-legged gulls from an industrialized area in southern France. We collected 54 cloacal swabs from 31 yellow-legged gull chicks in 20 nests on three dates in 2016. We found that AMRB in chicks increased over time and was not spatially structured within the gull colony. This study highlights the complex occurrence of AMRB in a free-ranging wildlife species and contributes to our understanding of the public health risks and implications associated with ARMB-carrying gulls living in anthropogenic areas.
Collapse
Affiliation(s)
- Marion Vittecoq
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
- Tour du ValatResearch Institute for the Conservation of Mediterranean WetlandsArlesFrance
| | - Lionel Brazier
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Eric Elguero
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Ignacio G. Bravo
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | | | | | - Franck Prugnolle
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Sylvain Godreuil
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Thomas Blanchon
- Tour du ValatResearch Institute for the Conservation of Mediterranean WetlandsArlesFrance
| | - François Roux
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Patrick Durand
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - François Renaud
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Frédéric Thomas
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| |
Collapse
|
14
|
Williams NLR, Siboni N, Potts J, Campey M, Johnson C, Rao S, Bramucci A, Scanes P, Seymour JR. Molecular microbiological approaches reduce ambiguity about the sources of faecal pollution and identify microbial hazards within an urbanised coastal environment. WATER RESEARCH 2022; 218:118534. [PMID: 35537251 DOI: 10.1016/j.watres.2022.118534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Urbanised beaches are regularly impacted by faecal pollution, but management actions to resolve the causes of contamination are often obfuscated by the inability of standard Faecal Indicator Bacteria (FIB) analyses to discriminate sources of faecal material or detect other microbial hazards, including antibiotic resistance genes (ARGs). We aimed to determine the causes, spatial extent, and point sources of faecal contamination within Rose Bay, a highly urbanised beach within Sydney, Australia's largest city, using molecular microbiological approaches. Sampling was performed across a network of transects originating at 9 stormwater drains located on Rose Bay beach over the course of a significant (67.5 mm) rainfall event, whereby samples were taken 6 days prior to any rain, on the day of initial rainfall (3.8 mm), three days later after 43 mm of rain and then four days after any rain. Quantitative PCR (qPCR) was used to target marker genes from bacteria (i.e., Lachnospiraceae and Bacteroides) that have been demonstrated to be specific to human faeces (sewage), along with gene sequences from Heliobacter and Bacteriodes that are specific to bird and dog faeces respectively, and ARGs (sulI, tetA, qnrS, dfrA1 and vanB). 16S rRNA gene amplicon sequencing was also used to discriminate microbial signatures of faecal contamination. Prior to the rain event, low FIB levels (mean: 2.4 CFU/100 ml) were accompanied by generally low levels of the human and animal faecal markers, with the exception of one transect, potentially indicative of a dry weather sewage leak. Following 43 mm of rain, levels of both human faecal markers increased significantly in stormwater drain and seawater samples, with highest levels of these markers pinpointing several stormwater drains as sources of sewage contamination. During this time, sewage contamination was observed up to 1000 m from shore and was significantly and positively correlated with often highly elevated levels of the ARGs dfrA1, qnrS, sulI and vanB. Significantly elevated levels of the dog faecal marker in stormwater drains at this time also indicated that rainfall led to increased input of dog faecal material from the surrounding catchment. Using 16S rRNA gene amplicon sequencing, several indicator taxa for stormwater contamination such as Arcobacter spp. and Comamonadaceae spp. were identified and the Bayesian SourceTracker tool was used to model the relative impact of specific stormwater drains on the surrounding environment, revealing a heterogeneous contribution of discrete stormwater drains during different periods of the rainfall event, with the microbial signature of one particular drain contributing up to 50% of bacterial community in the seawater directly adjacent. By applying a suite of molecular microbiological approaches, we have precisely pinpointed the causes and point-sources of faecal contamination and other associated microbiological hazards (e.g., ARGs) at an urbanised beach, which has helped to identify the most suitable locations for targeted management of water quality at the beach.
