1
|
Wang M, Xu C, Zheng Y, Pieterse H, Sun Z, Liu Y. In vivo validation of osteoinductivity and biocompatibility of BMP-2 enriched calcium phosphate cement alongside retrospective description of its clinical adverse events. Int J Implant Dent 2024; 10:47. [PMID: 39472366 PMCID: PMC11522231 DOI: 10.1186/s40729-024-00567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE Although bone morphogenetic protein-2 (BMP-2) possesses potent osteoinductivity, there have been some concerns on the safety of BMP-2 and BMP-2-incorporated bone substitutes used for bone formation. On the other hand, BMP-2-loaded calcium phosphate cement (BMP-2@CPC) has been developed and used for bone regeneration in oral implantology. Therefore, this study aims to investigate this product's biocompatibility and clinical safety after being used in maxillofacial surgery. MATERIALS AND METHODS A rat model was employed to assess the osteoinduction and biocompatibility of BMP-2@CPC. Further, a retrospective investigation was carried out: 110 patients who received BMP-2@CPC treatment after their maxillofacial surgery were recruited to describe relative adverse events. RESULTS In vivo, BMP-2@CPC showed a significantly higher mean bone volume density and osteoblasts volume density (15 ± 2% and 3 ± 1%)than those of the CPC group (p < 0.05) after being implanted in the dorsal area of rats. Regarding biocompatibility, the mean fibrous tissue volume density was significantly lower in the BMP-2@CPC group (20 ± 5% compared to 31 ± 6%, p = 0.026). The retrospective clinical study showed that only five mild/moderate adverse events were identified in four patients based on the medical records of 110 patients, including swelling, bony mass, and wound dehiscence. This adverse event occurrence was not affected by gender, age, the dose of filled materials, and operations in the study (p > 0.05). CONCLUSIONS BMP-2-loaded CPC has osteoinductivity and more promising biocompatibility than pure CPC. However, its degradation is slower than CPC. The safety of BMP-2-loaded CPC with 0.5 or 1 mg BMP-2 is promising in oral maxillofacial surgery. CLINICAL IMPLICATIONS This study confirmed the promising safety of this BMP-2 incorporated CPC used in dental clinical practice, which can promote its reassuring application for dental implant placement in bone insufficient areas.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Chunfeng Xu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
- Department of Second Dental Center, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Centre for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Yuanna Zheng
- Ningbo Dental Hospital, Ningbo Oral Health Research Institute, Ningbo, Zhejiang, China
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Herman Pieterse
- Heymans Institute of Pharmacology at Ghent University, Ghent, Belgium
- Profess Medical Consultancy B.V., Heerhugowaard, The Netherlands
| | - Zhe Sun
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Lin S, Zhuang Y, Chen K, Lu J, Wang K, Han L, Li M, Li X, Zhu X, Yang M, Yin G, Lin J, Zhang X. Osteoinductive biomaterials: Machine learning for prediction and interpretation. Acta Biomater 2024; 187:422-433. [PMID: 39178926 DOI: 10.1016/j.actbio.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Biomaterials with osteoinductivity are widely used for bone defect repair due to their unique structures and functions. Machine learning (ML) is pivotal in analyzing osteoinductivity and accelerating new material design. However, challenges include creating a comprehensive database of osteoinductive materials and dealing with low-quality, disparate data. As a standard for evaluating the osteoinductivity of biomaterials, ectopic ossification has been used. This paper compiles research findings from the past thirty years, resulting in a robust database validated by experts. To tackle issues of limited data samples, missing data, and high-dimensional sparsity, a data enhancement strategy is developed. This approach achieved an area under the curve (AUC) of 0.921, a precision of 0.839, and a recall of 0.833. Model interpretation identified key factors such as porosity, bone morphogenetic protein-2 (BMP-2), and hydroxyapatite (HA) proportion as crucial determinants of outcomes. Optimizing pore structure and material composition through partial dependence plot (PDP) analysis led to a new bone area ratio of 14.7 ± 7 % in animal experiments, surpassing the database average of 10.97 %. This highlights the significant potential of ML in the development and design of osteoinductive materials. STATEMENT OF SIGNIFICANCE: This study leverages machine learning to analyze osteoinductive biomaterials, addressing challenges in database creation and data quality. Our data enhancement strategy significantly improved model performance. By optimizing pore structure and material composition, we increased new bone formation rates, showcasing the vast potential of machine learning in biomaterial design.
Collapse
Affiliation(s)
- Sicong Lin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Yan Zhuang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Ke Chen
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Jian Lu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Kefeng Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Lin Han
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Mufei Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Xiangfeng Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Xiangdong Zhu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Mingli Yang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Jiangli Lin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China.
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Okoturo E. Review of the Literature on the Current State of Periosteum-Mediated Craniofacial Bone Regeneration. Craniomaxillofac Trauma Reconstr 2024; 17:253-262. [PMID: 39329075 PMCID: PMC11423379 DOI: 10.1177/19433875231214068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Study Design This is an article review on the current state of periosteum-mediated bone regeneration (PMBR). It is a known mandibular reconstruction option in children, and though poorly understood and unpredictable, the concerns of developmental changes to donor and recipient tissues shared by other treatment options are nonexistent. The definitive role of periosteum during bone regeneration remains largely unknown. Objective The objective is to review the literature on the clinical and molecular mechanism evidence of this event. Methods Our search methodology was modeled after the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Search strategies were categorized into search 1 for clinical evidence of mandibular regeneration and search 2 for gene expression review for craniofacial regeneration. The quality assessment of each publication was undertaken, and inclusion criteria comprise mandibular continuity defect for search 1 and use of gene expression assay propriety kit for search 2. Results 33 studies were selected for search 1 while four studies with non-human subjects were selected for search 2. Monitoring of PMBR onset was advised at 2 weeks post-operative, and the gene expression results showed an upregulation of genes responsible for angiogenesis, cytokine activities, and immune-inflammatory response in week 1 and skeletal development and signaling pathways in week 2. Conclusions The results suggest that young periosteum has a higher probability of PMBR than adult periosteum, and skeletal morphogenesis regulated by skeletal developmental genes and pathways may characterize the gene expression patterns of PMBR.
Collapse
Affiliation(s)
- Eyituoyo Okoturo
- Lead Research - Molecular Oncology Program, Medical Research Centre, Lagos State University College of Medicine (LASUCOM), Lagos, Nigeria
| |
Collapse
|
4
|
Dhawan U, Williams JA, Windmill JFC, Childs P, Gonzalez-Garcia C, Dalby MJ, Salmeron-Sanchez M. Engineered Surfaces That Promote Capture of Latent Proteins to Facilitate Integrin-Mediated Mechanical Activation of Growth Factors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310789. [PMID: 38253339 DOI: 10.1002/adma.202310789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-β1) is bound. rLTBP1 facilitates the interaction of LAP with integrin β1 and the subsequent mechanically driven release of TGF-β1 to stimulate canonical TGF-β1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo.
