1
|
Oudmaijer CAJ, Komninos DSJ, Hoeijmakers JHJ, IJzermans JNM, Vermeij WP. Clinical implications of nutritional interventions reducing calories, a systematic scoping review. Clin Nutr ESPEN 2024; 63:427-439. [PMID: 38986906 DOI: 10.1016/j.clnesp.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND & AIMS Caloric restriction (CR) constitutes a dietary approach of (temporarily) reducing calorie intake thereby inducing resilience and resistance mechanisms and promoting health. While CR's feasibility and safety have been proven in human trials, its full benefits and translation to different study populations warrants further exploration. METHODS We here conducted a systematic scoping review adhering to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Our search resulted in 3745 individual records, of which 40 were included. We showed that all studies consistently demonstrated the feasibility and safety of CR-like interventions. The specific effects of nutritional preconditioning vary, further underscoring the need for carefully crafted strategies, according to the intended effect, patient population, and logistical limitations. CONCLUSIONS CR-like interventions (long-term CR or short-term fasting) are feasible in a broad range of patient populations. Whether it has clinical benefit, f.i. reducing treatment-induced side effects and enhancing therapy efficacy, has to be investigated further.
Collapse
Affiliation(s)
- C A J Oudmaijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Erasmus MC Transplant Institute, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - D S J Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - J H J Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, The Netherlands; Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - J N M IJzermans
- Erasmus MC Transplant Institute, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Knol MGE, Wulfmeyer VC, Müller RU, Rinschen MM. Amino acid metabolism in kidney health and disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00872-8. [PMID: 39198707 DOI: 10.1038/s41581-024-00872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/01/2024]
Abstract
Amino acids form peptides and proteins and are therefore considered the main building blocks of life. The kidney has an important but under-appreciated role in the synthesis, degradation, filtration, reabsorption and excretion of amino acids, acting to retain useful metabolites while excreting potentially harmful and waste products from amino acid metabolism. A complex network of kidney transporters and enzymes guides these processes and moderates the competing concentrations of various metabolites and amino acid products. Kidney amino acid metabolism contributes to gluconeogenesis, nitrogen clearance, acid-base metabolism and provision of fuel for tricarboxylic acid cycle and urea cycle intermediates, and is thus a central hub for homeostasis. Conversely, kidney disease affects the levels and metabolism of a variety of amino acids. Here, we review the metabolic role of the kidney in amino acid metabolism and describe how different diseases of the kidney lead to aberrations in amino acid metabolism. Improved understanding of the metabolic and communication routes that are affected by disease could provide new mechanistic insights into the pathogenesis of kidney diseases and potentially enable targeted dietary or pharmacological interventions.
Collapse
Affiliation(s)
- Martine G E Knol
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- III Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Koehler FC, Späth MR, Meyer AM, Müller RU. Fueling the success of transplantation through nutrition: recent insights into nutritional interventions, their interplay with gut microbiota and cellular mechanisms. Curr Opin Organ Transplant 2024; 29:284-293. [PMID: 38861189 DOI: 10.1097/mot.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW The role of nutrition in organ health including solid organ transplantation is broadly accepted, but robust data on nutritional regimens remains scarce calling for further investigation of specific dietary approaches at the different stages of organ transplantation. This review gives an update on the latest insights into nutritional interventions highlighting the potential of specific dietary regimens prior to transplantation aiming for organ protection and the interplay between dietary intake and gut microbiota. RECENT FINDINGS Nutrition holds the potential to optimize patients' health prior to and after surgery, it may enhance patients' ability to cope with the procedure-associated stress and it may accelerate their recovery from surgery. Nutrition helps to reduce morbidity and mortality in addition to preserve graft function. In the case of living organ donation, dietary preconditioning strategies promise novel approaches to limit ischemic organ damage during transplantation and to identify the underlying molecular mechanisms of diet-induced organ protection. Functioning gut microbiota are required to limit systemic inflammation and to generate protective metabolites such as short-chain fatty acids or hydrogen sulfide. SUMMARY Nutritional intervention is a promising therapeutic concept including the pre- and rehabilitation stage in order to improve the recipients' outcome after solid organ transplantation.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anna M Meyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
