1
|
Michel M, Shahrestani S, Boyke AE, Garcia CM, Menaker SA, Aguilera-Pena MP, Nguyen AT, Yu JS, Black KL. Utility of combining frailty and comorbid disease indices in predicting outcomes following craniotomy for adult primary brain tumors: A mixed-effects model analysis using the nationwide readmissions database. Clin Neurol Neurosurg 2024; 246:108521. [PMID: 39236416 DOI: 10.1016/j.clineuro.2024.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE The escalating healthcare expenditures in the United States, particularly in neurosurgery, necessitate effective tools for predicting patient outcomes and optimizing resource allocation. This study explores the utility of combining frailty and comorbidity indices, specifically the Johns Hopkins Adjusted Clinical Groups (JHACG) frailty index and the Elixhauser Comorbidity Index (ECI), in predicting hospital length of stay (LOS), non-routine discharge, and one-year readmission in patients undergoing craniotomy for benign and malignant primary brain tumors. METHODS Leveraging the Nationwide Readmissions Database (NRD) for 2016-2019, we analyzed data from 645 patients with benign and 30,991 with malignant tumors. Frailty, ECI, and frailty + ECI were assessed as predictors using generalized linear mixed-effects models. Receiver operating characteristic (ROC) curves evaluated predictive performance. RESULTS Patients in the benign tumor cohort had a mean LOS of 8.1 ± 15.1 days, and frailty + ECI outperformed frailty alone in predicting non-routine discharge (AUC 0.829 vs. 0.820, p = 0.035). The malignant tumor cohort patients had a mean LOS of 7.9 ± 9.1 days. In this cohort, frailty + ECI (AUC 0.821) outperformed both frailty (AUC 0.744, p < 0.0001) and ECI alone (AUC 0.809, p < 0.0001) in predicting hospital LOS. Frailty + ECI (AUC 0.831) also proved superior to frailty (AUC 0.809, p < 0.0001) and ECI alone (AUC 0.827, p < 0.0001) in predicting non-routine discharge location for patients with malignant tumors. All indices performed comparably to one another as a predictor of readmission in both cohorts. CONCLUSION This study highlights the synergistic predictive capacity of frailty + ECI, especially in malignant tumor cases, and further suggests that comorbid diseases may greatly influence perioperative outcomes more than frailty. Enhanced risk assessment could aid clinical decision-making, patient counseling, and resource allocation, ultimately optimizing patient outcomes.
Collapse
Affiliation(s)
- Michelot Michel
- College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shane Shahrestani
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andre E Boyke
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine M Garcia
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon A Menaker
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Alan T Nguyen
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA.
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Mei Q, Shen H, Chai X, Jiang Y, Liu J. Practical Nomograms and Risk Stratification System for Predicting the Overall and Cancer-specific Survival in Patients with Anaplastic Astrocytoma. World Neurosurg 2024; 189:e391-e403. [PMID: 38909753 DOI: 10.1016/j.wneu.2024.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
OBJECTIVE Anaplastic astrocytoma (AA) is an uncommon primary brain tumor with highly variable clinical outcomes. Our study aimed to develop practical tools for clinical decision-making in a population-based cohort study. METHODS Data from 2997 patients diagnosed with AA between 2004 and 2015 were retrospectively extracted from the Surveillance, Epidemiology, and End Results database. The Least Absolute Shrinkage and Selection Operator and multivariate Cox regression analyses were applied to select factors and establish prognostic nomograms. The discriminatory ability of these nomogram models was evaluated using the concordance index and receiver operating characteristic curve. Risk stratifications were established based on the nomograms. RESULTS Selected 2997 AA patients were distributed into the training cohort (70%, 2097) and the validation cohort (30%, 900). Age, household income, tumor site, extension, surgery, radiotherapy, and chemotherapy were identified as independent prognostic factors for both overall survival (OS) and cancer-specific survival (CSS). In the training cohort, our nomograms for OS and CSS exhibited good predictive accuracy with concordance index values of 0.752 (95% CI: 0.741-0.764) and 0.753 (95% CI: 0.741-0.765), respectively. Calibration and decision curve analyses curves showed that the nomograms demonstrated considerable consistency and satisfactory clinical utilities. With the establishment of nomograms, we stratified AA patients into high- and low-risk groups, and constructed risk stratification systems for OS and CSS. CONCLUSIONS We constructed two predictive nomograms and risk classification systems to effectively predict the OS and CSS rates in AA patients. These models were internally validated with considerable accuracy and reliability and might be helpful in future clinical practices.
Collapse
Affiliation(s)
- Qing Mei
- Department of Neurology, Beijing Pinggu Hospital, Beijing, China
| | - Hui Shen
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Xubin Chai
- Beijing Neurosurgical Institute, Capital Medical University, Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfeng Jiang
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiachun Liu
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Tohidinezhad F, Zegers CML, Vaassen F, Dijkstra J, Anten M, Van Elmpt W, De Ruysscher D, Dekker A, Eekers DBP, Traverso A. Predicting the risk of neurocognitive decline after brain irradiation in adult patients with a primary brain tumor. Neuro Oncol 2024; 26:1467-1478. [PMID: 38595122 PMCID: PMC11300005 DOI: 10.1093/neuonc/noae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Deterioration of neurocognitive function in adult patients with a primary brain tumor is the most concerning side effect of radiotherapy. This study aimed to develop and evaluate normal-tissue complication probability (NTCP) models using clinical and dose-volume measures for 6-month, 1-year, and 2-year Neurocognitive Decline (ND) postradiotherapy. METHODS A total of 219 patients with a primary brain tumor treated with radical photon and/or proton radiotherapy (RT) between 2019 and 2022 were included. Controlled oral word association test, Hopkins verbal learning test-revised, and trail making test were used to objectively measure ND. A comprehensive set of potential clinical and dose-volume measures on several brain structures were considered for statistical modeling. Clinical, dose-volume and combined models were constructed and internally tested in terms of discrimination (area under the curve, AUC), calibration (mean absolute error, MAE), and net benefit. RESULTS Fifty percent, 44.5%, and 42.7% of the patients developed ND at 6-month, 1-year, and 2-year time points, respectively. The following predictors were included in the combined model for 6-month ND: age at radiotherapy > 56 years (OR = 5.71), overweight (OR = 0.49), obesity (OR = 0.35), chemotherapy (OR = 2.23), brain V20 Gy ≥ 20% (OR = 3.53), brainstem volume ≥ 26 cc (OR = 0.39), and hypothalamus volume ≥ 0.5 cc (OR = 0.4). Decision curve analysis showed that the combined models had the highest net benefits at 6-month (AUC = 0.79, MAE = 0.021), 1-year (AUC = 0.72, MAE = 0.027), and 2-year (AUC = 0.69, MAE = 0.038) time points. CONCLUSIONS The proposed NTCP models use easy-to-obtain predictors to identify patients at high risk of ND after brain RT. These models can potentially provide a base for RT-related decisions and post-therapy neurocognitive rehabilitation interventions.
