1
|
Leavey A, Richards CT, Porro LB. Frog Fibres: What Muscle Architecture Can Tell Us About Anuran Locomotor Function. J Morphol 2025; 286:e70016. [PMID: 39690478 DOI: 10.1002/jmor.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Muscle fibre architecture is an important aspect of anatomy to consider when estimating muscle properties. How fibre architecture varies across species specialising in different locomotor functions is not well understood in anurans, due to difficulties associated with fibre extraction in small animals using traditional methods. This paper presents the first digital analysis of fibre architecture in frogs using an automated fibre-tracking algorithm and contrast-enhanced µCT scans. We find differences in hindlimb muscle fibre architecture between frogs specialising in different locomotor modes, as well as examples of many-to-one mapping of form to function. The trade-off between fibre length and muscle physiological cross-sectional area, and therefore contractile speed, range of motion and muscle force output, differs significantly between jumpers and swimmers, but not walker-hoppers. Where species place on this functional spectrum of fibre architecture largely depends on the muscle being examined. There is also some evidence that fibre length may be adjusted to increase contractile speed without undertaking the metabolically expensive process of growing and maintaining larger muscles. Finally, we make a detailed outline of the remaining gaps in our understanding of anuran fibre architecture that can now be addressed with this valuable digital method in future research.
Collapse
Affiliation(s)
- Alice Leavey
- Centre for Integrative Anatomy, Cell and Developmental Biology, University College London, Bloomsbury, London, UK
- Structure and Motion Laboratory, Royal Veterinary College-Camden Campus, Comparative Biomedical Sciences, London, UK
| | - Christopher T Richards
- Structure and Motion Laboratory, Royal Veterinary College-Camden Campus, Comparative Biomedical Sciences, London, UK
| | - Laura B Porro
- Centre for Integrative Anatomy, Cell and Developmental Biology, University College London, Bloomsbury, London, UK
| |
Collapse
|
2
|
Fournier M, Olson R, Van Wassenbergh S, Provini P. The avian vocal system: 3D reconstruction reveals upper vocal tract elongation during head motion. J Exp Biol 2024; 227:jeb247945. [PMID: 39422211 DOI: 10.1242/jeb.247945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
While the impressive singing abilities of birds are made possible by the syrinx, the upper vocal system (i.e. trachea, larynx and beak) could also play a role in sound filtration. Yet, we still lack a clear understanding of the range of elongation this system can undertake, especially along the trachea. Here, we used biplanar cineradiography and X-ray reconstruction of moving morphology (XROMM) to record 15 species of cadaveric birds from 9 different orders while an operator moved the birds' heads in different directions. In all studied species, we found elongation of the trachea to be correlated with neck extension, and significantly greater (ranging from 18 to 48% for the whole motion; and from 1.4 to 15.7% for the singing positions) than previously reported on a live singing bird (3%). This elongation or compression was not always homogeneous along its entire length. Some specimens showed increased lengthening in the rostral part and others in both the rostral and caudal parts of the vocal tract. The diversity of elongation patterns shows that trachea elongation is more complex than previously thought. Since tracheal lengthening affects sound frequencies, our results contribute to our understanding of the mechanisms involved in complex communication signals, one of the amazing traits we share with birds.
Collapse
Affiliation(s)
- Morgane Fournier
- INSERM, System Engineering and Evolution Dynamics, Université Paris Cité, 75004 Paris, France
- Learning Planet Institute, 75004 Paris, France
- Institute of Ecology and Evolution, Universität Bern, 3012 Bern, Switzerland
| | - Rachel Olson
- INSERM, System Engineering and Evolution Dynamics, Université Paris Cité, 75004 Paris, France
- Learning Planet Institute, 75004 Paris, France
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | | | - Pauline Provini
- INSERM, System Engineering and Evolution Dynamics, Université Paris Cité, 75004 Paris, France
- Learning Planet Institute, 75004 Paris, France
- Département Adaptations du Vivant, UMR MECADEV 7179 CNRS/Muséum National d'Histoire Naturelle, 75005Paris, France
| |
Collapse
|
3
|
Xue X, Azman A, Zhang C, Chen Y, Ni J, Wang ZY. Rehabilitation for complicated dysphagia after synchronous head-and-neck and esophageal cancer surgery: A case report. Medicine (Baltimore) 2024; 103:e40338. [PMID: 39533584 PMCID: PMC11556990 DOI: 10.1097/md.0000000000040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
RATIONALE Surgical intervention for synchronous head-and-neck and esophageal cancers often results in complex dysphagia, significantly affecting postoperative quality of life. Swallowing dysfunction may become permanent or worsen, with potential impacts on noncancer-related mortality. PATIENT CONCERNS We report a rare case of multiple synchronous squamous cell carcinomas of the head and neck (tonsillar and epiglottic cancer) along with esophageal cancer, presenting for dysphagia rehabilitation following surgery. DIAGNOSES Comprehensive evaluations-including magnetic resonance imaging, laryngoscopy, gastroscopy, and histopathology-led to diagnoses of left tonsil cancer (squamous cell carcinoma, T2N2bM0), epiglottic cancer (squamous cell carcinoma, T1N2bM0), and lower esophageal cancer (squamous cell carcinoma, T2N0M0). Postoperative videofluoroscopic swallowing study identified an anastomotic stricture at the level of the fifth cervical vertebra. INTERVENTIONS The patient underwent an 8-week rehabilitation program incorporating stretching exercises, swallowing behavior therapy, super-supraglottic swallow techniques, catheter balloon dilation, electrical stimulation, and respiratory therapy. OUTCOMES Following rehabilitation, the patient was able to resume partial oral intake without aspiration, with significant improvement in anastomotic stricture and swallowing function. LESSONS This case of dysphagia underscores the anastomotic stenosis resulting from oncological surgical intervention. Dysphagia is a frequent complication in patients with synchronous head-and-neck and esophageal cancers. Comprehensive rehabilitation and assessment of swallowing function enabled safe oral intake postoperatively in this patient.