Collapse
Affiliation(s)
- Nathan L R Williams
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Meredith Campey
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Shivanesh Rao
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Anna Bramucci
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Justin R Seymour
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Ribeiro-Almeida M, Mourão J, Novais Â, Pereira S, Freitas-Silva J, Ribeiro S, Martins da Costa P, Peixe L, Antunes P. High diversity of pathogenic Escherichia coli clones carrying mcr-1 among gulls underlines the need for strategies at the environment-livestock-human interface. Environ Microbiol 2022; 24:4702-4713. [PMID: 35726894 DOI: 10.1111/1462-2920.16111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
The expansion of mcr-carrying bacteria is a well-recognized public health problem. Measures to contain mcr spread have mainly been focused on the food-animal production sector. Nevertheless, the spread of MCR-producers at the environmental interface particularly driven by the increasing population of gulls in coastal cities has been less explored. Occurrence of mcr-carrying Escherichia coli in gull's colonies faeces on a Portuguese beach was screened over 7-months. Cultural, molecular, and genomic approaches were used to characterize their diversity, mcr plasmids and adaptive features. Multidrug-resistant mcr-1-carrying E. coli were detected for three consecutive months. Over time, multiple strains were recovered, including zoonotic-related pathogenic E. coli clones (e.g., B2-ST131-H22, A-ST10, and B1-ST162). Diverse mcr-1.1 genetic environments were mainly associated with ST2/ST4-HI2 (ST10, ST131, ST162, ST354 and ST4204) but also IncI2 (ST12990) plasmids or in the chromosome (ST656). Whole-genome sequencing revealed enrichment of these strains on antibiotic resistance, virulence, and metal tolerance genes. Our results underscore gulls as important spreaders of high priority bacteria and genes that may affect the environment, food-animals and/or humans, potentially undermining One-Health strategies to reduce colistin resistance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marisa Ribeiro-Almeida
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Mourão
- Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sofia Pereira
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Freitas-Silva
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paulo Martins da Costa
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Ahlstrom CA, Woksepp H, Sandegren L, Mohsin M, Hasan B, Muzyka D, Hernandez J, Aguirre F, Tok A, Söderman J, Olsen B, Ramey AM, Bonnedahl J. Genomically diverse carbapenem resistant Enterobacteriaceae from wild birds provide insight into global patterns of spatiotemporal dissemination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153632. [PMID: 35124031 DOI: 10.1016/j.scitotenv.2022.153632] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Carbapenem resistant Enterobacteriaceae (CRE) are a threat to public health globally, yet the role of the environment in the epidemiology of CRE remains elusive. Given that wild birds can acquire CRE, likely from foraging in anthropogenically impacted areas, and may aid in the maintenance and dissemination of CRE in the environment, a spatiotemporal comparison of isolates from different regions and timepoints may be useful for elucidating epidemiological information. Thus, we characterized the genomic diversity of CRE from fecal samples opportunistically collected from gulls (Larus spp.) inhabiting Alaska (USA), Chile, Spain, Turkey, and Ukraine and from black kites (Milvus migrans) sampled in Pakistan and assessed evidence for spatiotemporal patterns of dissemination. Within and among sampling locations, a high diversity of carbapenemases was found, including Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-beta-lactamase (NDM), oxacillinase (OXA), and Verona integron Metallo beta-lactamase (VIM). Although the majority of genomic comparisons among samples did not provide evidence for spatial dissemination, we did find strong evidence for dissemination among Alaska, Spain, and Turkey. We also found strong evidence for temporal dissemination among samples collected in Alaska and Pakistan, though the majority of CRE clones were transitory and were not repeatedly detected among locations where samples were collected longitudinally. Carbapenemase-producing hypervirulent K. pneumoniae was isolated from gulls in Spain and Ukraine and some isolates harbored antimicrobial resistance genes conferring resistance to up to 10 different antibiotic classes, including colistin. Our results are consistent with local acquisition of CRE by wild birds with spatial dissemination influenced by intermediary transmission routes, likely involving humans. Furthermore, our results support the premise that anthropogenically-associated wild birds may be good sentinels for understanding the burden of clinically-relevant antimicrobial resistance in the local human population.
Collapse
Affiliation(s)
- Christina A Ahlstrom
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, Kalmar 391 85, Sweden; Department of Medicine and Optometry, Linnaeus University, Kalmar 391 85, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Infection biology, antimicrobial resistance and immunology, Uppsala University, Uppsala SE-75185, Sweden
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Badrul Hasan
- Department of Medical Biochemistry and Microbiology, Infection biology, antimicrobial resistance and immunology, Uppsala University, Uppsala SE-75185, Sweden; Animal Bacteriology Section, Microbial Sciences, Pests and Diseases, Agriculture Victoria Research, Bundoora, Victoria 3083, Australia
| | - Denys Muzyka
- National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Kharkiv 61023, Ukraine
| | - Jorge Hernandez
- Department of Clinical Microbiology, Kalmar County Hospital, Kalmar SE-39185, Sweden
| | - Filip Aguirre
- Department of Clinical Microbiology, Kalmar County Hospital, Kalmar SE-39185, Sweden
| | - Atalay Tok
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala SE-75185, Sweden
| | - Jan Söderman
- Laboratory Medicine, Jönköping, Region Jönköping County, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Bjorn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala SE-75185, Sweden
| | - Andrew M Ramey
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 581 83, Sweden; Department of Infectious Diseases, Region Kalmar County, Kalmar 391 85, Sweden.