Collapse
Affiliation(s)
- Fariba Tohidinezhad
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jeanette Dijkstra
- Department of Medical Psychology, School for Mental Health and Neurosciences (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Monique Anten
- Department of Neurology, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wouter Van Elmpt
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
- School of Medicine, Libera Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
4
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
5
|
Otero JJ. The Cognitive Framework Behind Modern Neuropathology. Arch Pathol Lab Med 2024; 148:e103-e110. [PMID: 37694567 DOI: 10.5858/arpa.2023-0209-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 09/12/2023]
Abstract
CONTEXT In 2021 the World Health Organization distributed a new classification of central nervous system tumors that incorporated modern testing modalities in the diagnosis. Although universally accepted as a scientifically superior system, this schema has created controversy because its deployment globally is challenging in the best of circumstances and impossible in resource-poor health care ecosystems. Compounding this problem is the significant challenge that neuropathologists with expertise in central nervous system tumors are rare. OBJECTIVE To demonstrate diagnostic use of simple unsupervised machine learning techniques using publicly available data sets. I also discuss some potential solutions to the deployment of neuropathology classification in health care ecosystems burdened by this classification schema. DATA SOURCES The Cancer Genome Atlas RNA sequencing data from low-grade and high-grade gliomas. CONCLUSIONS Methylation-based classification will be unable to solve all diagnostic problems in neuropathology. Information theory quantifications generate focused workflows in pathology, resulting in prevention of ordering unnecessary tests and identifying biomarkers that facilitate diagnosis.
Collapse
Affiliation(s)
- José Javier Otero
- From the Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus
| |
Collapse
|
6
|
Drexler R, Brembach F, Sauvigny J, Ricklefs FL, Eckhardt A, Bode H, Gempt J, Lamszus K, Westphal M, Schüller U, Mohme M. Unclassifiable CNS tumors in DNA methylation-based classification: clinical challenges and prognostic impact. Acta Neuropathol Commun 2024; 12:9. [PMID: 38229158 DOI: 10.1186/s40478-024-01728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
DNA methylation analysis has become a powerful tool in neuropathology. Although DNA methylation-based classification usually shows high accuracy, certain samples cannot be classified and remain clinically challenging. We aimed to gain insight into these cases from a clinical perspective. To address, central nervous system (CNS) tumors were subjected to DNA methylation profiling and classified according to their calibrated score using the DKFZ brain tumor classifier (V11.4) as "≥ 0.84" (score ≥ 0.84), "0.3-0.84" (score 0.3-0.84), or "< 0.3" (score < 0.3). Histopathology, patient characteristics, DNA input amount, and tumor purity were correlated. Clinical outcome parameters were time to treatment decision, progression-free, and overall survival. In 1481 patients, the classifier identified 69 (4.6%) tumors with an unreliable score as "< 0.3". Younger age (P < 0.01) and lower tumor purity (P < 0.01) compromised accurate classification. A clinical impact was demonstrated as unclassifiable cases ("< 0.3") had a longer time to treatment decision (P < 0.0001). In a subset of glioblastomas, these cases experienced an increased time to adjuvant treatment start (P < 0.001) and unfavorable survival (P < 0.025). Although DNA methylation profiling adds an important contribution to CNS tumor diagnostics, clinicians should be aware of a potentially longer time to treatment initiation, especially in malignant brain tumors.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Florian Brembach
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jennifer Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Alicia Eckhardt
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiation Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
7
|
Garcia MA, Turner A, Brachman DG. The role of GammaTile in the treatment of brain tumors: a technical and clinical overview. J Neurooncol 2024; 166:203-212. [PMID: 38261141 PMCID: PMC10834587 DOI: 10.1007/s11060-023-04523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024]
Abstract
Malignant and benign brain tumors with a propensity to recur continue to be a clinical challenge despite decades-long efforts to develop systemic and more advanced local therapies. GammaTile (GT Medical Technologies Inc., Tempe AZ) has emerged as a novel brain brachytherapy device placed during surgery, which starts adjuvant radiotherapy immediately after resection. GammaTile received FDA clearance in 2018 for any recurrent brain tumor and expanded clearance in 2020 to include upfront use in any malignant brain tumor. More than 1,000 patients have been treated with GammaTile to date, and several publications have described technical aspects of the device, workflow, and clinical outcome data. Herein, we review the technical aspects of this brachytherapy treatment, including practical physics principles, discuss the available literature with an emphasis on clinical outcome data in the setting of brain metastases, glioblastoma, and meningioma, and provide an overview of the open and pending clinical trials that are further defining the efficacy and safety of GammaTile.
Collapse
Affiliation(s)
| | - Adam Turner
- GT Medical Technologies, Inc., Tempe, AZ, USA
| | | |
Collapse
|
8
|
Nabian N, Ghalehtaki R, Zeinalizadeh M, Balaña C, Jablonska PA. State of the neoadjuvant therapy for glioblastoma multiforme-Where do we stand? Neurooncol Adv 2024; 6:vdae028. [PMID: 38560349 PMCID: PMC10981465 DOI: 10.1093/noajnl/vdae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite several investigations in this field, maximal safe resection followed by chemoradiotherapy and adjuvant temozolomide with or without tumor-treating fields remains the standard of care with poor survival outcomes. Many endeavors have failed to make a dramatic change in the outcomes of GBM patients. This study aimed to review the available strategies for newly diagnosed GBM in the neoadjuvant setting, which have been mainly neglected in contrast to other solid tumors.
Collapse
Affiliation(s)
- Naeim Nabian
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zeinalizadeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Carmen Balaña
- B.ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, Badalona, Spain
| | | |
Collapse
|
9
|
Frandsen S, Pedersen AJ, Gredal O, Møller S, Geissler UW, Nørøxe DS. Treatment of glioblastoma in Greenlandic patients. Int J Circumpolar Health 2023; 82:2285077. [PMID: 37992407 PMCID: PMC10997297 DOI: 10.1080/22423982.2023.2285077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Glioblastoma (GBM), WHO grade IV, is the most common primary malignant brain tumour among adults with a devastating overall survival of 14-22 months. Standard treatment of GBM includes maximum safe resection, radiotherapy plus concomitant and adjuvant temozolomide (TMZ), given over a period of approximately 9 months. Treatment and follow-up for Greenlandic patients with GBM are managed at Rigshospitalet (RH), Copenhagen. Greenlandic GBM patients, therefore, travel back and forth to RH, often unaccompanied, and challenged by cognitive failure or other symptoms from their disease and/or treatment. Few Greenlandic patients are diagnosed with GBM annually, but considering the poor prognosis and short remaining lifespan, it would be preferable to limit their travels. TMZ is administrated as capsules. Health personnel at Queen Ingrid's Hospital (DIH), Nuuk, are trained in treating other oncological diseases and handling side effects. Hence, it could be investigated whether administration of adjuvant TMZ at DIH could be feasible after personnel education as well as economic consideration and compensation, in close collaboration with neuro oncologists at RH. In this article, we describe the Greenlandic cancer treatment, and the typical workflow from diagnosis of GBM to treatment to progression.