Collapse
Affiliation(s)
- Udesh Dhawan
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Jonathan A Williams
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, Glasgow, G4 0NW, UK
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G11XW, UK
| | - Peter Childs
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Cristina Gonzalez-Garcia
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
5
|
Kathami N, Moreno-Vicente C, Martín P, Vergara-Arce JA, Ruiz-Hernández R, Gerovska D, Aransay AM, Araúzo-Bravo MJ, Camarero-Espinosa S, Abarrategi A. rhBMP-2 induces terminal differentiation of human bone marrow mesenchymal stromal cells only by synergizing with other signals. Stem Cell Res Ther 2024; 15:124. [PMID: 38679735 PMCID: PMC11057131 DOI: 10.1186/s13287-024-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Recombinant human bone morphogenetic protein 2 (rhBMP-2) and human bone marrow mesenchymal stromal cells (hBM-MSCs) have been thoroughly studied for research and translational bone regeneration purposes. rhBMP-2 induces bone formation in vivo, and hBM-MSCs are its target, bone-forming cells. In this article, we studied how rhBMP-2 drives the multilineage differentiation of hBM-MSCs both in vivo and in vitro. METHODS rhBMP-2 and hBM-MSCs were tested in an in vivo subcutaneous implantation model to assess their ability to form mature bone and undergo multilineage differentiation. Then, the hBM-MSCs were treated in vitro with rhBMP-2 for short-term or long-term cell-culture periods, alone or in combination with osteogenic, adipogenic or chondrogenic media, aiming to determine the role of rhBMP-2 in these differentiation processes. RESULTS The data indicate that hBM-MSCs respond to rhBMP-2 in the short term but fail to differentiate in long-term culture conditions; these cells overexpress the rhBMP-2 target genes DKK1, HEY-1 and SOST osteogenesis inhibitors. However, in combination with other differentiation signals, rhBMP-2 acts as a potentiator of multilineage differentiation, not only of osteogenesis but also of adipogenesis and chondrogenesis, both in vitro and in vivo. CONCLUSIONS Altogether, our data indicate that rhBMP-2 alone is unable to induce in vitro osteogenic terminal differentiation of hBM-MSCs, but synergizes with other signals to potentiate multiple differentiation phenotypes. Therefore, rhBMP-2 triggers on hBM-MSCs different specific phenotype differentiation depending on the signalling environment.
Collapse
Affiliation(s)
- Neda Kathami
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastian, Spain
| | | | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Jhonatan A Vergara-Arce
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernández
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Sandra Camarero-Espinosa
- POLYMAT, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.
- Regenerative Medicine and Disease Models Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo Miramón, 194, 20014, Donostia, Gipuzkoa, Spain.
| |
Collapse
|
6
|
Kang M, Lee S, Seo JP, Lee EB, Ahn D, Shin J, Paik YK, Jo D. Cell-permeable bone morphogenetic protein 2 facilitates bone regeneration by promoting osteogenesis. Mater Today Bio 2024; 25:100983. [PMID: 38327977 PMCID: PMC10848039 DOI: 10.1016/j.mtbio.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
The use of the FDA-approved osteoinductive growth factor BMP2 is widespread for bone regeneration. However, its clinical application has been hindered by limitations in cell permeability and a short half-life in circulation. To address this issue, we have developed a modified version of BMP2, referred to as Cell Permeable (CP)-BMP2, which possesses improved cell permeability. CP-BMP2 incorporates an advanced macromolecular transduction domain (aMTD) to facilitate transfer across the plasma membrane, a solubilization domain, and recombinant human BMP2. Compared to traditional rhBMP2, CP-BMP2 exhibits enhanced cell permeability, solubility, and bioavailability, and activates Smad phosphorylation through binding to BMP receptor 2. The effectiveness of CP-BMP2 was evaluated in three animal studies focusing on bone regeneration. In the initial study, mice and rabbits with critical-size calvarial defects received subcutaneous (SC) injections of CP-BMP2 and rhBMP2 (7.5 mg/kg, 3 injections per week for 8 weeks).Following 8 weeks of administration, CP-BMP2 demonstrated a remarkable 65 % increase in bone formation in mice when compared to both the vehicle and rhBMP2. Moreover, rabbits exhibited faster bone formation, characterized by a filling pattern originating from the center. In a subsequent study involving injured horses, hind limb bones treated with CP-BMP2 exhibited an 85 % higher bone regeneration rate, as evidenced by Micro-CT results, in contrast to horses treated with the vehicle or rhBMP2 (administered at 150 μg/defect, subcutaneously, once a week for 8 weeks, without a scaffold). These results underscore the potential of CP-BMP2 to facilitate rapid and effective healing. No noticeable adverse effects, such as ectopic bone formation, were observed in any of the studies. Overall, our findings demonstrate that CP-BMP2 holds therapeutic potential as a novel and effective osteogenic agent.
Collapse
Affiliation(s)
- Mingu Kang
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Seokwon Lee
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Jong-pil Seo
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Eun-bee Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Daye Ahn
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Jisoo Shin
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Young-Ki Paik
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| |
Collapse
|
7
|
Ren X, Tsuji H, Uchino T, Kono I, Isoshima T, Okamoto A, Nagaoka N, Ozaki T, Matsukawa A, Miyatake H, Ito Y. An osteoinductive surface by adhesive bone morphogenetic protein-2 prepared using the bioorthogonal approach for tight binding of titanium with bone. J Mater Chem B 2024; 12:3006-3014. [PMID: 38451210 DOI: 10.1039/d3tb02838k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.
Collapse
Affiliation(s)
- Xueli Ren
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hironori Tsuji
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Takahiko Uchino
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Izumi Kono
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Akimitsu Okamoto
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral & Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
8
|
Wang R, Zha X, Chen J, Fu R, Fu Y, Xiang J, Yang W, Zhao L. Hierarchical Composite Scaffold with Deferoxamine Delivery System to Promote Bone Regeneration via Optimizing Angiogenesis. Adv Healthc Mater 2024:e2304232. [PMID: 38375993 DOI: 10.1002/adhm.202304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Indexed: 02/21/2024]
Abstract
A bone defect refers to the loss of bone tissue caused by trauma or lesion. Bone defects result in high morbidity and deformity rates worldwide. Autologous bone grafting has been widely applied in clinics as the gold standard of treatment; however, it has limitations. Hence, bone tissue engineering has been proposed and developed as a novel therapeutic strategy for treating bone defects. Rapid and effective vascularization is essential for bone regeneration. In this study, a hierarchical composite scaffold with deferoxamine (DFO) delivery system, DFO@GMs-pDA/PCL-HNTs (DGPN), is developed, focusing on vascularized bone regeneration. The hierarchical structure of DGPN imitates the microstructure of natural bone and interacts with the local extracellular matrix, facilitating cell adhesion and proliferation. The addition of 1 wt% of halloysite nanotubes (HNTs) improves the material properties. Hydrophilic and functional groups conferred by polydopamine (pDA) modifications strengthen the scaffold bioactivity. Gelatin microspheres (GMs) protect the pharmacological activity of DFO, achieving local application and sustained release for 7 days. DFO effectively promotes angiogenesis by activating the signaling pathway of hypoxia inducible factor-1 α. In addition, DFO synergizes with HNTs to promote osteogenic differentiation and matrix mineralization. These results indicate that DGPN promotes bone regeneration and accelerates cranial defect healing.
