1
|
Yogendra K, Sanivarapu H, Avuthu T, Gupta SK, Durgalla P, Banerjee R, Raman A, Tyagi W. Comparative Metabolomics to Unravel the Biochemical Mechanism Associated with Rancidity in Pearl Millet ( Pennisetum glaucum L.). Int J Mol Sci 2024; 25:11583. [PMID: 39519135 PMCID: PMC11547105 DOI: 10.3390/ijms252111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Despite being a highly nutritious and resilient cereal, pearl millet is not popular among consumers and food industries due to the short shelf-life of flour attributed to rapid rancidity development. The biochemical mechanism underlying rancidity, a complex and quantitative trait, needs to be better understood. The present study aims to elucidate the differential accumulation of metabolites in pearl millet that impact the rancidity process. Metabolite profiling was conducted on ten pearl millet genotypes with varying levels of rancidity-comprising high, low, and medium rancid genotypes-utilizing liquid chromatography and high-resolution mass spectrometry (LC-HRMS) at different accelerated ageing conditions. Through non-targeted metabolomic analysis, crucial metabolites associated with rancidity were identified across various biochemical pathways, including fatty acids, glycerophospholipids, sphingolipids, glycerol lipids, flavonoids, alkaloids, and terpenoids. Notably, metabolites such as fatty aldehydes, fatty alcohols, fatty esters, fatty acyls, fatty esters, and fatty amides were significantly elevated in high rancid genotypes, indicating their involvement in the rancidity process. These fatty acids-related metabolites further break down into saturated and unsaturated fatty acids. Four key fatty acids-stearic, palmitic, linoleic and linolenic acid-were quantified in the ten pearl millet genotypes, confirming their role in rancidity development. This investigation promises novel insights into utilizing metabolomics to understand the biochemical processes and facilitate precision breeding for developing low-rancidity pearl millet lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wricha Tyagi
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (K.Y.); (H.S.); (T.A.); (S.K.G.); (P.D.); (R.B.); (A.R.)
| |
Collapse
|
2
|
Moin M, Bommineni PR, Tyagi W. Exploration of the pearl millet phospholipase gene family to identify potential candidates for grain quality traits. BMC Genomics 2024; 25:581. [PMID: 38858648 PMCID: PMC11165789 DOI: 10.1186/s12864-024-10504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Phospholipases constitute a diverse category of enzymes responsible for the breakdown of phospholipids. Their involvement in signal transduction with a pivotal role in plant development and stress responses is well documented. RESULTS In the present investigation, a thorough genome-wide analysis revealed that the pearl millet genome contains at least 44 phospholipase genes distributed across its 7 chromosomes, with chromosome one harbouring the highest number of these genes. The synteny analysis suggested a close genetic relationship of pearl millet phospholipases with that of foxtail millet and sorghum. All identified genes were examined to unravel their gene structures, protein attributes, cis-regulatory elements, and expression patterns in two pearl millet genotypes contrasting for rancidity. All the phospholipases have a high alpha-helix content and distorted regions within the predicted secondary structures. Moreover, many of these enzymes possess binding sites for both metal and non-metal ligands. Additionally, the putative promoter regions associated with these genes exhibit multiple copies of cis-elements specifically responsive to biotic and abiotic stress factors and signaling molecules. The transcriptional profiling of 44 phospholipase genes in two genotypes contrasting for rancidity across six key tissues during pearl millet growth revealed a predominant expression in grains, followed by seed coat and endosperm. Specifically, the genes PgPLD-alpha1-1, PgPLD-alpha1-5, PgPLD-delta1-7a, PgPLA1-II-1a, and PgPLD-delta1-2a exhibited notable expression in grains of both the genotypes while showing negligible expression in the other five tissues. The sequence alignment of putative promoters revealed several variations including SNPs and InDels. These variations resulted in modifications to the corresponding cis-acting elements, forming distinct transcription factor binding sites suggesting the transcriptional-level regulation for these five genes in pearl millet. CONCLUSIONS The current study utilized a genome-wide computational analysis to characterize the phospholipase gene family in pearl millet. A comprehensive expression profile of 44 phospholipases led to the identification of five grain-specific candidates. This underscores a potential role for at least these five genes in grain quality traits including the regulation of rancidity in pearl millet. Therefore, this study marks the first exploration highlighting the possible impact of phospholipases towards enhancing agronomic traits in pearl millet.