Collapse
Affiliation(s)
- Simone Frandsen
- Department of Medicine, Queen Ingrid’s Hospital, Nuuk, Greenland
- Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ole Gredal
- Department of Medicine, Queen Ingrid’s Hospital, Nuuk, Greenland
| | - Søren Møller
- Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Dorte Schou Nørøxe
- Department of Medicine, Queen Ingrid’s Hospital, Nuuk, Greenland
- Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
- DCCC Brain Tumor Center, Copenhagen, Denmark
| |
Collapse
|
10
|
Darfaoui M, Tahiri Y, Elomrani A, Khouchani M. Challenges in the Management of Glioblastoma in a Developing Country: Experience From the Radiotherapy Oncology Department in Marrakech, Morocco. Cureus 2023; 15:e46258. [PMID: 37908961 PMCID: PMC10615119 DOI: 10.7759/cureus.46258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 11/02/2023] Open
Abstract
Managing glioblastoma (GBM) is challenging even for the most experienced centers in high-income countries due to its infiltrative nature, its unique tumor and immune microenvironment, and the negative effect of the blood-brain barrier on the penetration of systemic therapies. In developing countries, the difficulties are even greater, mostly in relation to the lack of adequate medical infrastructure and resources. This paper highlights the disparities in GBM management between developed and developing countries. Throughout this retrospective study conducted at the Radiation Oncology Department of Mohammed VI University Hospital in Marrakech, Morocco, we investigated the management outcomes of 48 GBM patients diagnosed between 2016 and 2021. Results showed a male predominance (65%) and a mean age of 53 years. Gross total resection was achieved in 16% of the patients and subtotal resection in 80%. Adjuvant radiotherapy was pursued, with a prescribed dose of 60 Gray in 30 fractions of 2 Gray for most patients. Concurrent temozolomide was administered to 32 patients (66.6%) with favorable tolerance. However, disease progression occurred in all cases, with a median time to progression of five months and a median survival of eight months. In conclusion, a comprehensive awareness of our limitations empowers us to implement measures that secure impartial access to standard-of-care treatments for every patient in Morocco, ultimately elevating the effectiveness of therapeutic outcomes.
Collapse
Affiliation(s)
- Mouna Darfaoui
- Radiation Oncology, Mohammed VI University Hospital, Marrakech, MAR
| | - Yassir Tahiri
- Radiation Oncology, Mohammed VI University Hospital, Marrakech, MAR
| | | | - Mouna Khouchani
- Radiation Oncology, Mohammed VI University Hospital, Marrakech, MAR
| |
Collapse
|
11
|
Anwar F, Al-Abbasi FA, Naqvi S, Sheikh RA, Alhayyani S, Asseri AH, Asar TO, Kumar V. Therapeutic Potential of Nanomedicine in Management of Alzheimer's Disease and Glioma. Int J Nanomedicine 2023; 18:2737-2756. [PMID: 37250469 PMCID: PMC10211371 DOI: 10.2147/ijn.s405454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, Rabigh King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India
| |
Collapse
|
12
|
Sharma M, McKenzie GW, Gaskins J, Yusuf M, Woo S, Mistry AM, Williams BJ. Demographic variations and time to initiation of adjunct treatment following surgical resection of anaplastic astrocytoma in the United States: a National Cancer Database analysis. J Neurooncol 2023; 162:199-210. [PMID: 36913046 DOI: 10.1007/s11060-023-04286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND AND AIMS The aim of this study was to analyze the trends, demographic differences in the type and time to initiation (TTI) of adjunct treatment AT following surgery for anaplastic astrocytoma (AA). MATERIAL AND METHODS The National Cancer Database (NCDB) was queried for patients diagnosed with AA from 2004 to 2016. Cox proportional hazards and modeling was used to determine factors influencing survival, including the impact of time to initiation (TTI) of adjuvant therapy. RESULTS Overall, 5890 patients were identified from the database. The use of combined RT + CT temporally increased from 66.3% (2004-2007) to 79% (2014-2016), p < 0001. Patients more likely to receive no treatment following surgical resection included elderly (> 60 years old), hispanic patients, those with either no or government insurance, those living > 20 miles from the cancer facility, those treated at low volume centers (< 2 cases/year). AT was received following surgical resection within 0-4 weeks, 4.1-8 weeks, and > 8 weeks in 41%, 48%, and 3%, respectively. Compared to patients who received RT + CT, patients were likely to receive RT only as AT either at 4-8 weeks or > 8 weeks after the surgical procedure. Patients who received AT within 0-4 weeks had the 3-year OS of 46% compared to 56.7% for patients who received treatment at 4.1-8 weeks. CONCLUSION We found significant variation in the type and timing of adjunct treatment following surgical resection of AA in the United States. A considerable number of patients (15%) received no AT following surgery.
Collapse
Affiliation(s)
- Mayur Sharma
- Department of Neurosurgery, University of Louisville, 200 Abraham Flexner Hwy, Louisville, KY, 40202, USA. .,Department of Neurosurgery, University of Minnesota, MMC 96, 420 Delaware St. SE, Minneapolis, MN, 55455, USA.
| | - Grant W McKenzie
- Department of Radiation Oncology, University of Louisville Hospital, Louisville, KY, USA
| | - Jeremy Gaskins
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Mehran Yusuf
- Department of Radiation Oncology, University of Alabama, Birmingham, AL, 35233, USA
| | - Shiao Woo
- Department of Radiation Oncology, University of Louisville Hospital, Louisville, KY, USA
| | - Akshitkumar M Mistry
- Department of Neurosurgery, University of Louisville, 200 Abraham Flexner Hwy, Louisville, KY, 40202, USA
| | - Brian J Williams
- Department of Neurosurgery, University of Louisville, 200 Abraham Flexner Hwy, Louisville, KY, 40202, USA
| |
Collapse
|
13
|
Waqar M, Roncaroli F, Djoukhadar I, Akkari L, O'Leary C, Hewitt L, Forte G, Jackson R, Hessen E, Withington L, Beasley W, Richardson J, Golby C, Whitehurst P, Colaco R, Bailey M, Karabatsou K, D'Urso PI, McBain C, Coope DJ, Borst GR. Study protocol: PreOperative Brain Irradiation in Glioblastoma (POBIG) - A phase I trial. Clin Transl Radiat Oncol 2023; 39:100585. [PMID: 36845633 PMCID: PMC9947330 DOI: 10.1016/j.ctro.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Background Glioblastoma is a high-grade aggressive neoplasm whose outcomes have not changed in decades. In the current treatment pathway, tumour growth continues and remains untreated for several weeks post-diagnosis. Intensified upfront therapy could target otherwise untreated tumour cells and improve the treatment outcome. POBIG will evaluate the safety and feasibility of single-fraction preoperative radiotherapy for newly diagnosed glioblastoma, assessed by the maximum tolerated dose (MTD) and maximum tolerated irradiation volume (MTIV). Methods POBIG is an open-label, dual-centre phase I dose and volume escalation trial that has received ethical approval. Patients with a new radiological diagnosis of glioblastoma will be screened for eligibility. This is deemed sufficient due to the high accuracy of imaging and to avoid treatment delay. Eligible patients will receive a single fraction of preoperative radiotherapy ranging from 6 to 14 Gy followed by their standard of care treatment comprising maximal safe resection and postoperative chemoradiotherapy (60 Gy/30 fr) with concurrent and adjuvant temozolomide). Preoperative radiotherapy will be directed to the part of the tumour that is highest risk for remaining as postoperative residual disease (hot spot). Part of the tumour will remain unirradiated (cold spot) and sampled separately for diagnostic purposes. Dose/volume escalation will be guided by a Continual Reassessment Method (CRM) model. Translational opportunities will be afforded through comparison of irradiated and unirradiated primary glioblastoma tissue. Discussion POBIG will help establish the role of radiotherapy in preoperative modalities for glioblastoma. Trial registration NCT03582514 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
| | - Federico Roncaroli
- Department of Neuropathology, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
| | - Ibrahim Djoukhadar
- Department of Neuroradiology, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Claire O'Leary
- Department of Neuropathology, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
| | - Lauren Hewitt
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
| | - Gabriella Forte
- Department of Neuropathology, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Richard Jackson
- Department of Statistics, Liverpool Clinical Trials Unit, University of Liverpool, United Kingdom
| | - Eline Hessen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Withington
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - William Beasley
- Department of Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jenny Richardson
- Department of Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Christopher Golby
- Department of Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Philip Whitehurst
- Department of Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Rovel Colaco
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Matthew Bailey
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Konstantina Karabatsou
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Pietro I. D'Urso