Collapse
Affiliation(s)
- Raokaijuan Wang
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Xiangjun Zha
- Liver Transplant Center and Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jouchen Chen
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Ruijie Fu
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Yajun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jie Xiang
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Lixing Zhao
- Department of Orthodontics, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| |
Collapse
|
9
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
10
|
Okoturo E. Genetic determinants of periosteum-mediated craniofacial bone regeneration: a systematic review. Arch Craniofac Surg 2023; 24:251-259. [PMID: 37584066 PMCID: PMC10766501 DOI: 10.7181/acfs.2023.00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Periosteum-mediated bone regeneration (PMBR) is a recognized method for mandibular reconstruction. Despite its unpredictable nature and the limited degree to which it is understood, it does not share the concerns of developmental changes to donor and recipient tissues that other treatment options do. The definitive role of the periosteum in bone regeneration in any mammal remains largely unexplored. The purpose of this study was to identify the genetic determinants of PMBR in mammals through a systematic review. METHODS Our search methodology was designed in accordance with the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. We conducted a quality assessment of each publication, and evaluated the differences in gene expression between days 7 and 15. RESULTS A total of four studies satisfied the inclusion criteria. The subjects and tissues examined in these studies were Wistar rat calvaria in two studies, mini-pigs in one study, and calves and mice in one study. Three out of the four studies achieved the necessary quality score of ≥ 3. Gene expression analysis showed increased activity of genes responsible for angiogenesis, cytokine activities, and immune-inflammatory responses on day 7. Additionally, genes related to skeletal development and signaling pathways were upregulated on day 15. Conclusions: The results suggest that skeletal morphogenesis is regulated by genes associated with skeletal development, and the gene expression patterns of PMBR may be characterized by specific pathways.
Collapse
Affiliation(s)
- Eyituoyo Okoturo
- Division of Head & Neck Cancer Oral, Department of Maxillofacial Surgery, Lagos State University Teaching Hospital (LASUTH), Lagos, Nigeria
- Molecular Oncology Program, Medical Research Centre, Lagos State University College of Medicine (LASUCOM), Lagos, Nigeria
| |
Collapse
|
11
|
Stafin K, Śliwa P, Piątkowski M. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique. Int J Mol Sci 2023; 24:16180. [PMID: 38003368 PMCID: PMC10671727 DOI: 10.3390/ijms242216180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrication of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite (HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic perspective. The article begins with a systematic analysis of biological mineralisation (biomineralisation) and ossification to optimise the scaffold's structural, mechanical, degradation, and surface properties. This scaffold-designing strategy lays the groundwork for developing a research pathway that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to potential clinical applications.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| |
Collapse
|
12
|
Wei J, Xia X, Xiao S, Jin S, Zou Q, Zuo Y, Li Y, Li J. Sequential Dual-Biofactor Release from the Scaffold of Mesoporous HA Microspheres and PLGA Matrix for Boosting Endogenous Bone Regeneration. Adv Healthc Mater 2023; 12:e2300624. [PMID: 36938866 DOI: 10.1002/adhm.202300624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 03/21/2023]
Abstract
The combined design of scaffold structure and multi-biological factors is a prominent strategy to promote bone regeneration. Herein, a composite scaffold of mesoporous hydroxyapatite (HA) microspheres loaded with the bone morphogenetic protein-2 (BMP-2) and a poly(DL-lactic-co-glycolic acid) (PLGA) matrix is constructed by 3D printing. Furthermore, the chemokine stromal cell-derived factor-1α (SDF-1α) is adsorbed on a scaffold surface to achieve the sequential release of the dual-biofactors. The results indicate that the rapid release of SDF-1α chemokine on the scaffold surface effectively recruits bone marrow-derived mesenchymal stem cells (BMSCs) to the target defect area, whereas the long-term sustained release of BMP-2 from the HA microspheres in the degradable PLGA matrix successfully triggers the osteogenic differentiation in the recruited BMSCs, significantly promoting bone regeneration and reconstruction. In addition, these structures/biofactors specially combining scaffold exhibit significantly better biological performance than that of other combined scaffolds, including the bare HA/PLGA scaffold, the scaffold loaded with SDF-1α or BMP-2 biofactor alone, and the scaffold with surface SDF-1α and BMP-2 dual-biofactors. The utilization of mesoporous HA, the assembly method, and sequential release of the two biofactors in the 3D printed composite scaffold present a new method for future design of high-performance bone repairing scaffolds.
Collapse
Affiliation(s)
- Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
13
|
Rundle CH, Gomez GA, Pourteymoor S, Mohan S. Sequential application of small molecule therapy enhances chondrogenesis and angiogenesis in murine segmental defect bone repair. J Orthop Res 2023; 41:1471-1481. [PMID: 36448182 PMCID: PMC10506518 DOI: 10.1002/jor.25493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The increasing incidence of physiologic/pathologic conditions that impair the otherwise routine healing of endochondral bone fractures and the occurrence of severe bone injuries necessitate novel approaches to enhance clinically challenging bone fracture repair. To promote the healing of nonunion fractures, we tested an approach that used two small molecules to sequentially enhance cartilage development and conversion to the bone in the callus of a murine femoral segmental defect nonunion model of bone injury. Systemic injections of smoothened agonist 21k (SAG21k) were used to stimulate chondrogenesis through the activation of the sonic hedgehog (SHH) pathway early in bone repair, while injections of the prolyl hydroxylase domain (PHD)2 inhibitor, IOX2, were used to stimulate hypoxia signaling-mediated endochondral bone formation. The expression of SHH pathway genes and Phd2 target genes was increased in chondrocyte cell lines in response to SAG21k and IOX2 treatment, respectively. The segmental defect responded to sequential systemic administration of these small molecules with increased chondrocyte expression of PTCH1, GLI1, and SOX9 in response to SAG and increased expression of hypoxia-induced factor-1α and vascular endothelial growth factor-A in the defect tissues in response to IOX2. At 6 weeks postsurgery, the combined SAG-IOX2 therapy produced increased bone formation in the defect with the bony union over the injury. Clinical significance: This therapeutic approach was successful in promoting cartilage and bone formation within a critical-size segmental defect and established the utility of a sequential small molecule therapy for the enhancement of fracture callus development in clinically challenging bone injuries.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Gustavo A. Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
14
|
Zhu Y, Jia G, Yang Y, Weng J, Liu S, Zhang M, Zhang G, Qin H, Chen Y, Yang Q, Yuan G, Yu F, Zeng H. Biomimetic Porous Magnesium Alloy Scaffolds Promote the Repair of Osteoporotic Bone Defects in Rats through Activating the Wnt/β-Catenin Signaling Pathway. ACS Biomater Sci Eng 2023. [PMID: 37200162 DOI: 10.1021/acsbiomaterials.2c01097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, biomimetic porous magnesium alloy scaffolds were prepared to repair femoral bone defects in ovariectomized osteoporotic rats. The purpose of the study was to investigate the effect of biomimetic porous magnesium alloy scaffolds on repairing osteoporotic bone defects and possible mechanisms. The animal model of osteoporosis was established in female SD rats. Three months later, a bone defect of 3 mm in diameter and 3 mm in depth was created in the lateral condyle of the right femur. The rats were then randomly divided into two groups: an experimental group and a control group. Four weeks after surgery, gross specimens were observed and micro-CT scans were performed. The repair of osteoporotic femoral defects in rats was studied histologically using HE staining, Masson staining, and Goldner staining. The expression of Wnt5a, β-catenin, and BMP-2 was measured between groups by immunohistochemical staining. The bone defect was repaired better after the application of biomimetic porous magnesium alloy scaffolds. Immunohistochemical results showed significantly higher expression of Wnt5a, β-catenin, and BMP-2. To conclude, the biomimetic porous magnesium alloy scaffolds proposed in this paper might promote the repair of osteoporotic femoral bone defects in rats possibly through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yuanchao Zhu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Gaozhi Jia
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yifei Yang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengwei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Geng Zhang
- Zunyi Medical University, Zunyi 563000, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guangyin Yuan
- Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
15
|
Yokoyama M, Katsumata-Kato O, Fujita-Yoshigaki J. Acinar Cell Proliferation Promoted by BMP2 in Injured Mouse Parotid Gland: BMP2 Promotes Cell Proliferation in Parotid Gland. Int J Dent 2023; 2023:1765317. [PMID: 37033127 PMCID: PMC10081898 DOI: 10.1155/2023/1765317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Objective. To identify factors that affect salivary gland recovery, we investigated the expression and function of bone morphogenetic protein 2 (BMP2) in mice. Materials and Methods. Using a micro clip, mice parotid glands were removed 7 days after the ligation of the unilateral parotid excretory duct. Thereafter, they were weighed and stained with hematoxylin and eosin, and BMP2 expression was examined via real-time reverse transcription-polymerase chain reaction. Primary cultures of parotid glands were prepared, and BMP2 protein was added to the culture medium for 48 hr to examine its effect on cell proliferation. E-cadherin and vimentin expression was examined using western blotting. Finally, immunohistochemical staining using an anti-Ki67 antibody was performed. Results. Duct-ligated parotid glands weighed less than those that were collected after sham surgery and showed acinar cell atrophy. They also showed higher BMP2 expression than control glands. Primary-cultured parotid acinar cells supplemented with BMP2 showed higher proliferative potential than control cells. Furthermore, they showed E-cadherin, but not vimentin, expression, and their percentage of Ki67-positive cells were higher than that corresponding to the controls. Conclusions. Injury to salivary glands by excretory duct ligation increased BMP2 expression, which may be involved in maintaining salivary gland function by inducing acinar cell proliferation.
