1
|
Signoretti C, Matsumura S, Fatehi S, D'Silva M, Mathew R, Cendali F, D'Alessandro A, Alam SMS, Garcia V, Miano JM, Gupte SA. G6pdN126D Variant Increases the Risk of Developing VEGFR (Vascular Endothelial Growth Factor Receptor) Blocker-Induced Pulmonary Vascular Disease. J Am Heart Assoc 2024; 13:e035174. [PMID: 39291493 DOI: 10.1161/jaha.123.035174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND G6PD (glucose-6-phosphate-dehydrogenase) is a key enzyme in the glycolytic pathway and has been implicated in the pathogenesis of cancer and pulmonary hypertension-associated vascular remodeling. Here, we investigated the role of an X-linked G6pd mutation (N126D polymorphism), which is known to increase the risk of cardiovascular disease in individuals from sub-Saharan Africa and many others with African ancestry, in the pathogenesis of pulmonary hypertension induced by a vascular endothelial cell growth factor receptor blocker used for treating cancer. METHODS AND RESULTS CRISPR-Cas9 genome editing was used to generate the G6pd variant (N126D; G6pdN126D) in rats. A single dose of the vascular endothelial cell growth factor receptor blocker sugen-5416 (SU; 20 mg/kg in DMSO), which is currently in a Phase 2/3 clinical trial for cancer treatment, was subcutaneously injected into G6pdN126D rats and their wild-type littermates. After 8 weeks of normoxic conditions, right ventricular pressure and hypertrophy, pulmonary artery remodeling, the metabolic profile, and cytokine expression were assessed. Right ventricular pressure and pulmonary arterial wall thickness were increased in G6PDN126D+SU/normoxic rats. Simultaneously, levels of oxidized glutathione, inositol triphosphate, and intracellular Ca2+ were increased in the lungs of G6PDN126D+SU/normoxic rats, whereas nitric oxide was decreased. Also increased in G6PDN126D+SU/normoxic rats were pulmonary levels of plasminogen activator inhibitor-1, thrombin-antithrombin complex, and expression of proinflammatory cytokines CCL3 (chemokine [C-C motif] ligand), CCL5, and CCL7. CONCLUSIONS Our results suggest G6PDN126D increases inositol triphosphate-Ca2+ signaling, inflammation, thrombosis, and hypertrophic pulmonary artery remodeling in SU-treated rats. This suggests an increased risk of vascular endothelial cell growth factor receptor blocker-induced pulmonary hypertension in those carrying this G6PD variant.
Collapse
MESH Headings
- Animals
- Glucosephosphate Dehydrogenase/genetics
- Glucosephosphate Dehydrogenase/metabolism
- Receptors, Vascular Endothelial Growth Factor/genetics
- Rats
- Male
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Disease Models, Animal
- Vascular Remodeling/drug effects
- Rats, Sprague-Dawley
- Indoles/pharmacology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Pyrroles
Collapse
Affiliation(s)
| | - Shun Matsumura
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Samuel Fatehi
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Melinee D'Silva
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Rajamma Mathew
- Department of Medicine, Division of Pediatric Cardiology, Physiology New York Medical College Valhalla NY USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - S M Shafiqul Alam
- Department of Pathology, Microbiology, and Immunology (PMI) New York Medical College Valhalla NY USA
| | - Victor Garcia
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Joseph M Miano
- Department of Medicine Vascular Biology Center, Medical College of Georgia at Augusta University Augusta GA USA
| | - Sachin A Gupte
- Department of Pharmacology New York Medical College Valhalla NY USA
| |
Collapse
|
2
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
3
|
Tsai YC, Hsin MC, Liu RJ, Li TW, Ch’ang HJ. Krüppel-like Factor 10 as a Prognostic and Predictive Biomarker of Radiotherapy in Pancreatic Adenocarcinoma. Cancers (Basel) 2023; 15:5212. [PMID: 37958386 PMCID: PMC10648792 DOI: 10.3390/cancers15215212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The prognosis of pancreatic adenocarcinoma (PDAC) remains poor, with a 5-year survival rate of 12%. Although radiotherapy is effective for the locoregional control of PDAC, it does not have survival benefits compared with systemic chemotherapy. Most patients with localized PDAC develop distant metastasis shortly after diagnosis. Upfront chemotherapy has been suggested so that patients with localized PDAC with early distant metastasis do not have to undergo radical local therapy. Several potential tissue markers have been identified for selecting patients who may benefit from local radiotherapy, thereby prolonging their survival. This review summarizes these biomarkers including SMAD4, which is significantly associated with PDAC failure patterns and survival. In particular, Krüppel-like factor 10 (KLF10) is an early response transcription factor of transforming growth factor (TGF)-β. Unlike TGF-β in advanced cancers, KLF10 loss in two-thirds of patients with PDAC was associated with rapid distant metastasis and radioresistance; thus, KLF10 can serve as a predictive and therapeutic marker for PDAC. For patients with resectable PDAC, a combination of KLF10 and SMAD4 expression in tumor tissues may help select those who may benefit the most from additional radiotherapy. Future trials should consider upfront systemic therapy or include molecular biomarker-enriched patients without early distant metastasis.