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Catherine McBain
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - David J. Coope
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Gerben R. Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
14
|
Vogel MME, Wagner A, Gempt J, Krenzlin H, Zeyen T, Drexler R, Voss M, Nettekoven C, Abboud T, Mielke D, Rohde V, Timmer M, Goldbrunner R, Steinbach JP, Dührsen L, Westphal M, Herrlinger U, Ringel F, Meyer B, Combs SE. Impact of the SARS-CoV-2 pandemic on the survival of patients with high-grade glioma and best practice recommendations. Sci Rep 2023; 13:2766. [PMID: 36797335 PMCID: PMC9933015 DOI: 10.1038/s41598-023-29790-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has changed the clinical day-to-day practice. The aim of this study was to evaluate the impact of the pandemic on patients with high-grade glioma (HGG) as well as to derive best practice recommendations. We compared a multi-institutional cohort with HGG (n = 251) from 03/2020 to 05/2020 (n = 119) to a historical cohort from 03/2019 to 05/2019 (n = 132). The endpoints were outcome (progression-free survival (PFS) and overall survival (OS)) as well as patterns of care and time intervals between treatment steps. The median OS for WHO grade 4 gliomas was 12 months in 2019 (95% Confidence Interval 9.7-14.3 months), and not reached in 2020 (p = .026). There were no other significant differences in the Kaplan-Meier estimates for OS and PFS between cohorts of 2019 and 2020, neither did stratification by WHO grade reveal any significant differences for OS, PFS or for patterns of care. The time interval between cranial magnetic resonance imaging (cMRI) and biopsy was significantly longer in 2020 cohort (11 versus 21 days, p = .031). Median follow-up was 10 months (range 0-30 months). Despite necessary disease containment policies, it is crucial to ensure that patients with HGG are treated in line with the recent guidelines and standard of care (SOC) algorithms. Therefore, we strongly suggest pursuing no changes to SOC treatment, a timely diagnosis and treatment with short time intervals between first symptoms, initial diagnosis, and treatment, as well as a guideline-based cMRI follow-up.
Collapse
Affiliation(s)
- Marco M. E. Vogel
- grid.6936.a0000000123222966Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Strasse 22, 81675 Munich, Germany ,grid.4567.00000 0004 0483 2525Institute for Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Arthur Wagner
- grid.6936.a0000000123222966Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Strasse 22, 81675 Munich, Germany
| | - Jens Gempt
- grid.6936.a0000000123222966Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Strasse 22, 81675 Munich, Germany
| | - Harald Krenzlin
- grid.410607.4Department of Neurosurgery, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Thomas Zeyen
- grid.10388.320000 0001 2240 3300Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Richard Drexler
- grid.13648.380000 0001 2180 3484Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin Voss
- grid.411088.40000 0004 0578 8220Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528 Frankfurt/Main, Germany
| | - Charlotte Nettekoven
- grid.411097.a0000 0000 8852 305XCenter for Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Tammam Abboud
- grid.411984.10000 0001 0482 5331Department of Neurosurgery, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Dorothee Mielke
- grid.411984.10000 0001 0482 5331Department of Neurosurgery, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Veit Rohde
- grid.411984.10000 0001 0482 5331Department of Neurosurgery, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Marco Timmer
- grid.411097.a0000 0000 8852 305XCenter for Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Roland Goldbrunner
- grid.411097.a0000 0000 8852 305XCenter for Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Joachim P. Steinbach
- grid.411088.40000 0004 0578 8220Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528 Frankfurt/Main, Germany
| | - Lasse Dührsen
- grid.13648.380000 0001 2180 3484Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Manfred Westphal
- grid.13648.380000 0001 2180 3484Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ulrich Herrlinger
- grid.10388.320000 0001 2240 3300Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Florian Ringel
- grid.410607.4Department of Neurosurgery, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Bernhard Meyer
- grid.6936.a0000000123222966Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Strasse 22, 81675 Munich, Germany
| | - Stephanie E. Combs
- grid.6936.a0000000123222966Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Strasse 22, 81675 Munich, Germany ,grid.4567.00000 0004 0483 2525Institute for Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany ,grid.7497.d0000 0004 0492 0584Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
15
|
Annese T, Errede M, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Double Immunohistochemical Staining on Formalin-Fixed Paraffin-Embedded Tissue Samples to Study Vascular Co-option. Methods Mol Biol 2023; 2572:101-116. [PMID: 36161411 DOI: 10.1007/978-1-0716-2703-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vascular co-option is a non-angiogenic mechanism whereby tumor growth and progression move on by hijacking the pre-existing and nonmalignant blood vessels and is employed by various tumors to grow and metastasize.The histopathological identification of co-opted blood vessels is complex, and no specific markers were defined, but it is critical to develop new and possibly more effective therapeutic strategies. Here, in glioblastoma, we show that the co-opted blood vessels can be identified, by double immunohistochemical staining, as weak CD31+ vessels with reduced P-gp expression and proliferation and surrounded by highly proliferating and P-gp- or S100A10-expressing tumor cells. Results can be quantified by the Aperio Colocalization algorithm, which is a valid and robust method to handle and investigate large data sets.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy.
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
16
|
Foo CY, Munir N, Kumaria A, Akhtar Q, Bullock CJ, Narayanan A, Fu RZ. Medical Device Advances in the Treatment of Glioblastoma. Cancers (Basel) 2022; 14:5341. [PMID: 36358762 PMCID: PMC9656148 DOI: 10.3390/cancers14215341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Cher Ying Foo
- Imperial College School of Medicine, Imperial College London, Fulham Palace Rd., London W6 8RF, UK
| | - Nimrah Munir
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Kumaria
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Qasim Akhtar
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Christopher J. Bullock
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Narayanan
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Richard Z. Fu
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael, Smith Building, Dover St., Manchester M13 9PT, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
17
|
Hsu EJ, Thomas J, Maher EA, Youssef M, Timmerman RD, Wardak Z, Lee M, Dan TD, Patel TR, Vo DT. Neutrophilia and post-radiation thrombocytopenia predict for poor prognosis in radiation-treated glioma patients. Front Oncol 2022; 12:1000280. [PMID: 36158642 PMCID: PMC9501690 DOI: 10.3389/fonc.2022.1000280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Poor outcomes in glioma patients indicate a need to determine prognostic indicators of survival to better guide patient specific treatment options. While preoperative neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) have been suggested as prognostic systemic inflammation markers, the impact of post-radiation changes in these cell types is unclear. We sought to identify which hematologic cell measurements before, during, or after radiation predicted for patient survival. Methods A cohort of 182 patients with pathologically confirmed gliomas treated at our institution was retrospectively reviewed. Patient blood samples were collected within one month before, during, or within 3 months after radiation for quantification of hematologic cell counts, for which failure patterns were evaluated. Multivariable cox proportional hazards analysis for overall survival (OS) and progression-free survival (PFS) was performed to control for patient variables. Results Multivariable analysis identified pre-radiation NLR > 4.0 (Hazard ratio = 1.847, p = 0.0039) and neutrophilia prior to (Hazard ratio = 1.706, p = 0.0185), during (Hazard ratio = 1.641, p = 0.0277), or after (Hazard ratio = 1.517, p = 0.0879) radiation as significant predictors of worse OS, with similar results for PFS. Post-radiation PLR > 200 (Hazard ratio = 0.587, p = 0.0062) and a percent increase in platelets after radiation (Hazard ratio = 0.387, p = 0.0077) were also associated with improved OS. Patients receiving more than 15 fractions of radiation exhibited greater post-radiation decreases in neutrophil and platelet counts than those receiving fewer. Patients receiving dexamethasone during radiation exhibited greater increases in neutrophil counts than those not receiving steroids. Lymphopenia, changes in lymphocyte counts, monocytosis, MLR, and changes in monocyte counts did not impact patient survival. Conclusion Neutrophilia at any time interval surrounding radiotherapy, pre-radiation NLR, and post-radiation thrombocytopenia, but not lymphocytes or monocytes, are predictors of poor patient survival in glioma patients.