| |
Collapse
|
17
|
Lu J, Yang Y, Wu Y, Liu C, Zeng Y, Lei L, Song H, Zhang R. Escherichia coli carrying IncI2 plasmid-mediated mcr-1 genes in crested ibis (Nipponia nippon). J Infect Public Health 2022; 15:558-561. [DOI: 10.1016/j.jiph.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
|
18
|
Benavides JA, Godreuil S, Opazo-Capurro A, Mahamat OO, Falcon N, Oravcova K, Streicker DG, Shiva C. Long-term maintenance of multidrug-resistant Escherichia coli carried by vampire bats and shared with livestock in Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152045. [PMID: 34883172 DOI: 10.1016/j.scitotenv.2021.152045] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) have been reported in wildlife worldwide. Whether wildlife is a transient host of ESBL-E. coli or comprises an independently maintained reservoir is unknown. We investigated this question by longitudinally monitoring ESBL-E. coli in common vampire bats and nearby livestock in Peru. Among 388 bats from five vampire bat colonies collected over three years, ESBL-E. coli were detected at a low prevalence (10% in 2015, 4% in 2017 and 2018) compared to a high prevalence (48%) from 134 livestock sampled in 2017. All ESBL-E. coli were multidrug-resistant, and whole genome sequencing of 33 randomly selected ESBL-E. coli isolates (18 recovered from bats) detected 46 genes conferring resistance to antibiotics including third-generation cephalosporins (e.g., blaCTX-M-55, blaCTX-M-15, blaCTX-M-65, blaCTX-M-3, blaCTX-M-14), aminoglycosides, fluoroquinolones, and colistin (mcr-1). The mcr-1 gene is reported for the first time on a wild bat in Latin America. ESBL-E. coli also carried 31 plasmid replicon types and 16 virulence genes. Twenty-three E. coli sequence types (STs) were detected, including STs involved in clinical infections worldwide (e.g., ST 167, ST 117, ST 10, ST 156 and ST 648). ESBL-E. coli with identical cgMLST (ST 167) were detected in the same bat roost in 2015 and 2017, and several ESBL-E. coli from different bat roosts clustered together in the cgMLST reconstruction, suggesting long-term maintenance of ESBL-E. coli within bats. Most antibiotic resistance and virulence genes were detected in E. coli from both host populations, while ESBL-E. coli ST 744 was found in a bat and a pig from the same locality, suggesting possible cross-species exchanges of genetic material and/or bacteria between bats and livestock. This study suggests that wild mammals can maintain multidrug-resistant bacteria and share them with livestock.
Collapse
Affiliation(s)
- Julio A Benavides
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago, Chile.
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboratoire Mixte International, DRISA, IRD, Montpellier, France
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago, Chile
| | - Oumar O Mahamat
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboratoire Mixte International, DRISA, IRD, Montpellier, France; Service de laboratoire Hôpital de la Mère et de l'Enfant, N'Djaména, Chad
| | - Nestor Falcon
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katarina Oravcova
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Carlos Shiva
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
19
|
Ewbank AC, Fuentes-Castillo D, Sacristán C, Cardoso B, Esposito F, Fuga B, de Macedo EC, Lincopan N, Catão-Dias JL. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli survey in wild seabirds at a pristine atoll in the southern Atlantic Ocean, Brazil: First report of the O25b-ST131 clone harboring bla CTX-M-8. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150539. [PMID: 34852430 DOI: 10.1016/j.scitotenv.2021.150539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance is among the most serious public health threats of the 21st century, with great impact in terms of One Health. Among antimicrobial resistant bacteria (ARB), extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) represent major challenges to human healthcare. Wild birds have been commonly used as environmental bioindicators of ESBL-EC. Remote locations represent a unique opportunity to evaluate the occurrence, dissemination and epidemiology of ARB in the environment. Herein we surveyed ESBL-EC in 204 cloacal swabs from six nonsynanthropic seabird species at the pristine Rocas Atoll, Brazil. We identified ESBL-EC isolates in 2.4% (5/204) of the tested seabirds, all in magnificent frigatebirds (Fregata magnificens). We isolated strains of O25b-ST131-fimH22 harboring gene blaCTX-M-8 (3 clones), ST117 harboring gene blaSHV-12, and a novel ST11350 (clonal complex 349) harboring genes blaCTX-M-55 and fosA3. All the isolates presented Extraintestinal pathogenic E. coli (ExPEC) virulence profiles. We suggest that magnificent frigatebirds may act as "flying bridges", transporting ESBL-EC and ARGs from an anthropogenically-impacted archipelago geographically close to our pristine and remote study site. The characteristics of our isolates suggest zoonotic potential and, despite the apparent good health of all the evaluated birds, may represent a hypothetical potential threat to the avian population using the atoll. To our knowledge, this is the first description of: (1) the pandemic and public health relevant ST131-O25b harboring blaCTX-M-8 worldwide; (2) ST131-fimH22 in wild birds; and (3); fosA3 in wildlife. Our findings expand the current epidemiological knowledge regarding host and geographical distribution of ESBL-EC and ARGs in wild birds, and emphasize the disseminating characteristics and adaptability of ST131 and ST117 strains within the human-animal-interface. Herein we discuss the involvement of nonsynanthropic wild birds in the epidemiology of antimicrobial resistance and their potential as sentinels of ESBL E. coli in insular environments.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Danny Fuentes-Castillo
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Eduardo Cavalcante de Macedo
- Chico Mendes Institute for Biodiversity Conservation (ICMBio) - Brazilian Ministry of the Environment, Rocas Atol Biological Reserve, Rio Grande do Norte, Brazil.