Collapse
Affiliation(s)
- Xinyuan Xue
- Department of Rehabilitation, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Amerull Azman
- Department of Rehabilitation, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Cuicui Zhang
- Department of Rehabilitation, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yangjia Chen
- Department of Rehabilitation, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Yong Wang
- Department of Rehabilitation, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Leavey A, Richards CT, Porro LB. Comparative muscle anatomy of the anuran pelvis and hindlimb in relation to locomotor mode. J Anat 2024; 245:751-774. [PMID: 39119773 PMCID: PMC11470798 DOI: 10.1111/joa.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Frogs have a highly conserved body plan, yet they employ a diverse array of locomotor modes, making them ideal organisms for investigating the relationships between morphology and locomotor function, in particular whether anatomical complexity is a prerequisite for functional complexity. We use diffusible iodine contrast-enhanced microCT (diceCT) imaging to digitally dissect the gross muscle anatomy of the pelvis and hindlimbs for 30 species of frogs representing five primary locomotor modes, including the first known detailed dissection for some of the world's smallest frogs, forming the largest digital comparative analysis of musculoskeletal structure in any vertebrate clade to date. By linking musculoskeletal dissections and phylogenetic comparative methods, we then quantify and compare relationships between anatomy and function across over 160 million years of anuran evolution. In summary, we have found that bone lengths and pelvic crest sizes are generally not reliable predictors of muscle sizes, which highlights important implications for future palaeontological studies. Our investigation also presents previously unreported differences in muscle anatomy between frogs specialising in different locomotor modes, including several of the smallest frog hindlimb muscles, which are extremely difficult to extract and measure using traditional approaches. Furthermore, we find evidence of many-to-one and one-to-many mapping of form to function across the phylogeny. Additionally, we perform the first quantitative analysis of how the degree of muscle separation can differ between frogs. We find evidence that phylogenetic history is the key contributing factor to muscle separation in the pelvis and thigh, while the separation of shank muscles is influenced more strongly by locomotor mode. Finally, our anatomical 3D reconstructions are published alongside this manuscript to contribute towards future research and serve as educational materials.
Collapse
Affiliation(s)
- Alice Leavey
- Centre for Integrative Anatomy, Cell and Developmental BiologyUniversity College LondonLondonUK
- Structure and Motion LaboratoryRoyal Veterinary College—Camden Campus, Comparative Biomedical SciencesLondonUK
| | - Christopher T. Richards
- Structure and Motion LaboratoryRoyal Veterinary College—Camden Campus, Comparative Biomedical SciencesLondonUK
| | - Laura B. Porro
- Centre for Integrative Anatomy, Cell and Developmental BiologyUniversity College LondonLondonUK
| |
Collapse
|
5
|
Kissane RWP, Bates KT, Fagan MJ, Wang L, Watson PJ, Askew GN. The functional role of the rabbit digastric muscle during mastication. J Exp Biol 2024; 227:jeb249238. [PMID: 39297179 PMCID: PMC11449450 DOI: 10.1242/jeb.249238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
Muscle spindle abundance is highly variable in vertebrates, but the functional determinants of this variation are unclear. Recent work has shown that human leg muscles with the lowest abundance of muscle spindles primarily function to lengthen and absorb energy, while muscles with a greater spindle abundance perform active-stretch-shorten cycles with no net work, suggesting that muscle spindle abundance may be underpinned by muscle function. Compared with other mammalian muscles, the digastric muscle contains the lowest abundance of muscle spindles and, therefore, might be expected to generate substantial negative work. However, it is widely hypothesised that as a jaw-opener (anatomically) the digastric muscle would primarily function to depress the jaw, and consequently do positive work. Through a combination of X-ray reconstruction of moving morphology (XROMM), electromyography and fluoromicrometry, we characterised the 3D kinematics of the jaw and digastric muscle during feeding in rabbits. Subsequently, the work loop technique was used to simulate in vivo muscle behaviour in situ, enabling muscle force to be quantified in relation to muscle strain and hence determine the muscle's function during mastication. When functioning on either the working or balancing side, the digastric muscle generates a large amount of positive work during jaw opening, and a large amount of negative work during jaw closing, on average producing a relatively small amount of net negative work. Our data therefore further support the hypothesis that muscle spindle abundance is linked to muscle function; specifically, muscles that absorb a relatively large amount of negative work have a low spindle abundance.