Collapse
Affiliation(s)
- Eric J. Hsu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Eric J. Hsu,
| | - Jamie Thomas
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Elizabeth A. Maher
- Department of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Michael Youssef
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Robert D. Timmerman
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Zabi Wardak
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Minjae Lee
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Tu D. Dan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Toral R. Patel
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Dat T. Vo
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
18
|
Chaulagain D, Smolanka V, Smolanka A, Munakomi S. The Impact of Extent of Resection on the Prognosis of Glioblastoma Multiforme: A Systematic Review and Meta-analysis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose:
To investigate the predictor factors of mortality describing the prognosis of primary surgical resection of Glioblastoma Multiforme (GBM).
Materials and Methods:
A systemic search was conducted from electronic databases (PubMed/Medline, Cochrane Library, and Google Scholar) from inception to 12th September 2021. All statistical analysis was conducted in Review Manager 5.4.1. Studies meeting inclusion criteria were selected. A random-effect model was used when heterogeneity was seen to pool the studies, and the result were reported in the Hazards Ratio (HR) and corresponding 95% Confidence interval (CI).
Result:
Twenty-three cohort studies were selected for meta-analysis. There was statistically significant effect of extent of resection on prognosis of surgery in GBM patients (HR= 0.90 [0.86, 0.95]; p< 0.0001; I2= 96%), male gender (HR= 1.19 [1.06, 1.34]; p= 0.002; I2= 0%) and decrease Karnofsky Performance Status (HR= 0.97 [0.95, 0.99]; p= 0.003; I2= 90%). Age and tumor volume was also analyzed in the study.
Conclusion:
The results of our meta-analysis suggested that age, gender, pre-operative KPS score and extent of resection have significant effects on the post-surgical mortality rate, therefore, these factors can be used significant predictor of mortality in GBM patients.
Collapse
|
19
|
Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience 2022; 491:240-270. [PMID: 35395355 DOI: 10.1016/j.neuroscience.2022.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common, most formidable, and deadliest malignant types of primary astrocytoma with a poor prognosis. At present, the standard of care includes surgical tumor resection, followed by radiation therapy concomitant with chemotherapy and temozolomide. New developments and significant advances in the treatment of GBM have been achieved in recent decades. However, despite the advances, recurrence is often inevitable, and the survival of patients remains low. Various factors contribute to the difficulty in identifying an effective therapeutic option, among which are tumor complexity, the presence of the blood-brain barrier (BBB), and the presence of GBM cancer stem cells, prompting the need for improving existing treatment approaches and investigating new treatment alternatives for ameliorating the treatment strategies of GBM. In this review, we outline some of the most recent literature on the various available treatment options such as surgery, radiotherapy, cytotoxic chemotherapy, gene therapy, immunotherapy, phototherapy, nanotherapy, and tumor treating fields in the treatment of GBM, and we list some of the potential future directions of GBM. The reviewed studies confirm that GBM is a sophisticated disease with several challenges for scientists to address. Hence, more studies and a multimodal therapeutic approach are crucial to yield an effective cure and prolong the survival of GBM patients.
Collapse
|
20
|
Waqar M, Trifiletti DM, McBain C, O'Connor J, Coope DJ, Akkari L, Quinones-Hinojosa A, Borst GR. Early Therapeutic Interventions for Newly Diagnosed Glioblastoma: Rationale and Review of the Literature. Curr Oncol Rep 2022; 24:311-324. [PMID: 35119629 PMCID: PMC8885508 DOI: 10.1007/s11912-021-01157-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Glioblastoma is the commonest primary brain cancer in adults whose outcomes are amongst the worst of any cancer. The current treatment pathway comprises surgery and postoperative chemoradiotherapy though unresectable diffusely infiltrative tumour cells remain untreated for several weeks post-diagnosis. Intratumoural heterogeneity combined with increased hypoxia in the postoperative tumour microenvironment potentially decreases the efficacy of adjuvant interventions and fails to prevent early postoperative regrowth, called rapid early progression (REP). In this review, we discuss the clinical implications and biological foundations of post-surgery REP. Subsequently, clinical interventions potentially targeting this phenomenon are reviewed systematically. RECENT FINDINGS Early interventions include early systemic chemotherapy, neoadjuvant immunotherapy, local therapies delivered during surgery (including Gliadel wafers, nanoparticles and stem cell therapy) and several radiotherapy techniques. We critically appraise and compare these strategies in terms of their efficacy, toxicity, challenges and potential to prolong survival. Finally, we discuss the most promising strategies that could benefit future glioblastoma patients. There is biological rationale to suggest that early interventions could improve the outcome of glioblastoma patients and they should be investigated in future trials.
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Catherine McBain
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - James O'Connor
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - David J Coope
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alfredo Quinones-Hinojosa
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Gerben R Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
21
|
Li Y, Li X, Yang J, Wang S, Tang M, Xia J, Gao Y. Flourish of Proton and Carbon Ion Radiotherapy in China. Front Oncol 2022; 12:819905. [PMID: 35237518 PMCID: PMC8882681 DOI: 10.3389/fonc.2022.819905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Proton and heavy ion therapy offer superior relative biological effectiveness (RBE) in the treatment of deep-seated tumors compared with conventional photon radiotherapy due to its Bragg-peak feature of energy deposition in organs. Many proton and carbon ion therapy centers are active all over the world. At present, five particle radiotherapy institutes have been built and are receiving patient in China, mainly including Wanjie Proton Therapy Center (WPTC), Shanghai Proton Heavy Ion Center (SPHIC), Heavy Ion Cancer Treatment Center (HIMM), Chang Gung Memorial Hospital (CGMH), and Ruijin Hospital affiliated with Jiao Tong University. Many cancer patients have benefited from ion therapy, showing unique advantages over surgery and chemotherapy. By the end of 2020, nearly 8,000 patients had been treated with proton, carbon ion or carbon ion combined with proton therapy. So far, there is no systemic review for proton and carbon ion therapy facility and clinical outcome in China. We reviewed the development of proton and heavy ion therapy, as well as providing the representative clinical data and future directions for particle therapy in China. It has important guiding significance for the design and construction of new particle therapy center and patients’ choice of treatment equipment.