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Fu Y, M'ikanatha NM, Whitehouse CA, Tate H, Ottesen A, Lorch JM, Blehert DS, Berlowski-Zier B, Dudley EG. Low occurrence of multi-antimicrobial and heavy metal resistance in Salmonella enterica from wild birds in the United States. Environ Microbiol 2021; 24:1380-1394. [PMID: 34897945 DOI: 10.1111/1462-2920.15865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023]
Abstract
Wild birds are common reservoirs of Salmonella enterica. Wild birds carrying resistant S. enterica may pose a risk to public health as they can spread the resistant bacteria across large spatial scales within a short time. Here, we whole-genome sequenced 375 S. enterica strains from wild birds collected in 41 U.S. states during 1978-2019 to examine bacterial resistance to antibiotics and heavy metals. We found that Typhimurium was the dominant S. enterica serovar, accounting for 68.3% (256/375) of the bird isolates. Furthermore, the proportions of the isolates identified as multi-antimicrobial resistant (multi-AMR: resistant to at least three antimicrobial classes) or multi-heavy metal resistant (multi-HMR: resistant to at least three heavy metals) were both 1.87% (7/375). Interestingly, all the multi-resistant S. enterica (n = 12) were isolated from water birds or raptors; none of them was isolated from songbirds. Plasmid profiling demonstrated that 75% (9/12) of the multi-resistant strains carried resistance plasmids. Our study indicates that wild birds do not serve as important reservoirs of multi-resistant S. enterica strains. Nonetheless, continuous surveillance for bacterial resistance in wild birds is necessary because the multi-resistant isolates identified in this study also showed close genetic relatedness with those from humans and domestic animals.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Chris A Whitehouse
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Andrea Ottesen
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Jeffrey M Lorch
- U.S. Geological Survey - National Wildlife Health Center, Madison, WI, 53711, USA
| | - David S Blehert
- U.S. Geological Survey - National Wildlife Health Center, Madison, WI, 53711, USA
| | | | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.,E. coli Reference Center, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
21
|
Ramey AM. Antimicrobial resistance: Wildlife as indicators of anthropogenic environmental contamination across space and through time. Curr Biol 2021; 31:R1385-R1387. [PMID: 34699802 DOI: 10.1016/j.cub.2021.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Prior assessments support wildlife as indicators of anthropogenically influenced antimicrobial resistance across the landscape. A ground-breaking new study suggests that wildlife may also provide information on antimicrobial resistance in the environment through time.
Collapse
Affiliation(s)
- Andrew M Ramey
- US Geological Survey Alaska Science Center, Anchorage, AK 99508, USA.
| |
Collapse
|
22
|
Zhang Y, Kuang X, Liu J, Sun RY, Li XP, Sun J, Liao XP, Liu YH, Yu Y. Identification of the Plasmid-Mediated Colistin Resistance Gene mcr-1 in Escherichia coli Isolates From Migratory Birds in Guangdong, China. Front Microbiol 2021; 12:755233. [PMID: 34745062 PMCID: PMC8567052 DOI: 10.3389/fmicb.2021.755233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
We determined the prevalence and transmission characteristics of mcr-1-positive Escherichia coli (MCRPEC) isolates from migratory birds Anser indicus in Guangdong, China. We identified 22 MCRPEC from 303 A. indicus fecal samples (7.3%) in Guangzhou, Zhaoqing, and Futian. The mcr-1 gene coexisted with 24 other types of antibiotic resistance genes (ARG), and 11 ARGs were highly prevalent at levels >50%. The MCRPEC displayed a diversity of sequence types (ST), and 19 distinct STs were identified with ST10, ST1146, and ST1147 as the most prevalent. In addition, these MCRPEC from birds were closely related phylogenetically to those from other sources in China. Whole-genome sequencing analysis demonstrated that mcr-1 was located on IncX4 (n=9, 40.9%), IncI2 (n=5, 22.7%) and IncP (n=1, 4.5%) plasmids and the latter shared an identical plasmid backbone with other sources. These results highlight the significance of migratory birds in the transmission of antibiotic resistance and provide powerful evidence that migratory birds are potential transmitters of antibiotic resistance.