Collapse
Affiliation(s)
- Roger W P Kissane
- Department of Musculoskeletal and Ageing Science, University of Liverpool, The William Henry Duncan Building, Liverpool L7 8TX, UK
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science, University of Liverpool, The William Henry Duncan Building, Liverpool L7 8TX, UK
| | | | - Linjie Wang
- School of Engineering, University of Hull, Hull HU6 7RX, UK
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Peter J Watson
- School of Engineering, University of Hull, Hull HU6 7RX, UK
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Duanmu Z, Ali SJV, Allen J, Cheng LK, Stommel M, Xu W. A Review of In Vitro and In Silico Swallowing Simulators: Design and Applications. IEEE Trans Biomed Eng 2024; 71:2042-2057. [PMID: 38294923 DOI: 10.1109/tbme.2024.3360893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Swallowing is a primary and complex behaviour that transports food and drink from the oral cavity, through the pharynx and oesophagus, into the stomach at an appropriate rate and speed. To understand this sophisticated behaviour, a tremendous amount of research has been carried out by utilising the in vivo approach, which is often challenging to perform, poses a risk to the subjects if interventions are undertaken and are seldom able to control for confounding factors. In contrast, in silico (computational) and in vitro (instrumental) methods offer an alternate insight into the process of the human swallowing system. However, the appropriateness of the design and application of these methods have not been formally evaluated. The purpose of this review is to investigate and evaluate the state of the art of in vitro and in silico swallowing simulators, focusing on the evaluation of their mechanical or computational designs in comparison to the corresponding swallowing mechanisms during various phases of swallowing (oral phase, pharyngeal phase and esophageal phase). Additionally, the potential of the simulators is also discussed in various areas of applications, including the study of swallowing impairments, swallowing medications, food process design and dysphagia management. We also address current limitations and recommendations for the future development of existing simulators.
Collapse
|
7
|
Liu ZJ, Yang M, Deng MZ, Abdelfattah MY, Baldwin MC, Weaver EM. Respiratory internal kinematics of the tongue base and soft palate in obese minipigs with obstructive sleep apnea. J Morphol 2024; 285:e21741. [PMID: 38837268 DOI: 10.1002/jmor.21741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
It is largely unknown how the tongue base and soft palate deform to alter the configuration of the oropharyngeal airway during respiration. This study is to address this important gap. After live sleep monitoring of five Yucatan and two Panepinto minipigs to verify obstructive sleep apnea (OSA), eight and four ultrasonic crystals were implanted into the tongue base and soft palate to circumscribe a cubic and square region, respectively. The 3D and 2D deformational changes of the circumscribed regions were measured simultaneously with electromyographic activity of the oropharyngeal muscles during spontaneous respiration under sedated sleep. The results indicated that both obese Yucatan and Panepinto minipigs presented spontaneous OSA, but not in three nonobese Yucatan minipigs. During inspiration, the tongue base showed elongation in both dorsal and ventral regions but thinning and thickening in the anterior and posterior regions, respectively. The widths showed opposite directions, widening in the dorsal but narrowing in the ventral regions. The soft palate expanded in both length and width. Compared to normal controls, obese/OSA ones showed similar directions of deformational changes, but the magnitude of change was two times larger in the tongue base and soft palate, and obese/OSA Panepinto minipigs presented 10 times larger changes in all dimensions of both the tongue base and the soft palate. The distance changes between the dorsal surface of tongue base and soft palate during inspiration increased in normal but decreased in obese OSA minipigs.