4
|
Darvishzadeh Mahani F, Raji-Amirhasani A, Khaksari M, Mousavi MS, Bashiri H, Hajializadeh Z, Alavi SS. Caloric and time restriction diets improve acute kidney injury in experimental menopausal rats: role of silent information regulator 2 homolog 1 and transforming growth factor beta 1. Mol Biol Rep 2024; 51:812. [PMID: 39007943 DOI: 10.1007/s11033-024-09716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Estrogen has a protective impact on acute kidney injury (AKI); moreover, reducing the daily intake of calories impedes developing diseases. The present study aimed to determine the effects of calorie restriction (CR) and time restriction (TR) diets on the expression of silent information regulator 2 homolog 1 (SIRT1), transforming growth factor beta 1 (TGF-β1), and other indicators in the presence and absence of ovaries in AKI female rats. METHODS The female rats were divided into two groups, ovariectomized (OVX) and sham, and were placed on CR and TR diets for eight weeks; afterward, AKI was induced by injecting glycerol, and kidney injury indicators and biochemical parameters were measured before and after AKI. RESULTS After AKI, the levels of urine albumin excretion rate, urea, and creatinine in serum, and TGF-β1 increased, while creatinine clearance and SIRT1 decreased in kidney tissue. CR improved kidney indicators and caused a reduction in TGF-β1 and an increase in SIRT1 in ovary-intact rats. Moreover, CR prevented total antioxidant capacity (TAC) decrease and malondialdehyde (MDA) increase resulting from AKI. Before AKI, an increase in body weight, fasting blood sugar (FBS), low-density lipoprotein (LDL), triglyceride (TG), and total cholesterol (TC), and a decrease in high-density lipoprotein (HDL) were observed in OVX rats compared to sham rats, but CR prevented these changes. The effects of TR were similar to those of CR in all indicators except for TGF-β1, SIRT1, urea, creatinine, and albumin. CONCLUSION The present study indicated that CR is more effective than TR in preventing AKI, probably by increasing SIRT1 and decreasing TGF-β1 in ovary-intact animals.
Collapse
Affiliation(s)
- Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research Center, Kerman University of Medical SciencesKerman, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical SciencesKerman, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Department of Physiology and Pharmacology, 22 Bahman Blvd, Kerman, Iran.
| | - Maryam Sadat Mousavi
- Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Weinzierl A, Coerper M, Harder Y, Menger MD, Laschke MW. Caloric Restriction: A Novel Conditioning Strategy to Improve the Survival of Ischemically Challenged Musculocutaneous Random Pattern Flaps. Nutrients 2023; 15:4076. [PMID: 37764859 PMCID: PMC10536342 DOI: 10.3390/nu15184076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Caloric restriction (CR) is a cost-effective and easy-to-perform approach to counteracting surgical stress. The present study therefore evaluates the tissue-protective effects of a 30% CR in musculocutaneous flaps undergoing ischemia. For this purpose, a well-established murine dorsal skinfold chamber model, in combination with random pattern musculocutaneous flaps, was used. C57BL/6N mice were divided at random into a CR group (n = 8) and a control group with unrestricted access to standard chow (n = 8). The CR animals were subjected to a 30% reduction in caloric intake for 10 days before flap elevation. Intravital fluorescence microscopy was carried out on days 1, 3, 5, 7 and 10 after flap elevation to assess the nutritive blood perfusion, angiogenesis and flap necrosis. Subsequently, the flap tissue was harvested for additional histological and immunohistochemical analyses. The CR-treated animals exhibited a significantly higher functional capillary density and more newly formed microvessels within the flap tissue when compared to the controls; this was associated with a significantly higher flap survival rate. Immunohistochemical analyses showed a decreased invasion of myeloperoxidase-positive neutrophilic granulocytes into the flap tissue of the CR-treated mice. Moreover, the detection of cleaved caspase-3 revealed fewer cells undergoing apoptosis in the transition zone between the vital and necrotic tissue in the flaps of the CR-treated mice. These results demonstrate that a CR of 30% effectively prevents flap necrosis by maintaining microperfusion on a capillary level and inhibiting inflammation under ischemic stress. Hence, CR represents a promising novel conditioning strategy for improving the survival of musculocutaneous flaps with random pattern perfusion.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Maximilian Coerper
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
6
|
Späth MR, Hoyer-Allo KJR, Seufert L, Höhne M, Lucas C, Bock T, Isermann L, Brodesser S, Lackmann JW, Kiefer K, Koehler FC, Bohl K, Ignarski M, Schiller P, Johnsen M, Kubacki T, Grundmann F, Benzing T, Trifunovic A, Krüger M, Schermer B, Burst V, Müller RU. Organ Protection by Caloric Restriction Depends on Activation of the De Novo NAD+ Synthesis Pathway. J Am Soc Nephrol 2023; 34:772-792. [PMID: 36758124 PMCID: PMC10125653 DOI: 10.1681/asn.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.