Collapse
Affiliation(s)
- Mazahar Moin
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India
| | - Pradeep Reddy Bommineni
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India
| | - Wricha Tyagi
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India.
| |
Collapse
|
3
|
Wang Y, Liu H, Bai L, Liu R, Jiang H, Tan J, Chen J. Overexpression of OsNAR2.1 by OsNAR2.1 promoter increases drought resistance by increasing the expression of OsPLDα1 in rice. BMC PLANT BIOLOGY 2024; 24:321. [PMID: 38654179 PMCID: PMC11040742 DOI: 10.1186/s12870-024-05012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hongyan Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Lu Bai
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ruifang Liu
- The High School Affiliated to Renmin, University of China, Shenzhen, Guangdong, 518119, China
| | - Hongzhen Jiang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jinfang Tan
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
4
|
Bansal S, Sundararajan S, Shekhawat PK, Singh S, Soni P, Tripathy MK, Ram H. Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:985-1003. [PMID: 37649880 PMCID: PMC10462582 DOI: 10.1007/s12298-023-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01343-3.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306 India
| | - Sathish Sundararajan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | - Shivangi Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004 India
| | - Manas K. Tripathy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
5
|
Uncovering natural allelic and structural variants of OsCENH3 gene by targeted resequencing and in silico mining in genus Oryza. Sci Rep 2023; 13:830. [PMID: 36646847 PMCID: PMC9842635 DOI: 10.1038/s41598-023-28053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Plant breeding efforts to boost rice productivity have focused on developing a haploid development pipeline. CENH3 gene has emerged as a leading player that can be manipulated to engineer haploid induction system. Currently, allele mining for the OsCENH3 gene was done by PCR-based resequencing of 33 wild species accessions of genus Oryza and in silico mining of alleles from pre-existing data. We have identified and characterized CENH3 variants in genus Oryza. Our results indicated that the majority CENH3 alleles present in the Oryza gene pool carry synonymous substitutions. A few non-synonymous substitutions occur in the N-terminal Tail domain (NTT). SNP A/G at position 69 was found in accessions of AA genome and non-AA genome species. Phylogenetic analysis revealed that non-synonymous substitutions carrying alleles follow pre-determined evolutionary patterns. O. longistaminata accessions carry SNPs in four codons along with indels in introns 3 and 6. Fifteen haplotypes were mined from our panel; representative mutant alleles exhibited structural variations upon modeling. Structural analysis indicated that more than one structural variant may be exhibited by different accessions of single species (Oryza barthii). NTT allelic mutants, though not directly implicated in HI, may show variable interactions. HI and interactive behavior could be ascertained in future investigations.