Collapse
Affiliation(s)
- Yi-Chih Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Min-Chieh Hsin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Rui-Jun Liu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Ting-Wei Li
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Hui-Ju Ch’ang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
4
|
Chi Q, Hu X, Liu Z, Han Y, Tao D, Xu S, Li S. H 2S exposure induces cell death in the broiler thymus via the ROS-initiated JNK/MST1/FOXO1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112488. [PMID: 34246945 DOI: 10.1016/j.ecoenv.2021.112488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is a common toxic gas in chicken houses that endangers the health of poultry. Harbin has a cold climate in winter, and the conflict between heat preservation and ventilation in poultry houses is obvious. In this study, we investigated the H2S content in chicken houses during winter in Harbin and found that the H2S concentration exceeded the national standard in individual chicken houses. Then, a model of H2S exposure was established in an environmental simulation chamber. We also developed a NaHS exposure model of chicken peripheral blood lymphocytes in vitro. Proteomics analysis was used to reveal the toxicology of thymus injury in broilers, the FOXO signaling pathway was determined to be significantly enriched, ROS bursts and JNK/MST1/FOXO1 pathway activation induced by H2S exposure were detected, and ROS played an important switch role in the JNK/MST1/FOXO1 pathway. In addition, H2S exposure-induced thymus cell death involved immune dysregulation. Overall, the present study adds data for H2S contents in chicken houses, provides new findings for the mechanism of H2S poisoning and reveals a new regulatory pathway in immune injury.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dayong Tao
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Thomas PK, Sullivan LK, Dickinson GH, Davis CM, Lau AG. The Effect of Helium Ion Radiation on the Material Properties of Bone. Calcif Tissue Int 2021; 108:808-818. [PMID: 33517470 DOI: 10.1007/s00223-021-00806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Ionizing radiation, from both space and radiation therapy, is known to affect bone health. While there have been studies investigating changes in bone density and microstructure from radiation exposure, the effects of radiation on material properties are unknown. The current study addresses this gap by assessing bone material property changes in rats exposed to helium-4 radiation through spherical micro-indentation. Rats were exposed to a single dose of 0, 5, and 25 cGy whole body helium-4 radiation. Animals were euthanized at 7, 30, 90, or 180-days after exposure. Spherical micro-indentation was performed on axial cross sections of the femur cortical bone to determine instantaneous and relaxed shear moduli. At 90-days after exposure, the 25 cGy exposure caused a significant decline in shear modulus compared to control and 5 cGy groups. The instantaneous modulus decreased 33% and the relaxed modulus decreased 32% as compared to the sham group. This decline was followed by a recovery of both moduli, which was observed by 180-days after exposure; at 180 days, the moduli were no longer statistically different from those at 7 or 30 days. The observed decrease at 90 days, followed by recovery to baseline levels, can be attributed to the biological mechanisms involved in bone formation that were affected by radiation, bone turnover, and systemic changes in hormones due to radiation exposure. Continued assessment of the mechanisms that drive such a response in material properties may enable identification of pathways for therapeutic countermeasures against radiation exposure.
Collapse
Affiliation(s)
- Patricia K Thomas
- Department of Biomedical Engineering, The College of New Jersey, 2000 Pennington Road, Ewing, NJ, 08628, USA.
| | - Lindsay K Sullivan
- Department of Biomedical Engineering, University of North Carolina Chapel Hill, Chapel Hill, USA
| | - Gary H Dickinson
- Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, NJ, 08628, USA
| | - Catherine M Davis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, 21224, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
| | - Anthony G Lau
- Department of Biomedical Engineering, The College of New Jersey, 2000 Pennington Road, Ewing, NJ, 08628, USA.
| |
Collapse
|
6
|
Mostafizar M, Cortes-Pérez C, Snow W, Djordjevic J, Adlimoghaddam A, Albensi BC. Challenges with Methods for Detecting and Studying the Transcription Factor Nuclear Factor Kappa B (NF-κB) in the Central Nervous System. Cells 2021; 10:1335. [PMID: 34071243 PMCID: PMC8228352 DOI: 10.3390/cells10061335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.
Collapse
Affiliation(s)
- Marina Mostafizar
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Claudia Cortes-Pérez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Wanda Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|