Collapse
Affiliation(s)
- Yue Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Yue Li,
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiancheng Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Sicheng Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meitang Tang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawen Xia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Huizhou Research Center of Ion Science, Chinese Academy of Sciences, Huizhou, China
| | - Yunzhe Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Owens MR, Nguyen S, Karsy M. Utility of Administrative Databases and Big Data on Understanding Glioma Treatment—A Systematic Review. INDIAN JOURNAL OF NEUROSURGERY 2022. [DOI: 10.1055/s-0042-1742333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Background Gliomas are a heterogeneous group of tumors where large multicenter clinical and genetic studies have become increasingly popular in their understanding. We reviewed and analyzed the findings from large databases in gliomas, seeking to understand clinically relevant information.
Methods A systematic review was performed for gliomas studied using large administrative databases up to January 2020 (e.g., National Inpatient Sample [NIS], National Surgical Quality Improvement Program [NSQIP], and Surveillance, Epidemiology, and End Results Program [SEER], National Cancer Database [NCDB], and others).
Results Out of 390 screened studies, 122 were analyzed. Studies included a wide range of gliomas including low- and high-grade gliomas. The SEER database (n = 83) was the most used database followed by NCDB (n = 28). The most common pathologies included glioblastoma multiforme (GBM) (n = 67), with the next category including mixes of grades II to IV glioma (n = 31). Common study themes involved evaluation of descriptive epidemiological trends, prognostic factors, comparison of different pathologies, and evaluation of outcome trends over time. Persistent health care disparities in patient outcomes were frequently seen depending on race, marital status, insurance status, hospital volume, and location, which did not change over time. Most studies showed improvement in survival because of advances in surgical and adjuvant treatments.
Conclusions This study helps summarize the use of clinical administrative databases in gliomas research, informing on socioeconomic issues, surgical outcomes, and adjuvant treatments over time on a national level. Large databases allow for some study questions that would not be possible with single institution data; however, limitations remain in data curation, analysis, and reporting methods.
Collapse
Affiliation(s)
- Monica-Rae Owens
- Department of Neurosurgery, University of Utah, Utah, United States
| | - Sarah Nguyen
- Department of Neurosurgery, University of Utah, Utah, United States
| | - Michael Karsy
- University of Utah Health Care, University of Utah Health Hospitals and Clinics, Utah, United States
| |
Collapse
|
23
|
Waqar M, Roncaroli F, Lehrer EJ, Palmer JD, Villanueva-Meyer J, Braunstein S, Hall E, Aznar M, De Witt Hamer PC, D’Urso PI, Trifiletti D, Quiñones-Hinojosa A, Wesseling P, Borst GR. Rapid early progression (REP) of glioblastoma is an independent negative prognostic factor: Results from a systematic review and meta-analysis. Neurooncol Adv 2022; 4:vdac075. [PMID: 35769410 PMCID: PMC9234755 DOI: 10.1093/noajnl/vdac075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background In patients with newly diagnosed glioblastoma, rapid early progression (REP) refers to tumor regrowth between surgery and postoperative chemoradiotherapy. This systematic review and meta-analysis appraised previously published data on REP to better characterize and understand it. Methods Systematic searches of MEDLINE, EMBASE and the Cochrane database from inception to October 21, 2021. Studies describing the incidence of REP-tumor growth between the postoperative MRI scan and pre-radiotherapy MRI scan in newly diagnosed glioblastoma were included. The primary outcome was REP incidence. Results From 1590 search results, 9 studies were included with 716 patients. The median age was 56.9 years (IQR 54.0-58.8 y). There was a male predominance with a median male-to-female ratio of 1.4 (IQR 1.1-1.5). The median number of days between MRI scans was 34 days (IQR 18-45 days). The mean incidence rate of REP was 45.9% (range 19.3%-72.0%) and significantly lower in studies employing functional imaging to define REP (P < .001). REP/non-REP groups were comparable with respect to age (P = .99), gender (P = .33) and time between scans (P = .81). REP was associated with shortened overall survival (HR 1.78, 95% CI 1.30-2.43, P < .001), shortened progression-free survival (HR 1.78, 95% CI 1.30-2.43, P < .001), subtotal resection (OR 6.96, 95% CI 4.51-10.73, P < .001) and IDH wild-type versus mutant tumors (OR 0.20, 95% CI 0.02-0.38, P = .03). MGMT promoter methylation was not associated with REP (OR 1.29, 95% CI 0.72-2.28, P = .39). Conclusions REP occurs in almost half of patients with newly diagnosed glioblastoma and has a strongly negative prognostic effect. Future studies should investigate its biology and effective treatment strategies.
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Neurosurgery, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicines and Health, The University of Manchester, Manchester, UK
| | - Federico Roncaroli
- Neuropathology unit, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicines and Health, The University of Manchester, Manchester, UK
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric J Lehrer
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicines and Health, The University of Manchester, Manchester, UK
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital, Ohio, USA
| | | | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, USA
| | - Emma Hall
- Division of Cancer Sciences, Faculty of Biology, Medicines and Health, The University of Manchester, Manchester, UK
| | - Marianne Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicines and Health, The University of Manchester, Manchester, UK
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - Pietro I D’Urso
- Department of Neurosurgery, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Daniel Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Gerben R Borst
- Division of Cancer Sciences, Faculty of Biology, Medicines and Health, The University of Manchester, Manchester, UK
- Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, The Christie National Health Trust, Manchester, UK
| |
Collapse
|
24
|
Sudibio S, Anton J, Handoko H, Mayang Permata TB, Kodrat H, Nuryadi E, Sofyan HR, Mulyadi R, Aman RA, Gondhowiardjo S. Outcome Analysis and Prognostic Factors in Patients of Glioblastoma Multiforme: An Indonesian Single Institution Experience. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aims: This study was done to assess the survival of patients with glioblastoma multiform and to identify factors that can affect patient survival.
Materials and methods: From January 2015 to December 2019, 55 patients with histopathologically confirmed glioblastoma multiform and received adjuvant radiation/chemoradiation in our department were retrospectively analyzed.
Results: The median overall survival (OS) for entire cohort was 13 months and 1-year OS and 2-year OS rate were 52.7% and 3.6% with the mean follow-up period was 12 months. In univariate analysis, age (≤50 years vs >50 years, p=0.02), performance status (≥90 vs 70-80 vs <70, p<0.001), RTOG RPA classification (class III vs class IV vs class V-VI, p<0.001), parietal lobes tumor site (vs others, p=0.02), residual tumor volume (≤20.4cm3 vs >20.4cm3, p=0.001) and time to initiate adjuvant therapy (<4 weeks vs 4-6 weeks vs >6 weeks, p=0.01) were significantly affect overall survival. In multivariate analysis, RTOG RPA classification and involvement of parietal lobes were independent prognostic factors for overall survival.
Conclusions: RTOG RPA classification that consisted of age and performance status is an independent prognostic factor for the clinical outcome of GBM. Besides this well-known factor, we also identified the involvement of parietal lobe gives a strong negative influence on survival of GBM patients.