Collapse
|
6
|
Sun Y, Qin Q, Song K, Sun L, Jiang T, Yang S, Li Z, Xu G, Sun S, Xue Y. Does Sulfoquinovosyl Diacylglycerol Synthase OsSQD1 Affect the Composition of Lipids in Rice Phosphate-Deprived Root? Int J Mol Sci 2022; 24:ijms24010114. [PMID: 36613553 PMCID: PMC9820689 DOI: 10.3390/ijms24010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lipids are the essential components of the cell intracellular and plasma membranes. Sulfoquinovosyldiacylglycerol (SQDG) is a glycolipid; glycolipids can replace phospholipids in maintaining phosphate (Pi) homeostasis in plants which are undergoing Pi starvation. Sulfoquinovosyl diacylglycerol synthase 1 (OsSQD1) is a critical enzyme in the first step of catalyzation in the formation of SQDG in rice. In this study, the expression pattern of different zones in roots of OsSQD1 in response to different Pi conditions is examined, and it is found that OsSQD1 is highly expressed in lateral roots under Pi-sufficient and -deficient conditions. The root phenotype observation of different OsSQD1 transgenic lines suggests that the knockout/down of OsSQD1 inhibits the formation and growth of lateral roots under different Pi conditions. Additionally, the lipid concentrations in OsSQD1 transgenic line roots indicate that OsSQD1 knockout/down decreases the concentration of phospholipids and glycolipids in Pi-starved roots. The OsSQD1 mutation also changes the composition of different lipid species with different acyl chain lengths, mainly under Pi-deprived conditions. The relative transcript expression of genes relating to glycolipid synthesis and phospholipid degradation is estimated to help study the mechanism by which OsSQD1 exerts an influence on the alteration of lipid composition and concentration in Pi-starved roots. Moreover, in Pi-starved roots, the knockout of OsSQD1 decreases the unsaturated fatty acid content of phospholipids and glycolipids. To summarize, the present study demonstrates that OsSQD1 plays a key role in the maintenance of phospholipid and glycolipid composition in Pi-deprived rice roots, which may influence root growth and development under Pi-deprived conditions.
Collapse
Affiliation(s)
- Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Qin Qin
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Lijuan Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Tingting Jiang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiyan Yang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Zhouwen Li
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Guohua Xu
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shubin Sun
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (S.S.); (Y.X.)
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Correspondence: (S.S.); (Y.X.)
| |
Collapse
|
7
|
Sun Y, Song K, Liu L, Sun L, Qin Q, Jiang T, Zhou B, Zhu C, Xu G, Sun S, Xue Y. Sulfoquinovosyl diacylglycerol synthase 1 impairs glycolipid accumulation and photosynthesis in phosphate-deprived rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6510-6523. [PMID: 34165534 DOI: 10.1093/jxb/erab300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Phosphate (Pi)-starved crops utilize phospholipids as a source for internal Pi supply by replacing non-phosphorus glycolipids. In rice, sulfoquinovosyl diacylglycerol synthase 1 (OsSQD1) functions as a key enzyme in the first step to catalyze sulfoquinovosyldiacylglycerol (SQDG) formation. Here we study differential expression of OsSQD1 in response to Pi, nitrogen, potassium, and iron-deficiencies in rice. Electrophoretic mobility shift assay suggested that OsSQD1 is regulated by OsPHR2 (Phosphate Starvation Response2), a MYB (v-myb avian myeloblastosis viral oncogene homolog) domain-containing transcription factor. The concentrations of different lipid species in ossqd1 knockout mutant demonstrated that OsSQD1 silencing increased the phospholipid content and altered fatty acid composition under Pi-deficiency. Moreover, OsSQD1 silencing reduces glycolipid accumulation under Pi-deficiency, and triggered the saturation of fatty acids in phospholipids and glycolipids treated with different Pi regimes. Relative amounts of transcripts related to phospholipid degradation and glycolipid synthesis were assessed to explore the mechanism by which OsSQD1 exerts an effect on lipid homeostasis under P-deficiency. Furthermore, OsSQD1 silencing inhibited photosynthesis, especially under Pi-deficient conditions, by down-regulating glycolipids in rice shoots. Taken together, our study reveals that OsSQD1 plays a key role in lipid homeostasis, especially glycolipid accumulation under Pi-deficiency, which results in the inhibition of photosynthesis.