Collapse
Affiliation(s)
- Megumi Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Osamu Katsumata-Kato
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | |
Collapse
|
16
|
Karahaliloglu Z, Ercan B, Hazer B. Impregnation of polyethylene terephthalate (PET) grafts with BMP-2 loaded functional nanoparticles for reconstruction of anterior cruciate ligament. J Microencapsul 2023; 40:197-215. [PMID: 36881484 DOI: 10.1080/02652048.2023.2188940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Current artificial ligaments based on polyethylene terephthalate (PET) are associated with some disadvantages due to their hydrophobicity and low biocompatibility. In this study, we aimed to modify the surface of PET using polyethylene glycol (PEG)-terminated polystyrene (PS)-linoleic nanoparticles (PLinaS-g-PEG-NPs). We accomplished that BMP-2 in two different concentrations encapsulated in nanoparticles with an efficiency of 99.71 ± 1.5 and 99.95 ± 2.8%. While the dynamic contact angle of plain PET surface reduced from 116° to 115° after a measurement periods of 10 s, that of PLinaS-g-PEG-NPs modified PET from 80° to 17.5° within 0.35 s. According to in vitro BMP2 release study, BMP-2 was released 13.12 ± 1.76% and 45.47 ± 1.78% from 0.05 and 0.1BMP2-PLinaS-g-PEG-NPs modified PET at the end of 20 days, respectively. Findings from this study revealed that BMP2-PLinaS-g-PEG-NPs has a great potential to improve the artificial PET ligaments, and could be effectively applied for ACL reconstruction.
Collapse
Affiliation(s)
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, Ankara, Turkey
- Biomedical Engineering Program, Middle East Technical University, Çankaya, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Çankaya, Ankara, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Ürgüp, Nevsehir, Turkey
- Department of Chemistry, Bulent Ecevit University, Zonguldak, Turkey
- Department of Nanotechnology Engineering, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
17
|
Liu Y, Puthia M, Sheehy EJ, Ambite I, Petrlova J, Prithviraj S, Oxborg MW, Sebastian S, Vater C, Zwingenberger S, Struglics A, Bourgine PE, O'Brien FJ, Raina DB. Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing. Acta Biomater 2023; 162:164-181. [PMID: 36967054 DOI: 10.1016/j.actbio.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Despite the glimmer of hope provided by the discovery and commercialization of bone morphogenetic protein-2 (BMP-2) as a bone graft substitute, side effects related to the use of supraphysiological doses have hindered its clinical usage. In this study, we compared the osteoinductive potential of BMP-2 homodimer with a heterodimer of BMP-2/7, both delivered via a collagen-hydroxyapatite (CHA) scaffold delivery system, with the aim to reduce the overall therapeutic BMP doses and the associated side-effects. We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving efficient BMP sequestration and controlled release. Using an ectopic implantation model, we then showed that the CHA+BMP-2/7 was more osteoinductive than CHA+BMP-2. Further evaluation of the molecular mechanisms responsible for this increased osteoinductivity at an early stage in the regeneration process indicated that the CHA+BMP-2/7 enhanced progenitor cell homing at the implantation site, upregulated the key transcriptomic determinants of bone formation, and increased the production of bone extracellular matrix components. Using fluorescently labelled BMP-2/7 and BMP-2, we demonstrated that the CHA scaffold provided a long-term delivery of both molecules for at least 20 days. Finally, using a rat femoral defect model, we showed that an ultra-low dose (0.5 µg) of BMP-2/7 accelerated fracture healing and performed at a level comparable to 20-times higher BMP-2 dose. Our results indicate that the sustained delivery of BMP-2/7 via a CHA scaffold could bring us a step closer in the quest for the use of physiological growth factor doses in fracture healing. STATEMENT OF SIGNIFICANCE: • Incorporation of hydroxyapatite (HA) in a collagen scaffold dramatically improves bone morphogenic protein (BMP) sequestration via biophysical interactions with BMP, thereby providing more controlled BMP release compared with pristine collagen. • We then investigate the molecular mechanisms responsible for increased osteoinductive potential of a heterodimer BMP-2/7 with is clinically used counterpart, the BMP-2 homodimer. • The superior osteoinductive properties of BMP-2/7 are a consequence of its direct positive effect on progenitor cell homing at the implantation site, which consequently leads to upregulation of cartilage and bone related genes and biochemical markers. • An ultra-low dose of BMP-2/7 delivered via a collagen-HA (CHA) scaffold leads to accelerated healing of a critical femoral defect in rats while a 20-times higher BMP-2 dose was required to achieve comparable results.
Collapse
|
18
|
Zhang X, Lin X, Wang M, Deng L, Wei L, Liu Y. Icariin Has a Synergistic Effect on the Osteoinductivity of Bone Morphogenetic Protein 2 at Ectopic Sites. Orthop Surg 2023; 15:540-548. [PMID: 36628510 PMCID: PMC9891965 DOI: 10.1111/os.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/22/2022] [Accepted: 08/07/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Establishing biocompatible, biodegradable, osteoconductive, and osteoinductive bone materials remains a challenging subject in the research of bone healing and bone regeneration. Previously, we demonstrated the osteogenic and osteoconductive effects of biomimetic calcium phosphate (BioCaP) incorporating with Icariin and/or bone morphogenetic protein 2 (BMP-2) at orthotopic sites. METHODS By implanting the BioCaP granules incorporated Icariin and/or BMP-2 into the dorsal subcutaneous pockets of adult male Sprague-Dawley (S-D) rats (6-7 weeks old), we investigated the osteoinductive efficacy of the samples. Micro-computed tomography(micro-CT) observations and histological slices were used to verify the osteoinduction of this system on the 2nd and 5th week. Statistical significances was evaluated using Turkey's post hoc test of one-way analysis of variance. RESULTS The osteoinduction of the BioCaP incorporated with BMP-2 or both agents was confirmed as expected. BioCaP with Icariin alone could not generate bone formation at an ectopic sites. Nevertheless, co-administration of Icariin increased bone mineral density (BMD; p < 0.01) (628mg HA/cm3 vs 570mg HA/cm3 ) and completely changed the distribution of newly formed bone when compared with the granules with BMP-2 alone, even though there was no significant difference in the volume of newly formed bone. In contrast, the BioCaP with both agents (37.86%) had significantly fewer remaining materials than the other groups by the end of the fifth week (53.22%, 53.62% and 48.22%) (p < 0.01). CONCLUSION The co-administration of Icariin and BMP-2 increased BMD changed the distribution of newly formed bone, and reduced the amount of remaining materials. Therefore, Icariin can stimulate BMP-2 when incorporated into BioCaP granules at ectopic sites, which makes it useful for bone tissue engineering.