Collapse
|
25
|
Magrowski Ł, Nowicka E, Masri O, Tukiendorf A, Tarnawski R, Miszczyk M. The survival impact of significant delays between surgery and radiochemotherapy in glioblastoma patients: A retrospective analysis from a large tertiary center. J Clin Neurosci 2021; 90:39-47. [PMID: 34275579 DOI: 10.1016/j.jocn.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 12/21/2022]
Abstract
The optimal timing of adjuvant radiochemotherapy (RCT) in glioblastoma (GBM) patients remains unknown and the paradigm of 'the sooner, the better' has been challenged by many recent publications. In this study, we present unique data on the outcomes of patients with significant treatment delays. The study group consisted of 346 GBM patients (median age 56.8 years) who received surgical treatment (total or subtotal resection) and then underwent adjuvant concurrent RCT at one institution. The main endpoint was overall survival (OS). The Univariate and multivariate Cox Proportional-Hazard Model, log-rank test, and Kaplan-Meier method were used for the analysis. The median OS was 18.7 months and the 5-year overall survival was 8.5%. The median time interval from surgery to RCT was 9.8 weeks. The Cox regression showed that the time interval had no statistically significant impact on OS both in uni- and multivariate analysis. The explorative analysis suggested a positive trend for improved survival for patients in the 1st quartile of the time interval, especially for patients with residual disease or local recurrence prior to RCT, However, considering the 6.9 weeks median interval in the 1st quartile, this subgroup should still be regarded as 'moderate delay' compared with other literature data. The results indicate that the time interval is not a clear prognostic factor in the treatment of GBM. Prospective trials are highly warranted, as data suggest that moderate delays in the initiation of adjuvant treatment might be associated with survival benefit.
Collapse
Affiliation(s)
- Łukasz Magrowski
- IIIrd Radiotherapy and Chemotherapy department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Elżbieta Nowicka
- IIIrd Radiotherapy and Chemotherapy department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Oliwia Masri
- IIIrd Radiotherapy and Chemotherapy department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | | | - Rafał Tarnawski
- IIIrd Radiotherapy and Chemotherapy department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| |
Collapse
|
26
|
San Martin E, Carvajal F, Cifuentes A, Dalmazzo D, Alarcon F, Fariña A, Yañez L. Overall Survival in Patients With Resected Glioblastoma Treated With Adjuvant Therapy: A Retrospective Study in a Public Hospital in Chile. Cureus 2021; 13:e15105. [PMID: 34155465 PMCID: PMC8211571 DOI: 10.7759/cureus.15105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GB) is the most frequent and aggressive primary tumor of the central nervous system (CNS) in adults. Standard treatment is complete tumor resection followed by concomitant radiochemotherapy (RCT) and subsequent adjuvant temozolomide (TMZ). Information about brain tumors statistics in Latin American countries is scarce, so we aimed to measure the overall survival (OS) of patients with resected GB in a single institution in Chile. This is a retrospective report of 67 patients treated between 2012 and 2019 with resected GB and who received adjuvant treatment with radiotherapy (RT) with and without TMZ during 2012-2019 in this center (Chilean NCI). Most of them were men (72%), ages > 50 years old (57%), with Karnofsky performance status (KPS) scale ≥ 70% (94%) and recursive partitioning analysis-IV (RPA-IV) (60%). Some 54% received concomitant TMZ and RT. Median OS was 11.4 months, with 1-, 2-, and 5-year OS of 48%,15%, and 3% respectively. In conclusion, in patients with GB treated with RCT at the NCI, OS was the same as expected from international articles. Adjuvant RCT therefore is considered the standard of care at NCI.
Collapse
Affiliation(s)
- Evelyn San Martin
- Radiation Oncology, Servicio de Radioterapia, Hospital Clínico de Magallanes, Punta Arenas, CHL
| | - Felipe Carvajal
- Radiation Oncology, Servicio de Radioterapia, Instituto Nacional del Cáncer. Universidad de Chile. Santiago, Chile, Santiago, CHL
| | - Alexander Cifuentes
- Radiation Oncology, Servicio de Radioterapia, Instituto Nacional del Cáncer, Santiago, CHL
| | - Dandaro Dalmazzo
- Radiation Oncology, Servicio de Radioterapia, Instituto Nacional del Cáncer. Universidad Diego Portales, Santiago, CHL
| | - Freddy Alarcon
- Radiation Oncology, Servicio de Radioterapia, Instituto Nacional del Cancer, Santiago, CHL
| | - Ariel Fariña
- Radiation Oncology, Servicio de Radioterapia, Fundación Arturo López Pérez, Santiago, CHL
| | - Loreto Yañez
- Radiotherapy, Servicio de Radioterapia, Fundación Arturo López Pérez, Santiago, CHL
| |
Collapse
|
27
|
Ostrom QT, Krebs HL, Patil N, Cioffi G, Barnholtz-Sloan JS. Racial/ethnic disparities in treatment pattern and time to treatment for adults with glioblastoma in the US. J Neurooncol 2021; 152:603-615. [PMID: 33755877 DOI: 10.1007/s11060-021-03736-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/10/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Race/ethnicity have been previously shown to significantly affect survival after diagnosis with glioblastoma, but the cause of this survival difference is not known. The aim of this study was to examine variation in treatment pattern and time to treatment by race/ethnicity, and the extent to which this affects survival. METHODS Data were obtained from the National Cancer Database (NCDB) for adults ≥ 40 with glioblastoma from 2004 to 2016 (N = 68,979). Treatment patterns and time to treatment by race/ethnicity were compared using univariable and multivariable logistic and linear regression models, respectively, and adjusted for known prognostic factors and factors potentially affecting health care access. RESULTS Black non-Hispanics (BNH) and Hispanics were less likely to receive radiation and less likely to receive chemotherapy as compared to White non-Hispanics (WNH). Time to radiation initiation was ~ 2 days longer and time to chemotherapy initiation was ~ 4 days longer in both groups in comparison to WNH. CONCLUSION Both race/ethnicity and treatment timing significantly affected survival time, and this association remained after adjustment for known prognostic factors. Additional research is necessary to disentangle the specific causal factors, and the mechanism with which they affect survival.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Nirav Patil
- Research Health Analytics and Informatics, University Hospitals Health System (UHHS), Cleveland, OH, USA
| | - Gino Cioffi
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 2-526 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106-7295, USA.,Cleveland Center for Health Outcomes Research (CCHOR), Cleveland, OH, USA
| | - Jill S Barnholtz-Sloan
- Research Health Analytics and Informatics, University Hospitals Health System (UHHS), Cleveland, OH, USA. .,Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 2-526 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106-7295, USA. .,Cleveland Center for Health Outcomes Research (CCHOR), Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Cleveland Institute for Computational Biology, Cleveland, OH, USA.
| |
Collapse
|
28
|
Van Gompel JJ, Choby G. Letter to the Editor. Extent of resection of pituitary adenomas. J Neurosurg 2021; 134:1014-1015. [PMID: 32534500 DOI: 10.3171/2020.4.jns201097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Le Rhun E, Weller M. Sex-specific aspects of epidemiology, molecular genetics and outcome: primary brain tumours. ESMO Open 2020; 5:e001034. [PMID: 33234601 PMCID: PMC7689067 DOI: 10.1136/esmoopen-2020-001034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Recent years have seen a great interest in sex-specific aspects of many diseases, including cancer, in part because of the assumption that females have often not been adequately represented in early drug development and determination of safety, tolerability and efficacy in clinical trials. Brain tumours represent a highly heterogeneous group of neoplastic diseases with strong variation of incidence by age, but partly also by sex. Most gliomas are more common in men whereas meningiomas, the most common primary intracranial tumours, are more common in females. Potential sex-specific genetic risk factors and specific sex biology have been reported in a tumour-specific manner. Several small studies have indicated differences in tolerability and safety of, as well as benefit from, treatment by sex, but no conclusive data have been generated. Exploring sex-specific aspects of neuro-oncology should be studied more systematically and in more depth in order to uncover the biological reasons for known sex differences in this disease.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Departments of Neurology and Neurosurgery, Clinical Neuroscience Center and Brain Tumor Center, University Hospital Zurich, Zurich, Switzerland.