Collapse
Affiliation(s)
- Zi-Jun Liu
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA
| | - Mandee Yang
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Meng-Zhao Deng
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
- Department of Orthodontics, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mohamed Yehia Abdelfattah
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
- Oral Biology Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| | - Michael C Baldwin
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA
| | - Edward M Weaver
- Department of Otolaryngology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
King SN, Kuntz A, Scott N, Smiley B, Portocarrero Bonifaz A, Blackburn M. Chemoradiation to the submental muscles alters hyoid movement during swallowing in a rat model. J Appl Physiol (1985) 2024; 136:1076-1086. [PMID: 38482576 PMCID: PMC11365551 DOI: 10.1152/japplphysiol.00538.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 04/30/2024] Open
Abstract
Hyolaryngeal dysfunction is a commonly reported swallowing problem after chemoradiation treatment for head and neck cancer. The displacement of the hyolaryngeal complex during swallowing protects the airway and assists in opening the upper esophageal sphincter. Activation of the submental muscles, specifically the mylohyoid and geniohyoid muscles, is thought to facilitate movement of the hyoid. The purpose of this study was to determine if targeted radiation to the submental muscles given concurrently with chemotherapy alters hyolaryngeal displacement 1 mo after treatment. We hypothesized that chemoradiation treatment would result in abnormal patterns of hyoid movement compared with controls. Furthermore, we propose that these changes are associated with alterations in bolus size and discoordination of the jaw during drinking. Eighteen rats underwent either chemoradiation, radiation, or no treatment. Radiation treatment was targeted to submental muscles using a clinical linear accelerator given in 12 fractions of 4 Gy (3 days per week). Cycles of 1 mg/kg of cisplatin were administered concurrently each week of radiation. One month posttreatment, videofluoroscopy swallow studies (VFSS) were performed in self-drinking rats using a fluoroscope customized with a high-speed camera. The hyoid, jaw, and hard palate were tracked during swallowing from VFSS. Hyoid kinematics were analyzed from the start to the end of hyoid movement, and parameters were compared with bolus size and jaw movement. Significant differences in hyoid retraction parameters were found postchemoradiation. Alterations in the trajectory of hyoid motion during swallowing were observed. The findings demonstrate early changes in hyoid motion during swallowing associated with chemoradiation treatment.NEW & NOTEWORTHY Chemoradiation treatment for head and neck cancer can cause functional impairments in swallowing, which can adversely affect quality of life. This study provides new evidence that chemoradiation targeted to the submental muscles provokes early adaptations in hyoid movement during swallowing, which correlate with changes in bolus size. We also demonstrate a method for tracking the hyoid during swallowing in a rat model of chemoradiation injury.
Collapse
Affiliation(s)
- Suzanne N King
- Department of Otolaryngology - Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Abigail Kuntz
- Department of Otolaryngology - Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Nathan Scott
- Department of Otolaryngology - Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Brittany Smiley
- Department of Otolaryngology - Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Andres Portocarrero Bonifaz
- Department of Radiation Oncology, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Megan Blackburn
- Department of Radiation Oncology, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
9
|
Berthaume M, Elton S. Biomechanics in anthropology. Evol Anthropol 2024; 33:e22019. [PMID: 38217465 DOI: 10.1002/evan.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Biomechanics is the set of tools that explain organismal movement and mechanical behavior and links the organism to the physicality of the world. As such, biomechanics can relate behaviors and culture to the physicality of the organism. Scale is critical to biomechanical analyses, as the constitutive equations that matter differ depending on the scale of the question. Within anthropology, biomechanics has had a wide range of applications, from understanding how we and other primates evolved to understanding the effects of technologies, such as the atlatl, and the relationship between identity, society, culture, and medical interventions, such as prosthetics. Like any other model, there is great utility in biomechanical models, but models should be used primarily for hypothesis testing and not data generation except in the rare case where models can be robustly validated. The application of biomechanics within anthropology has been extensive, and holds great potential for the future.
Collapse
Affiliation(s)
| | - Sarah Elton
- Department of Anthropology, Durham University, Durham, UK
| |
Collapse
|
10
|
Ross CF, Laurence-Chasen JD, Li P, Orsbon C, Hatsopoulos NG. Biomechanical and Cortical Control of Tongue Movements During Chewing and Swallowing. Dysphagia 2024; 39:1-32. [PMID: 37326668 PMCID: PMC10781858 DOI: 10.1007/s00455-023-10596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Tongue function is vital for chewing and swallowing and lingual dysfunction is often associated with dysphagia. Better treatment of dysphagia depends on a better understanding of hyolingual morphology, biomechanics, and neural control in humans and animal models. Recent research has revealed significant variation among animal models in morphology of the hyoid chain and suprahyoid muscles which may be associated with variation in swallowing mechanisms. The recent deployment of XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3D hyolingual kinematics has revealed new details on flexion and roll of the tongue during chewing in animal models, movements similar to those used by humans. XROMM-based studies of swallowing in macaques have falsified traditional hypotheses of mechanisms of tongue base retraction during swallowing, and literature review suggests that other animal models may employ a diversity of mechanisms of tongue base retraction. There is variation among animal models in distribution of hyolingual proprioceptors but how that might be related to lingual mechanics is unknown. In macaque monkeys, tongue kinematics-shape and movement-are strongly encoded in neural activity in orofacial primary motor cortex, giving optimism for development of brain-machine interfaces for assisting recovery of lingual function after stroke. However, more research on hyolingual biomechanics and control is needed for technologies interfacing the nervous system with the hyolingual apparatus to become a reality.