Collapse
Affiliation(s)
- Martin R. Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - K. Johanna R. Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Seufert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christina Lucas
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Theresa Bock
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Lea Isermann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katharina Kiefer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Emergency Department, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Association between the Angle of the Left Subclavian Artery and Procedural Time for Percutaneous Coronary Intervention in Patients with Acute Coronary Syndrome. J Interv Cardiol 2022; 2022:3249745. [PMID: 36474644 PMCID: PMC9691329 DOI: 10.1155/2022/3249745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Background The effect of left subclavian artery tortuosity during percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) remains unclear. Methods Of 245 ACS patients (from November 2019 and May 2021), 79 who underwent PCI via a left radial approach (LRA) were included. We measured the angle of the left subclavian artery in the coronal view on CT imaging as an indicator of the tortuosity and investigated the association between that angle and the clinical variables and procedural time. Results Patients with a left subclavian artery angle of a median of <70 degrees (severe tortuosity) were older (75.4 ± 11.7 vs. 62.9 ± 12.3 years, P < 0.001) and had a higher prevalence of female sex (42.1% vs. 14.6%, P=0.007), hypertension (94.7% vs. 75.6%, P=0.02), and subclavian artery calcification (73.7% vs. 34.2%, P < 0.001) than those with that ≥70 degrees. The left subclavian artery angle correlated negatively with the sheath cannulation to the first balloon time (ρ = -0.51, P < 0.001) and total procedural time (ρ = -0.32, P=0.004). A multiple linear regression analysis revealed that the natural log transformation of the sheath insertion to first balloon time was associated with a subclavian artery angle of <70 degrees (β = 0.45, P < 0.001). Conclusion Our study showed that lower left subclavian artery angles as a marker of the tortuosity via the LRA were strongly associated with a longer sheath insertion to balloon time and subsequent entire procedure time during the PCI.
Collapse
|
8
|
Osterholt T, Gloistein C, Todorova P, Becker I, Arenskrieger K, Melka R, Koehler FC, Faust M, Wahlers T, Benzing T, Müller RU, Grundmann F, Burst V. Preoperative Short-Term Restriction of Sulfur-Containing Amino Acid Intake for Prevention of Acute Kidney Injury After Cardiac Surgery: A Randomized, Controlled, Double-Blind, Translational Trial. J Am Heart Assoc 2022; 11:e025229. [PMID: 36056721 PMCID: PMC9496445 DOI: 10.1161/jaha.121.025229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Background Acute kidney injury (AKI) is a major risk factor for chronic kidney disease and increased mortality. Until now, no compelling preventive or therapeutic strategies have been identified. Dietary interventions have been proven highly effective in organ protection from ischemia reperfusion injury in mice and restricting dietary intake of sulfur-containing amino acids (SAA) seems to be instrumental in this regard. The UNICORN trial aimed to evaluate the protective impact of restricting SAA intake before cardiac surgery on incidence of AKI. Methods and Results In this single-center, randomized, controlled, double-blind trial, 115 patients were assigned to a SAA-reduced formula diet (LowS group) or a regular formula diet (control group) in a 1:1 ratio for 7 days before scheduled cardiac surgery. The primary end point was incidence of AKI within 72 hours after surgery, secondary end points included increase of serum creatinine at 24, 48, and 72 hours as well as safety parameters. Quantitative variables were analyzed with nonparametric methods, while categorical variables were evaluated by means of Chi-square or Fisher test. SAA intake in the group with SAA reduced formula diet was successfully reduced by 77% (group with SAA reduced formula diet, 7.37[6.40-7.80] mg/kg per day versus control group, 32.33 [28.92-33.60] mg/kg per day, P<0.001) leading to significantly lower serum levels of methionine. No beneficial effects of SAA restriction on the rate of AKI after surgery could be observed (group with SAA reduced formula diet, 23% versus control group, 16%; P=0.38). Likewise, no differences were recorded with respect to secondary end points (AKI during hospitalization, creatinine at 24, 48, 72 hours after surgery) as well as in subgroup analysis focusing on age, sex, body mass index and diabetes. Conclusions SAA restriction was feasible in the clinical setting but was not associated with protective properties in AKI upon cardiac surgery. Registration URL: https://www.clinicaltrials.gov; Unique Identifier: NCT03715868.