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Haldavnekar R, Vijayakumar SC, Venkatakrishnan K, Tan B. Prediction of Cancer Stem Cell Fate by Surface-Enhanced Raman Scattering Functionalized Nanoprobes. ACS NANO 2020; 14:15468-15491. [PMID: 33175514 DOI: 10.1021/acsnano.0c06104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer stem cells (CSCs) are the fundamental building blocks of cancer dissemination, so it is desirable to develop a technique to predict the behavior of CSCs during tumor initiation and relapse. It will provide a powerful tool for pathological prognosis. Currently, there exists no method of such prediction. Here, we introduce nickel-based functionalized nanoprobe facilitated surface enhanced Raman scattering (SERS) for prediction of cancer dissemination by undertaking CSC-based surveillance. SERS profiling of CSCs of various cell lines (breast cancer, cervical cancer, and lung cancer) was compared with their cancer counterparts for the prediction of prognosis, with statistical significance of single-cell sensitivity. The single-cell sensitivity is critical as even a few CSCs are capable of initiating a tumor. Intermediate states of CSC transmutation to cancer cells and its reverse were monitored, and nanoprobe-assisted SERS profiling was undertaken. We experimentally demonstrated that the quasi-intermediate CSC states have dissimilar profiles during the transformation from cancer to CSC and vice versa enabling statistical differentiation without ambiguity. It was also observed that molecular signatures of these opposite pathways are cancer-type specific. This observation provided additional clarity to the current understanding of relatively unfamiliar quasi-intermediate states; making it possible to predict CSC dissemination for variety of cancers with ∼99% accuracy. Nano probe-based prediction of CSC fate is a powerful prediction tool for ultrasensitive prognosis of malignancy in a complex environment. Such CSC-based cancer prognosis has never been proposed before. This prediction technique has potential to provide insights for cancer diagnosis and prognosis as well as for obtaining information instrumental in designing of meaningful CSC-based cancer therapeutics.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka-Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, Canada M5B 1T8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Sivaprasad Chinnakkannu Vijayakumar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka-Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, Canada M5B 1T8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada M5B 1W8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Bo Tan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada M5B 1W8
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| |
Collapse
|
31
|
Gessler DJ, Ferreira C, Dusenbery K, Chen CC. GammaTile ®: Surgically targeted radiation therapy for glioblastomas. Future Oncol 2020; 16:2445-2455. [PMID: 32618209 DOI: 10.2217/fon-2020-0558] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma is the most common primary malignant neoplasm of the central nervous system in adults. Standard of care is resection followed by chemo-radiation therapy. Despite this aggressive approach, >80% of glioblastomas recur in proximity to the resection cavity. Brachytherapy is an attractive strategy for improving local control. GammaTile® is a newly US FDA-cleared device which incorporates 131Cs radiation emitting seeds in a resorbable collagen-based carrier tile for surgically targeted radiation therapy to achieve highly conformal radiation at the time of surgery. Embedding encapsulated 131Cs radiation emitter seeds in collagen-based tiles significantly lowers the technical barriers associated with traditional brachytherapy. In this review, we highlight the potential of surgically targeted radiation therapy and the currently available data for this novel approach.
Collapse
Affiliation(s)
- Dominic J Gessler
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota, MN 55455, USA
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Janssens GO, Mandeville HC, Timmermann B, Maduro JH, Alapetite C, Padovani L, Horan G, Lassen-Ramshad Y, Dieckmann K, Ruebe C, Thorp N, Gandola L, Ajithkumar T, Boterberg T. A rapid review of evidence and recommendations from the SIOPE radiation oncology working group to help mitigate for reduced paediatric radiotherapy capacity during the COVID-19 pandemic or other crises. Radiother Oncol 2020; 148:216-222. [PMID: 32342872 PMCID: PMC7184972 DOI: 10.1016/j.radonc.2020.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To derive evidence-based recommendations for the optimal utilisation of resources during unexpected shortage of radiotherapy capacity. METHODS AND MATERIALS We have undertaken a rapid review of published literature on the role of radiotherapy in the multimodality treatment of paediatric cancers governing the European practise of paediatric radiotherapy. The derived data has been discussed with expert paediatric radiation oncologists to derive a hierarchy of recommendations. RESULTS The general recommendations to mitigate the potential detriment of an unexpected shortage of radiotherapy facilities include: (1) maintain current standards of care as long as possible (2) refer to another specialist paediatric radiotherapy department with similar level of expertise (3) prioritise use of existing radiotherapy resources to treat patients with tumours where radiotherapy has the most effect on clinical outcome (4) use chemotherapy to defer the start of radiotherapy where timing of radiotherapy is not expected to be detrimental (5) active surveillance for low-grade tumours if appropriate and (6) consider iso-effective hypofractionated radiotherapy regimens only for selected patients with predicted poor prognosis. The effectiveness of radiotherapy and recommendations for prioritisation of its use for common and challenging paediatric tumours are discussed. CONCLUSION This review provides evidence-based treatment recommendations during unexpected shortage of paediatric radiotherapy facilities. It has wider applications for the optimal utilisation of facilities, to improve clinical outcome in low- and middle-income countries, where limited resources continue to be a challenge.
Collapse
Affiliation(s)
- Geert O Janssens
- Department of Radiation Oncology, University Medical Centre Utrecht, The Netherlands; Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Henry C Mandeville
- Department of Radiotherapy, The Royal Marsden Hospital, Sutton, United Kingdom; The Institute of Cancer Research, Sutton, United Kingdom
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ) and German Cancer Consortium (DKTK), Germany
| | - John H Maduro
- Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Claire Alapetite
- Department of Radiation Oncology & Proton Center, Institut Curie, France
| | - Laetitia Padovani
- Aix-Marseille University, Oncology Radiotherapy Department, CRCM Inserm, UMR1068, CNRS UMR7258, AMU UM105, Genome Instability and Carcinogenesis, APHM, France
| | - Gail Horan
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | | | - Karin Dieckmann
- Department of Radiotherapy Medical University Vienna, Austria
| | - Christian Ruebe
- Strahlentherapie und Radioonkologie, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Nicky Thorp
- Department of Radiotherapy, The Clatterbridge Cancer Centre, Wirral, United Kingdom; The Proton Beam Therapy Centre, The Christie Hospital, Manchester, United Kingdom
| | - Lorenza Gandola
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Thankamma Ajithkumar
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom.
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|