Collapse
Affiliation(s)
- Yan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xu Kuang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Juan Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ruan-Yang Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xing-Ping Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
23
|
Emergence and Spread of Cephalosporinases in Wildlife: A Review. Animals (Basel) 2021; 11:ani11061765. [PMID: 34204766 PMCID: PMC8231518 DOI: 10.3390/ani11061765] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Antimicrobial resistance (AMR) is one of the global public health challenges nowadays. AMR threatens the effective prevention and treatment of an ever-increasing range of infections, being present in healthcare settings but also detected across the whole ecosystem, including wildlife. This work compiles the available information about an important resistance mechanism that gives bacteria the ability to inactivate cephalosporin antibiotics, the cephalosporinases (extended-spectrum beta-lactamase (ESBL) and AmpC beta-lactamase), in wildlife. Through a rigorous systematic literature review in the Web of Science database, the available publications on this topic in the wildlife sphere were analysed. The emergence and spread of cephalosporinases in wildlife has been reported in 46 countries from all continents (52% in Europe), with descriptions mainly in birds and mammals. The most widely disseminated cephalosporinases in human-related settings (e.g. CTX-M-1, CTX-M-14, CTX-M-15 and CMY-2) are also the most reported in wildlife, suggesting that anthropogenic pressure upon natural environments have a strong impact on antimicrobial resistance spread, including the dissemination of genes encoding these enzymes. Our work highlights the urgence and importance of public and ecosystem health policies, including improved surveillance and control strategies that breakdown AMR transmission chains across wildlife, as part of an integrated strategy of the One Health approach. Abstract In the last decade, detection of antibiotic resistant bacteria from wildlife has received increasing interest, due to the potential risk posed by those bacteria to wild animals, livestock or humans at the interface with wildlife, and due to the ensuing contamination of the environment. According to World Health Organization, cephalosporins are critically important antibiotics to human health. However, acquired resistance to β-lactams is widely distributed and is mainly mediated by extended-spectrum beta-lactamase and AmpC beta-lactamases, such as cephalosporinases. This work thus aimed to compile and analyse the information available on the emergence and dissemination of cephalosporinases in wildlife worldwide. Results suggest a serious scenario, with reporting of cephalosporinases in 46 countries from all continents (52% in Europe), across 188 host species, mainly birds and mammals, especially gulls and ungulates. The most widely reported cephalosporinases, CTX-M-1, CTX-M-14, CTX-M-15 and CMY-2, were also the most common in wild animals, in agreement with their ubiquity in human settings, including their association to high-risk clones of Escherichia coli (E. coli), such as the worldwide distributed CTX-M-15/ST131 E. coli. Altogether, our findings show that anthropogenic activities affect the whole ecosystem and that public policies promoting animal and environmental surveillance, as well as mitigation measures to avoid antimicrobial misuse and AMR spread, are urgently needed to be out in practise.
Collapse
|
24
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
25
|
Ahlstrom CA, van Toor ML, Woksepp H, Chandler JC, Reed JA, Reeves AB, Waldenström J, Franklin AB, Douglas DC, Bonnedahl J, Ramey AM. Evidence for continental-scale dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144551. [PMID: 33385653 DOI: 10.1016/j.scitotenv.2020.144551] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic inputs into the environment may serve as sources of antimicrobial resistant bacteria and alter the ecology and population dynamics of synanthropic wild animals by providing supplemental forage. In this study, we used a combination of phenotypic and genomic approaches to characterize antimicrobial resistant indicator bacteria, animal telemetry to describe host movement patterns, and a novel modeling approach to combine information from these diverse data streams to investigate the acquisition and long-distance dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. Our results provide evidence that gulls acquire antimicrobial resistant bacteria from anthropogenic sources, which they may subsequently disperse across and between continents via migratory movements. Furthermore, we introduce a flexible modeling framework to estimate the relative dispersal risk of antimicrobial resistant bacteria in western North America and adjacent areas within East Asia, which may be adapted to provide information on the risk of dissemination of other organisms and pathogens maintained by wildlife through space and time.
Collapse
Affiliation(s)
- Christina A Ahlstrom
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Mariëlle L van Toor
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, Kalmar 392 31, Sweden.
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, Kalmar 391 85, Sweden.
| | - Jeffrey C Chandler
- USDA/APHIS/WS, National Wildlife Research Center, 4101 Laporte Ave, Fort Collins, CO 80521, USA.
| | - John A Reed
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Andrew B Reeves
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, Kalmar 392 31, Sweden.
| | - Alan B Franklin
- USDA/APHIS/WS, National Wildlife Research Center, 4101 Laporte Ave, Fort Collins, CO 80521, USA.
| | - David C Douglas
- Alaska Science Center, U.S. Geological Survey, 250 Egan Drive, Juneau, AK 99801, USA.