Collapse
Affiliation(s)
- Callum F Ross
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA.
| | - J D Laurence-Chasen
- National Renewable Energy Laboratory, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Peishu Li
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA
| | - Courtney Orsbon
- Department of Radiology, University of Vermont Medical Center, Burlington, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
11
|
Li P, Ross CF, Luo ZX, Gidmark NJ. Head posture impacts mammalian hyoid position and suprahyoid muscle length: implication for swallowing biomechanics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220552. [PMID: 37839446 PMCID: PMC10577029 DOI: 10.1098/rstb.2022.0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/05/2023] [Indexed: 10/17/2023] Open
Abstract
Instantaneous head posture (IHP) can extensively alter resting hyoid position in humans, yet postural effects on resting hyoid position remain poorly documented among mammals in general. Clarifying this relationship is essential for evaluating interspecific variation in hyoid posture across evolution, and understanding its implications for hyolingual soft tissue function and swallowing motor control. Using Didelphis virginiana as a model, we conducted static manipulation experiments to show that head flexion shifts hyoid position rostrally relative to the cranium across different gapes. IHP-induced shifts in hyoid position along the anteroposterior axis are comparable to in vivo hyoid protraction distance during swallowing. IHP also has opposite effects on passive genio- and stylohyoid muscle lengths. High-speed biplanar videoradiography suggests Didelphis consistently swallows at neutral to flexed posture, with stereotyped hyoid kinematics across different head postures. IHP change can affect suprahyoid muscle force production by shifting their positions on the length-tension curve, and redirecting lines of action and the resultant force from supra- and infrahyoid muscles. We hypothesize that demands on muscle performance may constrain the range of swallowing head postures in mammals. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Peishu Li
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago IL, 60637, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago IL, 60637, USA
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago IL, 60637, USA
| | | |
Collapse
|
12
|
Laird MF, Ross CF, Kang V, Konow N. Introduction: food processing and nutritional assimilation in animals. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220559. [PMID: 37839455 PMCID: PMC10577032 DOI: 10.1098/rstb.2022.0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
How animals process and absorb nutrients from their food is a fundamental question in biology. Despite the continuity and interaction between intraoral food processing and post-oesophageal nutritional extraction, these topics have largely been studied separately. At present, we lack a synthesis of how pre- and post-oesophageal mechanisms of food processing shape the ability of various taxa to effectively assimilate nutrients from their diet. The aim of this special issue is to catalyse a unification of these distinct approaches as a functional continuum. We highlight questions that derive from this synthesis, as well as technical advances to address these questions. At present, there is also a skew toward vertebrates in studies of feeding form-function mechanics; by including perspectives from researchers working on both vertebrates and invertebrates, we hope to stimulate integrative and comparative research on food processing and nutritional assimilation. Below, we discuss how the papers in this issue contribute to these goals in three areas: championing a functional-comparative approach, quantifying performance and emphasizing the effects of life history, and food substrate and extrinsic factors in current and future studies of oral food processing and nutritional assimilation. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Myra F. Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104-6243, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|
13
|
Howe S, Steer K, Johnson M, Adjerid K, Edmonds C, German R, Mayerl C. Exploring the interaction of viscosity and nipple design on feeding performance in an infant pig model. J Texture Stud 2023; 54:936-946. [PMID: 37673688 PMCID: PMC10872838 DOI: 10.1111/jtxs.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Infant feeding behaviors are modulated via sensorimotor feedback, such that sensory perturbations can significantly impact performance. Properties of the nipple and milk (e.g., nipple hole size and viscosity) are critical sources of sensory information. However, the direct effects of varying milk and nipple properties on infant motor output and the subsequent changes in feeding performance are poorly understood. In this study, we use an infant pig model to explore the interaction between nipple hole size and milk viscosity. Using high-speed videofluoroscopy and electromyography, we measured key performance metrics including sucks per swallow and suck duration, then synchronized these data with the onset and offset of activity of jaw opening and closing muscles. The combination of a small nipple hole and thick milk resulted in negative effects on both suck and swallow performance, with reduced feeding efficiency compared to the other treatments. It also appears that this combination of viscosity and hole size disrupts the coordination between correlates of tongue and jaw movements. We did not see a difference in feeding efficiency between viscosities when infants fed on the large-hole nipple, which may be the result of non-Newtonian fluid mechanics. Our results emphasize the importance of considering both fluid and nipple properties when considering alterations to an infant's feeding system.