Collapse
Affiliation(s)
- Thomas Osterholt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Claas Gloistein
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Polina Todorova
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Ingrid Becker
- Institute of Medical Statistics and Computational Biology University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Katja Arenskrieger
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Ramona Melka
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Michael Faust
- Polyclinic for Endocrinology Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery University of Cologne, Faculty of Medicine and University Hospital Cologne Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Faculty of Medicine and University Hospital Cologne Cologne Germany
| |
Collapse
|
9
|
Koehler FC, Fu CY, Späth MR, Hoyer-Allo KJR, Bohl K, Göbel H, Lackmann JW, Grundmann F, Osterholt T, Gloistein C, Steiner JD, Antebi A, Benzing T, Schermer B, Schwarz G, Burst V, Müller RU. A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Transl Res 2022; 244:32-46. [PMID: 35189406 DOI: 10.1016/j.trsl.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
Caloric Restriction (CR) extends lifespan and augments cellular stress-resistance from yeast to primates, making CR an attractive strategy for organ protection in the clinic. Translation of CR to patients is complex, due to problems regarding adherence, feasibility, and safety concerns in frail patients. Novel tailored dietary regimens, which modulate the dietary composition of macro- and micronutrients rather than reducing calorie intake promise similar protective effects and increased translatability. However, a direct head-to-head comparison to identify the most potent approach for organ protection, as well as overlapping metabolic consequences have not been performed. We systematically analyzed six dietary preconditioning protocols - fasting mimicking diet (FMD), ketogenic diet (KD), dietary restriction of branched chained amino acids (BCAA), two dietary regimens restricting sulfur-containing amino acids (SR80/100) and CR - in a rodent model of renal ischemia-reperfusion injury (IRI) to quantify diet-induced resilience in kidneys. Of the administered diets, FMD, SR80/100 and CR efficiently protect from kidney damage after IRI. Interestingly, these approaches show overlapping changes in oxidative and hydrogen sulfide (H2S)-dependent cysteine catabolism as a potential common mechanism of organ protection.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Chun-Yu Fu
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Osterholt
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Claas Gloistein
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Joachim D Steiner
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Günter Schwarz
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
AlAbdan NA, Almohammed OA, Altukhaim MS, Farooqui MA, Abdalla MI, Al Otaibi HQ, Alshuraym NR, Alghusun SN, Alotaibi LH, Alsayyari AA. Fasting during Ramadan and acute kidney injury (AKI): a retrospective, propensity matched cohort study. BMC Nephrol 2022; 23:54. [PMID: 35125093 PMCID: PMC8819932 DOI: 10.1186/s12882-022-02674-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background During the month of Ramadan, Muslims abstain from daytime consumption of fluids and foods, although some high-risk individuals are exempt. Because fasting's effects on the risk of acute kidney injury (AKI) have not been established, this study assesses the relationship between fasting and risk of AKI and identifies patients at high risk. Methods A single-center, retrospective, propensity-score matched, cohort study was conducted with data collected from adult patients admitted to the emergency room during Ramadan and the following month over two consecutive years (2016 and 2017). AKI was diagnosed based on the 2012 definition from the Kidney Disease: Improving Global Outcomes clinical practice guideline. Multivariable logistic regression analyses were used to examine the correlation and measure the effect of fasting on the incidence of AKI, and assess the effect of different variables on the incidence of AKI between the matching cohorts. Results A total of 1199 patients were included; after matching, each cohort had 499 patients. In the fasting cohort, the incidence of AKI and the risk of developing AKI were significantly lower (adjusted odds ratio (AOR) 0.65;95% confidence interval (CI) 0.44–0.98). The most indicative risk factors for AKI were hypertension (AOR 2.17; 95% CI 1.48–3.18), history of AKI (AOR 5.05; 95% CI 3.46–7.39), and liver cirrhosis (AOR 3.01; 95% CI 1.04–8.70). Patients with these factors or most other comorbidities in the fasting cohort had a lower risk of AKI as compared with their nonfasting counterparts. Conclusion The data show a strong reduction in the risk of developing AKI as a benefit of fasting, particularly in patients with comorbid conditions. Therefore, most patients with comorbid conditions are not harmed from fasting during Ramadan. However, larger prospective studies are needed to investigate the benefit of fasting in reducing the risk of developing AKI.