Collapse
Affiliation(s)
- Xin Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Xingnan Lin
- School of DentistryZhejiang Chinese Medical UniversityHangzhouChina
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center of Dentistry (ACTA)University of Amsterdam and VU UniversityAmsterdamThe Netherlands
| | - Liquan Deng
- School of StomatologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center of Dentistry (ACTA)University of Amsterdam and VU UniversityAmsterdamThe Netherlands,Department of Dental ImplantologyYantai Stomatological HospitalYantaiChina
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center of Dentistry (ACTA)University of Amsterdam and VU UniversityAmsterdamThe Netherlands
| |
Collapse
|
19
|
Clark AR, Mauntel TC, Goldman SM, Dearth CL. Repurposing existing products to accelerate injury recovery (REPAIR) of military relevant musculoskeletal conditions. Front Bioeng Biotechnol 2023; 10:1105599. [PMID: 36698630 PMCID: PMC9868163 DOI: 10.3389/fbioe.2022.1105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Musculoskeletal injuries (MSKIs) are a great hindrance to the readiness of the United States Armed Forces through lost duty time and reduced operational capabilities. While most musculoskeletal injuries result in return-to-duty/activity with no (functional) limitations, the healing process is often long. Long healing times coupled with the high frequency of musculoskeletal injuries make them a primary cause of lost/limited duty days. Thus, there exists an urgent, clinically unmet need for interventions to expedite tissue healing kinetics following musculoskeletal injuries to lessen their impact on military readiness and society as a whole. There exist several treatments with regulatory approval for other indications that have pro-regenerative/healing properties, but few have an approved indication for treating musculoskeletal injuries. With the immediate need for treatment options for musculoskeletal injuries, we propose a paradigm of Repurposing Existing Products to Accelerate Injury Recovery (REPAIR). Developing treatments via repurposing existing therapeutics for other indications has shown monumental advantages in both cost effectiveness and reduced time to bring to market compared to novel candidates. Thus, undertaking the needed research efforts to evaluate the effectiveness of promising REPAIR-themed candidates has the potential to enable near-term solutions for optimizing musculoskeletal injuries recovery, thereby addressing a top priority within the United States. Armed Forces. Herein, the REPAIR paradigm is presented, including example targets of opportunity as well as practical considerations for potential technical solutions for the translation of existing therapeutics into clinical practice for musculoskeletal injuries.
Collapse
Affiliation(s)
- Andrew R. Clark
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Timothy C Mauntel
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States,Womack Army Medical Center, Fort Bragg, NC, United States
| | - Stephen M Goldman
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christopher L. Dearth
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States,*Correspondence: Christopher L. Dearth,
| |
Collapse
|
20
|
Preparation and evaluation of osteoinductive porous biphasic calcium phosphate granules obtained from eggshell for bone tissue engineering. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Tong X, Zhu C, Liu L, Huang M, Xu J, Chen X, Zou J. Role of Sostdc1 in skeletal biology and cancer. Front Physiol 2022; 13:1029646. [PMID: 36338475 PMCID: PMC9633957 DOI: 10.3389/fphys.2022.1029646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sclerostin domain-containing protein-1 (Sostdc1) is a member of the sclerostin family and encodes a secreted 28–32 kDa protein with a cystine knot-like domain and two N-linked glycosylation sites. Sostdc1 functions as an antagonist to bone morphogenetic protein (BMP), mediating BMP signaling. It also interacts with LRP6, mediating LRP6 and Wnt signaling, thus regulating cellular proliferation, differentiation, and programmed cell death. Sostdc1 plays various roles in the skin, intestines, brain, lungs, kidneys, and vasculature. Deletion of Sostdc1 gene in mice resulted in supernumerary teeth and improved the loss of renal function in Alport syndrome. In the skeletal system, Sostdc1 is essential for bone metabolism, bone density maintenance, and fracture healing. Recently, Sostdc1 has been found to be closely related to the development and progression of multiple cancer types, including breast, renal, gastric, and thyroid cancers. This article summarises the role of Sostdc1 in skeletal biology and related cancers to provide a theoretical basis for the treatment of related diseases.
Collapse
Affiliation(s)
- Xiaoyang Tong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xi Chen, ; Jun Zou,
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- *Correspondence: Xi Chen, ; Jun Zou,
| |
Collapse
|
22
|
Wu X, Gong Q, Chen Y, Liu Y, Song M, Li F, Li P, Lai J. Full-length transcriptome and analysis of bmp-related genes in Platypharodon extremus. Heliyon 2022; 8:e10783. [PMID: 36276739 PMCID: PMC9582708 DOI: 10.1016/j.heliyon.2022.e10783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/31/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Platypharodon extremus is an endemic species on the Qinghai–Tibet Plateau. As a secondary protected species in China, the basic genomic information of this species has not yet been reported. Here, through third-generation sequencing, the full-length transcriptome of P. extremus was obtained. We identified 323,290 CCS sequences, and a total of 50,083 unigenes were extracted after correction with second-generation sequencing data and the removal of redundant reads. A total of 50,067 transcripts were annotated with the various databases. Based on the sequence information, three members in the bone morphogenetic proteins (bmps) family and their receptors, were identified. We found that the special structures of these proteins (zinc-dependent metalloproteinase domain, CUB domains, EGF-like domains and TGF-β domain) are highly conserved in fish and that they are closely evolutionarily related to the bmps and bmp receptors of Cyprinidae fishes. This is the first study to sequence the full-length transcriptome of P. extremus, which will help us to further understand its biology.
Collapse
|
23
|
Agemura T, Hasegawa T, Yari S, Kikuta J, Ishii M. Arthritis-associated osteoclastogenic macrophage, AtoM, as a key player in pathological bone erosion. Inflamm Regen 2022; 42:17. [PMID: 35650653 PMCID: PMC9161570 DOI: 10.1186/s41232-022-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoclasts are myeloid lineage cells with a unique bone-destroying ability that maintains bone homeostasis together with bone formation by osteoblasts. An advanced intravital imaging system using a two-photon microscopy has enabled the observation and evaluation of osteoclast dynamics and behaviors in the bone marrow of living mice. Using this system, it has become clear that pathological osteoclasts under inflamed conditions differ from physiological osteoclasts under a steady-state. Recently, we identified novel osteoclast precursors in arthritis, called arthritis-associated osteoclastogenic macrophages (AtoMs), which differentiate into pathological osteoclasts and induce inflammatory bone destruction. In this review, we introduce the in vivo imaging of physiological and pathological osteoclasts and their differentiation mechanism.