Collapse
Affiliation(s)
- Stephen Howe
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Kendall Steer
- Northeast Ohio Medical University, Rootstown, Ohio, USA
- University of Akron, Akron, Ohio, USA
| | | | | | - Chloe Edmonds
- Northeast Ohio Medical University, Rootstown, Ohio, USA
- Kent State University, Kent, Ohio, USA
| | - Rebecca German
- Northeast Ohio Medical University, Rootstown, Ohio, USA
- Kent State University, Kent, Ohio, USA
| | | |
Collapse
|
14
|
Steer KE, Johnson ML, Adjerid K, Bond LE, Howe SP, Khalif A, Nkachukwu KC, Edmonds CE, German RZ, Mayerl CJ. The Function of the Mammal Extrinsic Tongue Musculature in the Transition from Suckling to Drinking. Integr Comp Biol 2023; 63:641-652. [PMID: 37160353 PMCID: PMC10503468 DOI: 10.1093/icb/icad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
The transition from suckling to drinking is a developmental pathway that all mammals take. In both behaviors, the tongue is the primary structure involved in acquiring, transporting, and swallowing the liquid. However, the two processes are fundamentally different: during suckling, the tongue must function as a pump to generate suction to move milk, whereas during drinking, the tongue moves backwards and forwards through the mouth to acquire and move water. Despite these fundamental differences, we have little understanding of how tongues role varies between these behaviors. We used an infant pig model to investigate the relationships between anatomy, physiology, and function of the tongue to examine how lingual function is modulated in the transition from infancy to adulthood. We found that while some muscles were proportionally largest at birth, others were proportionally larger at the time of weaning. Furthermore, we found variation in tongue movements between suckling and drinking along both the mediolateral and anteroposterior axes, resulting in differences in tongue deformation between the two behaviors. The extrinsic tongue muscles also changed in function differently between drinking and suckling. Genioglossus increased its activity and turned on and off earlier in the cycle during drinking, whereas hyoglossus fired at lower amplitudes during drinking, and turned on and off later in the cycle. Together, the data highlight the significant need for high neuroplasticity in the control of the tongue at a young age in mammals and suggest that the ability to do so is key in the ontogeny and evolution of feeding in these animals.
Collapse
Affiliation(s)
- K E Steer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - M L Johnson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - K Adjerid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
- Department of Biomedical Engineering, Tulane University, New Orleans, Lousiana, 70118, USA
| | - L E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - S P Howe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - A Khalif
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - K C Nkachukwu
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - C E Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - R Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH 44272, USA
| | - C J Mayerl
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
15
|
King SN, Kaissieh N, Haxton C, Shojaei M, Malott L, Devara L, Thompson R, Osman KL, Millward J, Blackburn M, Lever TE. Radiation induced changes in profibrotic markers in the submental muscles and their correlation with tongue movement. PLoS One 2023; 18:e0287044. [PMID: 37352202 PMCID: PMC10289304 DOI: 10.1371/journal.pone.0287044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/29/2023] [Indexed: 06/25/2023] Open
Abstract
Swallowing impairment is a major complication of radiation treatment for oropharyngeal cancers. Developing targeted therapies that improve swallowing outcomes relies on an understanding of the mechanisms that influence motor function after radiation treatment. The purpose of this study was to determine whether there is a correlation between radiation induced changes in tongue movement and structural changes in irradiated submental muscles, as well as assess other possible causes for dysfunction. We hypothesized that a clinically relevant total radiation dose to the submental muscles would result in: a) quantifiable changes in tongue strength and displacement during drinking two months post treatment; and b) a profibrotic response and/or fiber type transition in the irradiated tissue. Sprague-Dawley adult male rats received radiation to the submental muscles at total dose-volumes known to provoke dysphagia in humans. A clinical linear accelerator administered 8 fractions of 8Gy for a total of 64Gy. Comparisons were made to sham-treated rats that received anesthesia only. Swallowing function was assessed using videofluoroscopy and tongue strength was analyzed via force lickometer. TGFβ1 expression was analyzed via ELISA. The amount of total collagen was analyzed by picrosirius red staining. Immunofluorescence was used to assess fiber type composition and size. Significant changes in licking function during drinking were observed at two months post treatment, including a slower lick rate and reduced tongue protrusion during licking. In the mylohyoid muscle, significant increases in TGFβ1 protein expression were found post radiation. Significant increases in the percentage of collagen content were observed in the irradiated geniohyoid muscle. No changes in fiber type expression were observed. Results indicate a profibrotic transition within the irradiated swallowing muscles that contributes to tongue dysfunction post-radiation treatment.