Collapse
|
11
|
Raji-Amirhasani A, Khaksari M, Shahrokhi N, Soltani Z, Nazari-Robati M, Mahani FD, Hajializadeh Z, Sabet N. Comparison of the effects of different dietary regimens on susceptibility to experimental acute kidney injury: the role of SIRT1 and TGF-β1. Nutrition 2022; 96:111588. [DOI: 10.1016/j.nut.2022.111588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|
12
|
Koehler FC, Späth MR, Hoyer-Allo KJR, Müller RU. Mechanisms of Caloric Restriction-Mediated Stress-Resistance in Acute Kidney Injury. Nephron Clin Pract 2021; 146:234-238. [PMID: 34340234 DOI: 10.1159/000517733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Abstract
Caloric restriction (CR)-mediated organ protection has been shown to be extremely efficient in rodent models of acute kidney injury (AKI). Limited understanding of the underlying mechanisms paired with a risk of malnourishment and feasibility problems has hindered the translation of this immense potential to the patient setting. In this mini-review, the current mechanistic concepts of CR-mediated stress-resistance as potential key targets for renal protection in AKI will be highlighted.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
13
|
Saat TC, van der Pluijm I, Ridwan Y, van Damme-van den Engel S, van Heijningen PM, Clahsen-van Groningen MC, Verhagen HJM, IJzermans JNM, Essers J, de Bruin RWF. Pre-Operative Fasting Provides Long Term Protection Against Chronic Renal Damage Induced by Ischaemia Reperfusion Injury in Wild Type and Aneurysm Prone Fibulin-4 Mice. Eur J Vasc Endovasc Surg 2020; 60:905-915. [PMID: 33032926 DOI: 10.1016/j.ejvs.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/06/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Renal ischaemia reperfusion injury (IRI) is inevitable during open repair of pararenal aortic aneurysms. Pre-operative fasting potently increases resistance against IRI. The effect of fasting on IRI was examined in a hypomorphic Fibulin-4 mouse model (Fibulin-4+/R), which is predisposed to develop aortic aneurysms. METHODS Wild type (WT) and Fibulin-4+/R mice were either fed ad libitum (AL) or fasted for two days before renal IRI induction by temporary clamping of the renal artery and vein of both kidneys. Six hours, 48 h, and seven days post-operatively, serum urea levels, renal histology, and mRNA expression levels of inflammatory and injury genes were determined to assess kidney function and damage. Additionally, matrix metalloproteinase activity in the kidney was assessed six months after IRI. RESULTS Two days of fasting improved survival the first week after renal IRI in WT mice compared with AL fed mice. Short term AL fed Fibulin-4+/R mice showed improved survival and kidney function compared with AL fed WT mice, which could not be further enhanced by fasting. Both fasted WT and Fibulin-4+/R mice showed improved survival, kidney function and morphology compared with AL fed mice six months after renal IRI. Fibulin-4+/R kidneys of fasted mice showed reduced apoptosis together with increased matrix metalloprotease activity levels compared with AL fed Fibulin-4+/R mice, indicative of increased matrix remodelling. CONCLUSION Fibulin-4+/R mice are naturally protected against the short-term, but not long-term, consequences of renal IRI. Pre-operative fasting protects against renal IRI and prevents (long-term) deterioration of kidney function and morphology in both WT and Fibulin-4+/R mice. These data suggest that pre-operative fasting may decrease renal damage in patients undergoing open abdominal aneurysm repair.
Collapse
Affiliation(s)
- Tanja C Saat
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Paula M van Heijningen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Hence J M Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Ron W F de Bruin
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Späth MR, Koehler FC, Hoyer-Allo KJR, Grundmann F, Burst V, Müller RU. Preconditioning strategies to prevent acute kidney injury. F1000Res 2020; 9:F1000 Faculty Rev-237. [PMID: 32269763 PMCID: PMC7135682 DOI: 10.12688/f1000research.21406.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury is a common clinical disorder resulting in significantly increased morbidity and mortality. However, despite extensive research, strategies for prevention or treatment are still lacking in routine clinical practice. Already decades ago, several preconditioning strategies (e. g. ischemic/hypoxic preconditioning and calorie restriction) have been published and their extraordinary effectiveness - especially in rodents - has raised the hope for powerful clinical tools to prevent acute kidney injury. However, the underlying mechanisms are still not completely understood and translation to the clinics has not been successful yet. In this review, the most attractive strategies and the current mechanistic concepts are introduced and discussed. Furthermore, we present clinical trials evaluating the feasibility of preconditioning in the clinical setting.
Collapse
Affiliation(s)
- Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Felix Carlo Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Karla Johanna Ruth Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| |
Collapse
|