Collapse
Affiliation(s)
- Tomoya Agemura
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinya Yari
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi Saito, Osaka, Ibaraki, 567-0085, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,WPI-Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi Saito, Osaka, Ibaraki, 567-0085, Japan.
| |
Collapse
|
24
|
Yuan L, Xu X, Song X, Hong L, Zhang Z, Ma J, Wang X. Effect of bone-shaped nanotube-hydrogel drug delivery system for enhanced osseointegration. BIOMATERIALS ADVANCES 2022; 137:212853. [PMID: 35929281 DOI: 10.1016/j.bioadv.2022.212853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Anodic titanium dioxide nanotubes (TNT) have a range of beneficial theranostic properties. However, a lack of effective osseointegration is a problem frequently associated with the titanium dental implant surface. Here, we investigated whether bone-shaped nanotube titanium implants could enhance osseointegration via promoting initial release of vascular endothelial growth factor 165 (VEGF165) and dual release of recombinant human bone morphogenetic protein-2 (rhBMP-2). Thus, we generated cylindrical-shaped nanotubes (TNT1) and bone-shaped nanotubes (TNT2) through voltage-varying and time-varying electrochemical anodization methods, respectively. Additionally, we prepared rhBMP-2-loaded cylindrical-shaped nanotubes/VEGF165-loaded hydrogel (TNT-F1) and rhBMP-2-loaded bone-shaped nanotubes/VEGF165-loaded hydrogel (TNT-F2) drug delivery systems. We evaluated the characteristics and release kinetics of the drug delivery systems, and then analyzed the cytocompatibility and osteogenic differentiation of these specimens with mesenchymal stem cells (MSCs) in vitro. Finally, we utilized a rat femur defect model to test the bone formation capacity of nanotube-hydrogel drug delivery system in vivo. Among these different nanotubes structures, the bone-shaped one was the optimum structure for growth factor release.
Collapse
Affiliation(s)
- Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Xiaoxu Xu
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing 210093, China
| | - Xiaotong Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Leilei Hong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Zhongyin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China.
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
25
|
Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022; 10:837172. [PMID: 35646879 PMCID: PMC9133562 DOI: 10.3389/fbioe.2022.837172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bone regeneration in large segmental defects depends on the action of osteoblasts and the ingrowth of new blood vessels. Therefore, it is important to promote the release of osteogenic/angiogenic growth factors. Since the discovery of heparin, its anticoagulant, anti-inflammatory, and anticancer functions have been extensively studied for over a century. Although the application of heparin is widely used in the orthopedic field, its auxiliary effect on bone regeneration is yet to be unveiled. Specifically, approximately one-third of the transforming growth factor (TGF) superfamily is bound to heparin and heparan sulfate, among which TGF-β1, TGF-β2, and bone morphogenetic protein (BMP) are the most common growth factors used. In addition, heparin can also improve the delivery and retention of BMP-2 in vivo promoting the healing of large bone defects at hyper physiological doses. In blood vessel formation, heparin still plays an integral part of fracture healing by cooperating with the platelet-derived growth factor (PDGF). Importantly, since heparin binds to growth factors and release components in nanomaterials, it can significantly facilitate the controlled release and retention of growth factors [such as fibroblast growth factor (FGF), BMP, and PDGF] in vivo. Consequently, the knowledge of scaffolds or delivery systems composed of heparin and different biomaterials (including organic, inorganic, metal, and natural polymers) is vital for material-guided bone regeneration research. This study systematically reviews the structural properties and auxiliary functions of heparin, with an emphasis on bone regeneration and its application in biomaterials under physiological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| |
Collapse
|
26
|
Kim K, Kim JH, Kim I, Seong S, Han JE, Lee KB, Koh JT, Kim N. Transcription Factor Lmx1b Negatively Regulates Osteoblast Differentiation and Bone Formation. Int J Mol Sci 2022; 23:5225. [PMID: 35563615 PMCID: PMC9103437 DOI: 10.3390/ijms23095225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023] Open
Abstract
The LIM-homeodomain transcription factor Lmx1b plays a key role in body pattern formation during development. Although Lmx1b is essential for the normal development of multiple tissues, its regulatory mechanism in bone cells remains unclear. Here, we demonstrated that Lmx1b negatively regulates bone morphogenic protein 2 (BMP2)-induced osteoblast differentiation. Overexpressed Lmx1b in the osteoblast precursor cells inhibited alkaline phosphatase (ALP) activity and nodule formation, as well as the expression of osteoblast maker genes, including runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alpl), bone sialoprotein (Ibsp), and osteocalcin (Bglap). Conversely, the knockdown of Lmx1b in the osteoblast precursors enhanced the osteoblast differentiation and function. Lmx1b physically interacted with and repressed the transcriptional activity of Runx2 by reducing the recruitment of Runx2 to the promoter region of its target genes. In vivo analysis of BMP2-induced ectopic bone formation revealed that the knockdown of Lmx1b promoted osteogenic differentiation and bone regeneration. Our data demonstrate that Lmx1b negatively regulates osteoblast differentiation and function through regulation of Runx2 and provides a molecular basis for therapeutic targets for bone diseases.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Jeong Eun Han
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.E.H.); (K.-B.L.)
| | - Keun-Bae Lee
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.E.H.); (K.-B.L.)
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
27
|
Chai RC, McDonald MM. Visualisation of tumour cells in bone in vivo at single-cell resolution. Bone 2022; 158:116113. [PMID: 34273634 DOI: 10.1016/j.bone.2021.116113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
The skeleton is a common site for the establishment of distant metastases. Once cancers occupy bone, the prognosis is poor as disease recurrence and visceral spread is imminent. Understanding the pathways and cellular interactions, which regulate tumour cell seeding, dormancy and growth in bone, is pertinent to improving outcomes for patients with advanced cancers. Advances in imaging techniques have facilitated the development of the concept that the behavior of bone marrow resident cells dictates the fate of tumour cells upon arrival in bone. This review summarises recent findings achieved through intravital imaging. It highlights the importance of developing both longitudinal static and acute dynamic data to develop our understanding of tumour cell engraftment, dormancy, activation and the subsequent establishment of metastases. We also describe how imaging techniques have developed our knowledge of the elements that make up the complex bone microenvironment which tumour cells interact with to survive and grow. We also discuss how through combining these imaging insights with single cell RNA sequencing data, we are entering a new era of research which has the power to define the cell-cell interactions which control tumour cell growth in bone.
Collapse
Affiliation(s)
- Ryan C Chai
- Bone Biology Program, Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Michelle M McDonald
- Bone Biology Program, Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia.