Collapse
Affiliation(s)
- Suzanne N. King
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Nada Kaissieh
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Chandler Haxton
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Marjan Shojaei
- Department of Radiation Oncology, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Luke Malott
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Lekha Devara
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Rebecca Thompson
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Kate L. Osman
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Jessica Millward
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Megan Blackburn
- Department of Radiation Oncology, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Teresa E. Lever
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| |
Collapse
|
16
|
Laurence-Chasen JD, Ross CF, Arce-McShane FI, Hatsopoulos NG. Robust cortical encoding of 3D tongue shape during feeding in macaques. Nat Commun 2023; 14:2991. [PMID: 37225708 PMCID: PMC10209084 DOI: 10.1038/s41467-023-38586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Dexterous tongue deformation underlies eating, drinking, and speaking. The orofacial sensorimotor cortex has been implicated in the control of coordinated tongue kinematics, but little is known about how the brain encodes-and ultimately drives-the tongue's 3D, soft-body deformation. Here we combine a biplanar x-ray video technology, multi-electrode cortical recordings, and machine-learning-based decoding to explore the cortical representation of lingual deformation. We trained long short-term memory (LSTM) neural networks to decode various aspects of intraoral tongue deformation from cortical activity during feeding in male Rhesus monkeys. We show that both lingual movements and complex lingual shapes across a range of feeding behaviors could be decoded with high accuracy, and that the distribution of deformation-related information across cortical regions was consistent with previous studies of the arm and hand.
Collapse
Affiliation(s)
- Jeffrey D Laurence-Chasen
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL, 60637, USA.
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL, 60637, USA
| | - Fritzie I Arce-McShane
- Department of Oral Health Sciences, School of Dentistry, University of Washington, 1959 NE Pacific Street, Box #357475, Seattle, WA, 98195-7475, USA
- Graduate Program in Neuroscience, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195-7475, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL, 60637, USA
- Program in Computational Neuroscience, The University of Chicago, 5812 South Ellis Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
17
|
Provini P, Camp AL, Crandell KE. Emerging biological insights enabled by high-resolution 3D motion data: promises, perspectives and pitfalls. J Exp Biol 2023; 226:286825. [PMID: 36752301 PMCID: PMC10038148 DOI: 10.1242/jeb.245138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Deconstructing motion to better understand it is a key prerequisite in the field of comparative biomechanics. Since Marey and Muybridge's work, technical constraints have been the largest limitation to motion capture and analysis, which, in turn, limited what kinds of questions biologists could ask or answer. Throughout the history of our field, conceptual leaps and significant technical advances have generally worked hand in hand. Recently, high-resolution, three-dimensional (3D) motion data have become easier to acquire, providing new opportunities for comparative biomechanics. We describe how adding a third dimension of information has fuelled major paradigm shifts, not only leading to a reinterpretation of long-standing scientific questions but also allowing new questions to be asked. In this paper, we highlight recent work published in Journal of Experimental Biology and influenced by these studies, demonstrating the biological breakthroughs made with 3D data. Although amazing opportunities emerge from these technical and conceptual advances, high-resolution data often come with a price. Here, we discuss challenges of 3D data, including low-throughput methodology, costly equipment, low sample sizes, and complex analyses and presentation. Therefore, we propose guidelines for how and when to pursue 3D high-resolution data. We also suggest research areas that are poised for major new biological advances through emerging 3D data collection.