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 581 83, Sweden; Department of Infectious Diseases, Region Kalmar County, Kalmar 391 85, Sweden.
| | - Andrew M Ramey
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA.
| |
Collapse
|
26
|
Ewbank AC, Esperón F, Sacristán C, Sacristán I, Neves E, Costa-Silva S, Antonelli M, Rocha Lorenço J, Kolesnikovas CKM, Catão-Dias JL. Occurrence and Quantification of Antimicrobial Resistance Genes in the Gastrointestinal Microbiome of Two Wild Seabird Species With Contrasting Behaviors. Front Vet Sci 2021; 8:651781. [PMID: 33829054 PMCID: PMC8019699 DOI: 10.3389/fvets.2021.651781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 01/24/2023] Open
Abstract
Antimicrobial resistance genes (ARGs) are environmental pollutants and anthropization indicators. We evaluated human interference in the marine ecosystem through the ocurrence and quantification (real-time PCRs) of 21 plasmid-mediated ARGs in enema samples of 25 wild seabirds, upon admission into rehabilitation: kelp gull (Larus dominicanus, n = 14) and Magellanic penguin (Spheniscus magellanicus, n = 11). Overall, higher resistance values were observed in kelp gulls (non-migratory coastal synanthropic) in comparison with Magellanic penguins (migratory pelagic non-synanthropic). There were significant differences between species (respectively, kelp gull and Magellanic penguin): ARGs occurrence (bla TEM [p = 0.032]; tetM [p = 0.015]; tetA [p = 0.003]; and sulII [p = 0.007]), mean number of ARGs per sample (p = 0.031), ARGs mean load percentage (aadA [p = 0.045], tetA [p = 0.031], tetM [p = 0.016], bla TEM [p = 0.032], sulII [p = 0.008]), percentage of genes conferring resistance to an antimicrobial class (betalactams [p = 0.036] and sulfonamides [p = 0.033]), mean number of genes conferring resistance to one or more antimicrobial classes (p = 0.024]), percentage of multiresistant microbiomes (p = 0.032), and clustering (p = 0.006). These differences are likely due to these species' contrasting biology and ecology - key factors in the epidemiology of ARGs in seabirds. Additionally, this is the first report of mecA in seabirds in the Americas. Further studies are necessary to clarify the occurrence and diversity of ARGs in seabirds, and their role as potential sources of infection and dispersal within the One Health chain of ARGs.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Esperón
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Madrid, Spain
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene Sacristán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Elena Neves
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Madrid, Spain
| | | | | | | | | | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Ahlstrom CA, Frick A, Pongratz C, Spink K, Xavier C, Bonnedahl J, Ramey AM. Genomic comparison of carbapenem-resistant Enterobacteriaceae from humans and gulls in Alaska. J Glob Antimicrob Resist 2021; 25:23-25. [PMID: 33667702 DOI: 10.1016/j.jgar.2021.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/28/2020] [Accepted: 02/20/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Wildlife may harbour clinically important antimicrobial-resistant bacteria, but the role of wildlife in the epidemiology of antimicrobial-resistant bacterial infections in humans is largely unknown. In this study, we aimed to assess dissemination of the blaKPC carbapenemase gene among humans and gulls in Alaska. METHODS We performed whole-genome sequencing to determine the genetic context of blaKPC in bacterial isolates from all four human carbapenemase-producing Enterobacteriaceae (CPE) infections reported in Alaska between 2013-2018 and to compare the sequences with seven previously reported CPE isolates from gull faeces within the same region and time period. RESULTS Genomic analysis of CPE isolates suggested independent acquisition events among humans with no evidence for direct transmission of blaKPC between people and gulls. However, some isolates shared conserved genetic elements surrounding blaKPC, suggesting possible exchange between species. CONCLUSION Our results highlight the genomic plasticity associated with blaKPC and demonstrate that sampling of wildlife may be useful for identifying clinically relevant antimicrobial resistance not observed through local passive surveillance in humans.