Collapse
Affiliation(s)
- Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095,China
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| | - Lu Liu
- Huaiyin Institute of Agricultural Sciences, Huai'an, Jiangsu, 223001,China
| | - Lijuan Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| | - Qin Qin
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| | - Tingting Jiang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095,China
| | - Bin Zhou
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| | - Caihua Zhu
- Shanghai Applied Protein Technology Co., Ltd., 201100,China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095,China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095,China
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| |
Collapse
|
8
|
Deepika D, Singh A. Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application. Crit Rev Biotechnol 2021; 42:106-124. [PMID: 34167393 DOI: 10.1080/07388551.2021.1924113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phospholipases D (PLDs) are important membrane lipid-modifying enzymes in eukaryotes. Phosphatidic acid, the product of PLD activity, is a vital signaling molecule. PLD-mediated lipid signaling has been the subject of extensive research leading to discovery of its crystal structure. PLDs are involved in the pathophysiology of several human diseases, therefore, viewed as promising targets for drug design. The availability of a eukaryotic PLD crystal structure will encourage PLD targeted drug designing. PLDs have been implicated in plants response to biotic and abiotic stresses. However, the molecular mechanism of response is not clear. Recently, several novel findings have shown that PLD mediated modulation of structural and developmental processes, such as: stomata movement, root growth and microtubule organization are crucial for plants adaptation to environmental stresses. Involvement of PLDs in regulating membrane remodeling, auxin mediated alteration of root system architecture and nutrient uptake to combat nitrogen and phosphorus deficiencies and magnesium toxicity is established. PLDs via vesicle trafficking modulate cytoskeleton and exocytosis to regulate self-incompatibility (SI) signaling in flowering plants, thereby contributes to plants hybrid vigor and diversity. In addition, the important role of PLDs has been recognized in biotechnologically important functions, including oil/TAG synthesis and maintenance of seed quality. In this review, we describe the crystal structure of a plant PLD and discuss the molecular mechanism of catalysis and activity regulation. Further, the role of PLDs in regulating plant development under biotic and abiotic stresses, nitrogen and phosphorus deficiency, magnesium ion toxicity, SI signaling and pollen tube growth and in important biotechnological applications has been discussed.
Collapse
Affiliation(s)
- Deepika Deepika
- National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
9
|
Bhunia RK, Sinha K, Kaur R, Kaur S, Chawla K. A Holistic View of the Genetic Factors Involved in Triggering Hydrolytic and Oxidative Rancidity of Rice Bran Lipids. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1915328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
| | - Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, India
| | - Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, India
| | - Kirti Chawla
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
| |
Collapse
|
10
|
Arhab Y, Bessaa K, Abla H, Aydin M, Rahier R, Comte A, Brizuela L, Mebarek S, Perret F, Cherrier MV, Abousalham A, Noiriel A. Phospholipase D inhibitors screening: Probing and evaluation of ancient and novel molecules. Int J Biol Macromol 2020; 166:1131-1140. [PMID: 33161081 DOI: 10.1016/j.ijbiomac.2020.10.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/03/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Phospholipase D (PLD) is a ubiquitous enzyme that cleaves the distal phosphoester bond of phospholipids generating phosphatidic acid (PA). In plants, PA is involved in numerous cell responses triggered by stress. Similarly, in mammals, PA is also a second messenger involved in tumorigenesis. PLD is nowadays considered as a therapeutic target and blocking its activity with specific inhibitors constitutes a promising strategy to treat cancers. Starting from already described PLD inhibitors, this study aims to investigate the effect of their structural modifications on the enzyme's activity, as well as identifying new potent inhibitors of eukaryotic PLDs. Being able to purify the plant PLD from Vigna unguiculata (VuPLD), we obtained a SAXS model of its structure. We then used a fluorescence-based test suitable for high-throughput screening to review the effect of eukaryotic PLD inhibitors described in the literature. In this regard, we found that only few molecules were in fact able to inhibit VuPLD and we confirmed that vanadate is the most potent of all with an IC50 around 58 μM. Moreover, the small-scale screening of a chemical library of 3120 compounds allowed us to optimize the different screening's steps and paved the way towards the discovery of new potent inhibitors.
Collapse
Affiliation(s)
- Yani Arhab
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Karim Bessaa
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Houda Abla
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Meryem Aydin
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Renaud Rahier
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Arnaud Comte
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Chimiothèque, Bât Lederer, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Leyre Brizuela
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Saïda Mebarek
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Florent Perret
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Chimie Supramoléculaire Appliquée (CSAp), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Mickaël V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins, F-38000 Grenoble, France
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | - Alexandre Noiriel
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM(2)), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France.
| |
Collapse
|