| |
Collapse
|
28
|
Yan M, Duan X, Cai L, Zhang W, Silva MJ, Brophy RH, Rai MF. KIF26B Silencing Prevents Osseous Transdifferentiation of Progenitor/Stem Cells and Attenuates Ectopic Calcification in a Murine Model. J Bone Miner Res 2022; 37:349-368. [PMID: 34787331 DOI: 10.1002/jbmr.4473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/28/2023]
Abstract
Ectopic calcification is an osteogenic process that leads to the formation of inappropriate bone within intra-articular soft tissues, often in response to injury or surgery. The molecular mechanisms governing this phenotype have yet to be determined. Using a population genetics approach, we identified an association of the kinesin superfamily member 26b (Kif26b) with injury-induced ectopic calcification through quantitative trait locus analysis of recombinant inbred mouse strains, consistent with a genomewide association study that identified KIF26B as a severity locus for ectopic calcification in patients with hip osteoarthritis. Despite these associations of KIF26B with ectopic calcification, its mechanistic role and functional implications have not yet been fully elucidated. Here, we aim to decipher the functional role of KIF26B in osseous and chondrogenic transdifferentiation of human and murine progenitor/stem cells and in a murine model of non-invasive injury-induced intra-articular ectopic calcification. We found that KIF26B ablation via lentivirus-mediated shRNA significantly arrested osteogenesis of progenitor/stem cells and suppressed the expression of typical osteogenic marker genes. Conversely, KIF26B loss-of-function increased chondrogenesis as demonstrated by enhanced Safranin-O staining and by the elevated expression of chondrogenic marker genes. Furthermore, cell function analysis revealed that KIF26B knockdown significantly decreased cell viability and proliferation and induced cellular apoptosis. Mechanistically, loss of osteogenesis was reverted by the addition of a Wnt agonist, SKL2001, demonstrating a role of KIF26B in canonical Wnt/β-catenin signaling. Finally, intra-articular delivery of Kif26b shRNA in B6-129SF2/J mice significantly hampered the development of intra-articular ectopic calcification at 8 weeks after injury compared with mice treated with non-target scrambled shRNA. In summary, these observations highlight that KIF26B plays a crucial role in ectopic bone formation by repressing osteogenesis, but not chondrogenesis, potentially via modulating Wnt/β-catenin signaling. These findings establish KIF26B as a critical determinant of the osteogenic process in pathologic endochondral bone formation and an actionable target for pharmacotherapy to mitigate ectopic calcification (and heterotopic ossification). © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mingming Yan
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Duan
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Cai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Weili Zhang
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert H Brophy
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
Xu H, Liu Y, Li Y, Luo W, Liu Z, Jian Y. Therapeutic Mechanism of Chinese Medicine on the Healing of Early and Middle Fractures in Rabbits Under the Expression Level of Bone Morphogenetic Protein-2 (BMP-2) in Bone Tissue. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to explore the therapeutic mechanism of Chinese medicine on the healing of rabbits early and middle fractures, a rabbit fracture model was established in this study. The study was divided into several groups, i.e., treatment group (TG) (fed with Chinese medicine Capsule) and
control group (CG) (fed with normal saline (NS)). The materials were collected at 1, 3, and 5 weeks after the start of the experiment for analysis. The experiment content included: callus Hematoxylin-Eosin staining (HE staining); Bone Morphogenetic protein-2 (BMP-2) protein level detection;
Type I and type II bone collagen (BC) detection; and serum biochemical factors detection. The experimental results showed that the formation of callus in the TG was better than in the CG; the BMP-2 protein expression level in the TG was higher than in the CG, and there were statistically significant
differences (SSDs); the type I and type II BC levels in the TG were higher than the CG, there were SSDs; the levels of serum calcium (SC), phosphorus ion (PI), and alkaline phosphatase (ALP) in the TG were also higher than in the CG, and there were SSDs.
Collapse
Affiliation(s)
- Hegui Xu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Yang Liu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Yuxiong Li
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Wenbing Luo
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Zhenyang Liu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Yuekui Jian
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| |
Collapse
|
30
|
Xu C, Wang M, Zandieh-Doulabi B, Sun W, Wei L, Liu Y. To B (Bone Morphogenic Protein-2) or Not to B (Bone Morphogenic Protein-2): Mesenchymal Stem Cells May Explain the Protein's Role in Osteosarcomagenesis. Front Cell Dev Biol 2021; 9:740783. [PMID: 34869325 PMCID: PMC8635864 DOI: 10.3389/fcell.2021.740783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant metastases, in particular pulmonary and skeletal metastases, are common in patients with OS. Moreover, extensive resection of the primary tumor and bone metastases usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a concern that has impeded the administration of BMP-2 in patients with OS and in populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic mutation diseases and aberrant activities of bone metabolism). In fact, some studies have drawn the opposite conclusion about the effect of BMP-2 on OS progression. Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS development. This review focuses on the relationship among BMSCs, BMP-2, and OS cells; a better understanding of this relationship may elucidate the accurate mechanisms of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically safer and broader administration of BMP-2 in the future. For example, a low dosage of and a slow-release delivery strategy for BMP-2 are potential topics for exploration to treat OS.
Collapse
Affiliation(s)
- Chunfeng Xu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
32
|
Ledesma-Colunga MG, Weidner H, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Shaping the bone through iron and iron-related proteins. Semin Hematol 2021; 58:188-200. [PMID: 34389111 DOI: 10.1053/j.seminhematol.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023]
Abstract
Well-controlled iron levels are indispensable for health. Iron deficiency is the most common cause of anemia, whereas iron overload, either hereditary or secondary due to disorders of ineffective erythropoiesis, causes widespread organ failure. Bone is particularly sensitive to fluctuations in systemic iron levels as both iron deficiency and overload are associated with low bone mineral density and fragility. Recent studies have shown that not only iron itself, but also iron-regulatory proteins that are mutated in hereditary hemochromatosis can control bone mass. This review will summarize the current knowledge on the effects of iron on bone homeostasis and bone cell activities, and on the role of proteins that regulate iron homeostasis, i.e. hemochromatosis proteins and proteins of the bone morphogenetic protein pathway, on bone remodeling. As disorders of iron homeostasis are closely linked to bone fragility, deeper insights into common regulatory mechanisms may provide new opportunities to concurrently treat disorders affecting iron homeostasis and bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
33
|
Bone Morphogenetic Proteins, Carriers, and Animal Models in the Development of Novel Bone Regenerative Therapies. MATERIALS 2021; 14:ma14133513. [PMID: 34202501 PMCID: PMC8269575 DOI: 10.3390/ma14133513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone formation. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers, inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs, sheep, and non-human primates. In this review, we summarized bone regeneration strategies and animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be considered when planning animal experiments, including anatomical characteristics of the species used, appropriate BMP dosing, duration of the observation period, and sample size.
Collapse
|
34
|
Bone Morophogenetic Protein Application as Grafting Materials for Bone Regeneration in Craniofacial Surgery: Current Application and Future Directions. J Craniofac Surg 2021; 32:787-793. [PMID: 33705037 DOI: 10.1097/scs.0000000000006937] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ABSTRACT Rebuilding atrophied alveolar ridges can present a significant challenge for the maxillofacial surgeons. A multitude of treatment options including guided bone regeneration, onlay block grafting, and distraction osteogenesis are today available as safe procedures.The recent Food and Drug Administration approval of recombinant human bone morphogenetic proteins (rhBMPs) has given clinicians an added treatment option for reconstructing localized and large jaw defects. Currently, several patients have been successfully treated with the combination of bone graft and rhBMP-2 and the results have been documented as predictable and safe by clinical and radiologic examinations follow-up. In this study, a literature review was conducted using Medline, Medpilot, and Cochrane Database of Systematic Reviews. It was concentrated on manuscripts and overviews published in the last 20 years (2000-2020). The key terms employed were platelet-rich plasma, rhBMPs, and their combinations with the common scaffolds used for bone regeneration techniques. The results of clinical studies and animal trials were especially emphasized. The statements from the literature were compared with authors' own clinical data.The potential to reconstruct these large bone defects with a growth factor thus limiting or even avoiding a secondary harvest site is exciting and it represents a new frontier in the field of surgery. This study data confirm how there are excellent documents about the possible combination of using substitute materials and growth factor for treating large and minor craniofacial bone defects.
Collapse
|
35
|
Briquez PS, Tsai HM, Watkins EA, Hubbell JA. Engineered bridge protein with dual affinity for bone morphogenetic protein-2 and collagen enhances bone regeneration for spinal fusion. SCIENCE ADVANCES 2021; 7:7/24/eabh4302. [PMID: 34117071 PMCID: PMC8195475 DOI: 10.1126/sciadv.abh4302] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 05/27/2023]
Abstract
The revolutionizing efficacy of recombinant human bone morphogenetic protein (rhBMP-2) for clinical spinal fusion is hindered by safety issues associated with the high dose required. However, it continues to be widely used, for example, in InFUSE Bone Graft (Medtronic). Here, we developed a translational protein engineering-based approach to reduce the dose and thereby improve the safety of rhBMP-2 delivered in a collagen sponge, as in InFUSE Bone Graft. We engineered a bridge protein with high affinity for rhBMP-2 and collagen that can be simply added to the product's formulation, demonstrating improved efficacy at low dose of rhBMP-2 in two mouse models of bone regeneration, including a newly developed spinal fusion model. Moreover, the bridge protein can control the retention of rhBMP-2 from endogenous collagenous extracellular matrix of tissue. Our approach may be generalizable to other growth factors and collagen-based materials, for use in many other applications in regenerative medicine.