Collapse
Affiliation(s)
- Christina A Ahlstrom
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Anna Frick
- State of Alaska Department of Health and Social Services, Anchorage, AK, USA
| | - Catherine Pongratz
- State of Alaska Department of Health and Social Services, Anchorage, AK, USA
| | - Kimberly Spink
- State of Alaska Department of Health and Social Services, Anchorage, AK, USA
| | - Catherine Xavier
- State of Alaska Department of Health and Social Services, Anchorage, AK, USA
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Infectious Diseases, Kalmar County Council, Kalmar, Sweden
| | - Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| |
Collapse
|
28
|
Lozano-Sanllehi S, Zavalaga CB. Nonrandom spatial distribution of Neotropic Cormorants (Phalacrocorax brasilianus) along a coastal highway in Lima, Peru. PLoS One 2021; 16:e0242835. [PMID: 33647058 PMCID: PMC7920354 DOI: 10.1371/journal.pone.0242835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
Neotropic Cormorants (Phalacrocorax brasilianus) are common seabirds along the Peruvian coast. They frequently perch on trees, poles and port structures in urban areas, producing guano that builds up in areas of high levels of human activity. Hundreds of Neotropic Cormorants rest on lighting poles and telephone cables along a 12.7 km highway in the coastal strip of the city of Lima, Peru. We hypothesized that the distribution of the cormorants along this highway is clustered and could be associated with physical features of both the coast and the adjacent marine area. Fortnightly or monthly surveys were performed from July 2018 to March 2020 in the Circuito de Playas de la Costa Verde highway. At each survey, cormorants were counted per lighting pole and adjacent telephone cables (collectively, “pole-cable”) at four count hours (0600 h, 1000 h, 1400 h and 1800 h). Our results revealed that daily bird numbers varied from 46 to 457 individuals and that only 17% of the total number of pole-cables (N = 651) was occupied once by at least one individual. The number of cormorants also varied between count hours within the same day (higher numbers at 1000 h and 1400 h). Birds were clustered into a maximum of five hotspots along the highway. According to a model selection criterion, higher numbers of cormorants on pole-cables were associated mainly to a closer distance from these structures to the shoreline and to the surf zone, suggesting that Neotropic Cormorants may select such pole-cables as optimal sites for sighting and receiving cues of prey availability. Based on the results, the use of nonlethal deterrents and the relocation of these birds to other perching structures on nearby groynes could be the most suitable management proposal for the problems caused by their feces.
Collapse
Affiliation(s)
- Sebastián Lozano-Sanllehi
- Unidad de Investigación de Ecosistemas Marinos—Grupo Aves Marinas, Universidad Científica del Sur, Lima, Perú
- Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima, Perú
| | - Carlos B. Zavalaga
- Unidad de Investigación de Ecosistemas Marinos—Grupo Aves Marinas, Universidad Científica del Sur, Lima, Perú
- * E-mail:
| |
Collapse
|
29
|
Ewbank AC, Esperón F, Sacristán C, Sacristán I, Krul R, Cavalcante de Macedo E, Calatayud O, Bueno I, de Francisco Strefezzi R, Catão-Dias JL. Seabirds as anthropization indicators in two different tropical biotopes: A One Health approach to the issue of antimicrobial resistance genes pollution in oceanic islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142141. [PMID: 32920402 DOI: 10.1016/j.scitotenv.2020.142141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 05/12/2023]
Abstract
Antimicrobial resistance is a quintessential One Health issue, among the most serious 21st century global threats to human health. Seabirds may act as sentinels of natural and anthropogenic changes in the marine ecosystem health, including pollution by antimicrobial resistance genes (ARGs). We used real time PCR to identify and quantify 22 plasmid-mediated ARGs in the gastrointestinal microbiome of six wild seabird species, comparing an anthropized (Fernando de Noronha Archipelago - FNA) and a pristine biotope (Rocas Atoll - ROA), Brazil. Of 257 birds, 218 (84.8%) were positive to at least one ARG. ARG classes encoding resistance to tetracyclines (75.1%), quinolones (10.5%) and phenicols (10.5%) were the most prevalent, with tetracyclines significantly greater than the remaining classes (p < 0.05). Genes tet(S) (29.2%), tet(A) (28.8%), and tet(B) (24.9%) were the most commonly found and had a significantly greater prevalence when compared to the remaining ARGs (p < 0.05). The anthropized biotope presented statistically significant higher prevalence of sulfonamide- and quinolone-encoding ARGs in comparison with the pristine (respectively, p = 0.01 and p = 0.03), and higher sulII gene prevalence (p = 0.04), consistent with anthropogenic pressure. Migratory species (only present in ROA) showed statistically significant higher mcr-1 (polymyxins) and blaTEM (betalactam) prevalences (respectively, p = 0.009 and p = 0.02), and mcr-1 percentage load (p = 0.0079) in comparison with non-migratory. To our knowledge, this is the largest ARGs survey based on direct detection and quantification in seabirds worldwide, and the first to evaluate non-synanthropic species in oceanic islands. This is the first detection of mcr-1 in wild free-ranging seabirds in Brazil and in free-ranging migratory non-synanthropic seabirds worldwide. Our findings show the importance of biological and ecological factors, highlighting the role of seabirds as anthropization sentinels and ARGs-pollution environmental indicators (even in a pristine biotope), and their involvement in the One Health epidemiological chain of ARGs.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Fernando Esperón
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Madrid, Spain.
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Irene Sacristán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Ricardo Krul
- Ornithology Laboratory, Center for Studies of the Sea, Paraná State University, Paraná State, Brazil.
| | - Eduardo Cavalcante de Macedo
- Chico Mendes Institute for Biodiversity Conservation (ICMBio) - Brazilian Ministry of the Environment, Rocas Atol Biological Reserve, Rio Grande do Norte, Brazil.
| | - Olga Calatayud
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Madrid, Spain.
| | - Irene Bueno
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, United States.
| | - Ricardo de Francisco Strefezzi
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Prevalence and Antimicrobial Resistance of Enteropathogenic Bacteria in Yellow-Legged Gulls ( Larus michahellis) in Southern Italy. Animals (Basel) 2021; 11:ani11020275. [PMID: 33499158 PMCID: PMC7911546 DOI: 10.3390/ani11020275] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Wild birds may host and spread pathogens, integrating the epidemiology of infectious diseases. Particularly, Larus spp. have been described as responsible for the spread of many enteric diseases, primarily because of their large populations at landfill sites. The aim of this study was to examine the role of yellow-legged gulls as a source of enteropathogenic bacteria such as Campylobacter spp., Salmonella spp., Shiga toxin-producing Escherichia coli and Yersinia spp., with particular attention to antibiotic-resistant strains. Enteropathogenic bacteria were isolated from 93/225 yellow-legged gulls examined from April to July, during a four-year period (2016-2019). Specifically, Campylobacter spp. was isolated from 60/225 samples (26.7%), and identified as C. coli (36/60) and as C. jejuni (24/60). Salmonella spp. was isolated from 3/225 samples (1.3%), and identified as Salmonella arizonae. Shiga toxin-producing E. coli were isolated from 30/225 samples (13.3%) samples, and serotyped as E. coli O128 (12/30) O26 (9/30), O157 (6/30) and O11 (3/30); Yersinia spp. was never detected. Isolated strains exhibited multidrug resistance, including vitally important antibiotics for human medicine (i.e., fluoroquinolones, tetracyclines). Our study emphasizes the importance of yellow-legged gulls as potential reservoirs of pathogenic and resistant strains and their involvement in the dissemination of these bacteria across different environments, with resulting public health concerns.
Collapse
|
31
|
Kang Q, Wang X, Zhao J, Liu Z, Ji F, Chang H, Yang J, Hu S, Jia T, Wang X, Tang J, Dong G, Hu G, Wang J, Zhang Y, Qin J, Wang C. Multidrug-Resistant Proteus mirabilis isolates carrying bla OXA-1 and bla NDM-1 from wildlife in China: Increasing public health risk. Integr Zool 2020; 16:798-809. [PMID: 33289300 DOI: 10.1111/1749-4877.12510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emergence of multidrug resistance (MDR) in Proteus mirabilis clinical isolates is a growing public health concern and has serious implications for wildlife. What is the role of wildlife has been become one of the hot issues in disseminating antimicrobial resistance (AMR). Here, fifty-four P.mirabilis isolates from 12 different species were identified. Among them, 25 isolates were determined to be MDR by profile of antimicrobial susceptibility, 10 MDR P.mirabilis isolates were subjected to comparative genomic analysis by whole genome sequencing (WGS). Comprehensive analysis showed that chromosome of P.mirabilis isolates mainly carries multidrug-resistance complex elements harboring resistance to carbapenems genes blaOXA-1, blaNDM-1 and blaTEM-1. Class I integron is the insertion hotspot of IS26, it can be inserted into type I integron at different sites, thus forming a variety of multiple drug resistance decision sites. At the same time, Tn21, Tn7, SXT / R391 Mobile elements cause widespread spread of this drug resistance genes. In conclusion, P.mirabilis isolates from wildlife showed higher resistance to commonly used clinic drugs comparing to those from human. Therefore, wild animals carrying multidrug resistance (MDR) clinical isolates should be paid attention to by the public health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qian Kang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 7 Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Xue Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 7 Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China.,College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Jianan Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 7 Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Zhihui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 7 Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China.,College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Fang Ji
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 7 Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Han Chang
- Institute of zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianchun Yang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 7 Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Shijia Hu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 7 Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | | | | | - Guoying Dong
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Guocheng Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Jing Wang
- Department of Infectious Diseases, Hangzhou Center of Disease Control and Prevention, Zhejiang, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jianhua Qin
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Chengmin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 7 Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| |
Collapse
|
32
|
Chandler JC, Franklin AB, Bevins SN, Bentler KT, Bonnedahl J, Ahlstrom CA, Bisha B, Shriner SA. Validation of a screening method for the detection of colistin-resistant E. coli containing mcr-1 in feral swine feces. J Microbiol Methods 2020; 172:105892. [DOI: 10.1016/j.mimet.2020.105892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/28/2022]
|