Collapse
Affiliation(s)
- Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resources (iSAIRR), Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| | - Elyse A Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Lee CS, Hsu GCY, Sono T, Lee M, James AW. Development of a Biomaterial Scaffold Integrated with Osteoinductive Oxysterol Liposomes to Enhance Hedgehog Signaling and Bone Repair. Mol Pharm 2021; 18:1677-1689. [PMID: 33760625 DOI: 10.1021/acs.molpharmaceut.0c01136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bone repair requires the tightly regulated control of multiple intrinsic and extrinsic cell types and signaling pathways. One of the positive regulatory signaling pathways in membranous and endochondral bone healing is the Hedgehog (Hh) signaling family. Here, a novel therapeutic liposomal delivery vector was developed by self-assembly of an Hh-activating cholesterol analog with an emulsifier, along with the addition of Smoothened agonist (SAG) as a drug cargo, for the enhancement of Hh signaling in bone regeneration. The drug-loaded nanoparticulate agonists of Hh signaling were immobilized onto trabecular bone-mimetic apatite-coated 3D scaffolds using bioinspired polydopamine adhesives to ensure favorable microenvironments for cell growth and local therapeutic delivery. Results showed that SAG-loaded liposomes induced a significant and dose-dependent increase in Hh-mediated osteogenic differentiation, as evidenced by in vitro analysis of bone marrow stromal cells, and in vivo calvarial bone healing, as evidenced using all radiographic parameters and histomorphometric analyses. Moreover, favorable outcomes were achieved in comparison to standards of care, including collagen sponge-delivered rBMP2 or allograft bone. In summary, this study demonstrates using a nanoparticle packaged Hh small molecule as a widely applicable bone graft substitute for robust bone repair.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
| | - Ginny Ching-Yun Hsu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Takashi Sono
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Aaron W James
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Orthopaedic Hospital Research Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
37
|
Dong J, Xu X, Zhang Q, Yuan Z, Tan B. Critical implication of the PTEN/PI3K/AKT pathway during BMP2-induced heterotopic ossification. Mol Med Rep 2021; 23:254. [PMID: 33537834 PMCID: PMC7893754 DOI: 10.3892/mmr.2021.11893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by extraskeletal ossification in soft tissue. Thus far, there is a lack of effective drug therapy against HO. Loss of PTEN in osteoblasts has been reported to accumulate bone mass in skeletal development and promote fracture healing in association with the activation of the PI3K/AKT pathway. However, the role of the PTEN/PI3K/AKT signaling in HO pathogenesis remains unknown. The present study investigated the implication of this pathway during BMP2-induced osteogenic differentiation and ectopic bone formation. It was shown that overexpression of PTEN inhibited proliferation but stimulated apoptosis in mesenchymal pluripotent C3H10T1/2 cells. PTEN also inhibited BMP2-induced osteoblast differentiation, whereas BMP2 repressed PTEN expression and subsequently activated PI3K/AKT. The PI3K inhibitor, LY294002, blocked BMP2-induced osteoblastogenesis, suggesting that the PI3K/AKT pathway is critically required for BMP2 to initiate osteoblastogenesis. In vivo, implantation of BMP2 in muscle induced ectopic endochondral ossification. Strikingly, this bone-forming capacity was notably suppressed by the PI3K inhibitor LY294002. Hence, the results of the present study demonstrated that the PI3K/AKT signaling activity is indispensable for BMP2 to induce ectopic new bone. Targeting the PI3K/AKT pathway using inhibitor(s) may represent a potential molecular therapy for the treatment against HO.
Collapse
Affiliation(s)
- Jun Dong
- Department of Orthopaedics, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiqiang Xu
- Department of Orthopaedics, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Zenong Yuan
- Department of Orthopaedics, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Bingyi Tan
- Department of Orthopaedics, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
38
|
Hashimoto K, Kaito T, Kikuta J, Ishii M. Intravital imaging of orthotopic and ectopic bone. Inflamm Regen 2020; 40:26. [PMID: 33292699 PMCID: PMC7604953 DOI: 10.1186/s41232-020-00135-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 12/02/2022] Open
Abstract
Bone homeostasis is dynamically regulated by a balance between bone resorption by osteoclasts and bone formation by osteoblasts. Visualizing and evaluating the dynamics of bone cells in vivo remain difficult using conventional technologies, including histomorphometry and imaging analysis. Over the past two decades, multiphoton microscopy, which can penetrate thick specimens, has been utilized in the field of biological imaging. Using this innovative technique, the in vivo dynamic motion of bone metabolism-related cells and their interactions has been revealed. In this review, we summarize previous approaches used for bone imaging and provide an overview of current bone tissue imaging methods using multiphoton excitation microscopy.
Collapse
Affiliation(s)
- Kunihiko Hashimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
39
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
40
|
Oliver JD, Jia S, Halpern LR, Graham EM, Turner EC, Colombo JS, Grainger DW, D'Souza RN. Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:215-237. [PMID: 32873216 DOI: 10.1089/ten.teb.2020.0181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and/or palate are the most prevalent orofacial birth defects occurring in about 1:700 live human births worldwide. Early postnatal surgical interventions are extensive and staged to bring about optimal growth and fusion of palatal shelves. Severe cleft defects pose a challenge to correct with surgery alone, resulting in complications and sequelae requiring life-long, multidisciplinary care. Advances made in materials science innovation, including scaffold-based delivery systems for precision tissue engineering, now offer new avenues for stimulating bone formation at the site of surgical correction for palatal clefts. In this study, we review the present scientific literature on key developmental events that can go awry in palate development and the common surgical practices and challenges faced in correcting cleft defects. How key osteoinductive pathways implicated in palatogenesis inform the design and optimization of constructs for cleft palate correction is discussed within the context of translation to humans. Finally, we highlight new osteogenic agents and innovative delivery systems with the potential to be adopted in engineering-based therapeutic approaches for the correction of palatal defects. Impact statement Tissue-engineered scaffolds supplemented with osteogenic growth factors have attractive, largely unexplored possibilities to modulate molecular signaling networks relevant to driving palatogenesis in the context of congenital anomalies (e.g., cleft palate). Constructs that address this need may obviate current use of autologous bone grafts, thereby avoiding donor-site morbidity and other regenerative challenges in patients afflicted with palatal clefts. Combinations of biomaterials and drug delivery of diverse regenerative cues and biologics are currently transforming strategies exploited by engineers, scientists, and clinicians for palatal cleft repair.
Collapse
Affiliation(s)
- Jeremie D Oliver
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Shihai Jia
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Leslie R Halpern
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Emily M Graham
- School of Medicine, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Emma C Turner
- University of Western Australia Dental School, Perth, Western Australia
| | - John S Colombo
- University of Las Vegas at Nevada School of Dental Medicine, Las Vegas, Nevada, USA
| | - David W Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,School of Medicine, University of Utah Health Sciences, Salt Lake City, Utah, USA
| |
Collapse
|
41
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|