Collapse
Affiliation(s)
- Pauline Provini
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, F-75004 Paris, France
- Learning Planet Institute, F-75004 Paris, France
- Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Ariel L Camp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L78TX, UK
| | | |
Collapse
|
18
|
Mialland A, Atallah I, Bonvilain A. Toward a robust swallowing detection for an implantable active artificial larynx: a survey. Med Biol Eng Comput 2023; 61:1299-1327. [PMID: 36792845 DOI: 10.1007/s11517-023-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/04/2023] [Indexed: 02/17/2023]
Abstract
Total laryngectomy consists in the removal of the larynx and is intended as a curative treatment for laryngeal cancer, but it leaves the patient with no possibility to breathe, talk, and swallow normally anymore. A tracheostomy is created to restore breathing through the throat, but the aero-digestive tracts are permanently separated and the air no longer passes through the nasal tracts, which allowed filtration, warming, humidification, olfaction, and acceleration of the air for better tissue oxygenation. As for phonation restoration, various techniques allow the patient to talk again. The main one consists of a tracheo-esophageal valve prosthesis that makes the air passes from the esophagus to the pharynx, and makes the air vibrate to allow speech through articulation. Finally, swallowing is possible through the original tract as it is now isolated from the trachea. Yet, many methods exist to detect and assess a swallowing, but none is intended as a definitive restoration technique of the natural airway, which would permanently close the tracheostomy and avoid its adverse effects. In addition, these methods are non-invasive and lack detection accuracy. The feasibility of an effective early detection of swallowing would allow to further develop an implantable active artificial larynx and therefore restore the aero-digestive tracts. A previous attempt has been made on an artificial larynx implanted in 2012, but no active detection was included and the system was completely mechanic. This led to residues in the airway because of the imperfect sealing of the mechanism. An active swallowing detection coupled with indwelling measurements would thus likely add a significant reliability on such a system as it would allow to actively close an artificial larynx. So, after a brief explanation of the swallowing mechanism, this survey intends to first provide a detailed consideration of the anatomical region involved in swallowing, with a detection perspective. Second, the swallowing mechanism following total laryngectomy surgery is detailed. Third, the current non-invasive swallowing detection technique and their limitations are discussed. Finally, the previous points are explored with regard to the inherent requirements for the feasibility of an effective swallowing detection for an artificial larynx. Graphical Abstract.
Collapse
Affiliation(s)
- Adrien Mialland
- Institute of Engineering and Management Univ. Grenoble Alpes, Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-lab, 38000, Grenoble, France.
| | - Ihab Atallah
- Institute of Engineering and Management Univ. Grenoble Alpes, Otorhinolaryngology, CHU Grenoble Alpes, 38700, La Tronche, France
| | - Agnès Bonvilain
- Institute of Engineering and Management Univ. Grenoble Alpes, Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-lab, 38000, Grenoble, France
| |
Collapse
|
19
|
Kitamura K, Watanabe T, Yamamoto M, Ishikawa N, Kasahara N, Abe S, Yamamoto H. A Newly Discovered Tendon Between the Genioglossus Muscle and Epiglottic Cartilage Identified by Histological Observation of the Pre-Epiglottic Space. Dysphagia 2023; 38:315-329. [PMID: 35678869 PMCID: PMC9873719 DOI: 10.1007/s00455-022-10469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/16/2022] [Indexed: 01/28/2023]
Abstract
Epiglottic retroversion is difficult to explain anatomically. One reason is inadequate structural identification of the ligaments in the submucosal tissue anterior to the epiglottis (pre-epiglottic space, PES). Although studies have shown that tongue root movement plays a role in epiglottic retroversion, few morphological reports have investigated the attachment of the lingual muscles to the epiglottis. This study reconstructed the fiber structure of the PES by comprehensively analyzing fiber alignment in the PES focusing on the hyoepiglottic ligament, which runs between the lingual muscles and the epiglottis. Gross and microscopic observations of the submucosal structures from the tongue to the larynx of 20 cadavers (10 men, 10 women; mean age 79 years) were performed. A tendon continuing from the posterior part of the genioglossus muscle and attaching to the center of the epiglottic cartilage was identified in the midline area of the epiglottis. We named this tendon the glossoepiglottic tendon. In contrast, the hyoepiglottic ligament is found between the hyoid bone and the epiglottis and is attached from the lateral margin of the epiglottic cartilage to its base. Furthermore, the glossoepiglottic tendon consists of a high-density fiber bundle that is thicker than the hyoepiglottic ligament. These results show that the conventional hyoepiglottic ligament has a two-layer structure consisting of an upper fiber bundle connected to the genioglossus muscle and a lower fiber bundle connected to the hyoid bone. Sustained contraction of the posterior part of the genioglossus muscle therefore places the epiglottis under persistent traction, suggesting that its relaxation may cause epiglottic retroversion.
Collapse
Affiliation(s)
- Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Tae Watanabe
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Noboru Ishikawa
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Norio Kasahara
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| |
Collapse
|
20
|
Mayerl CJ, Adjerid KA, Edmonds CE, Gould FDH, Johnson ML, Steer KE, Bond LE, German RZ. Regional Variation in Contractile Patterns and Muscle Activity in Infant Pig Feeding. Integr Org Biol 2022; 4:obac046. [PMID: 36531210 PMCID: PMC9756950 DOI: 10.1093/iob/obac046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
At the level of the whole muscle, contractile patterns during activity are a critical and necessary source of variation in function. Understanding if a muscle is actively lengthening, shorting, or remaining isometric has implications for how it is working to power a given behavior. When feeding, the muscles associated with the tongue, jaws, pharynx, and hyoid act together to transport food through the oral cavity and into the esophagus. These muscles have highly coordinated firing patterns, yet also exhibit high levels of regional heterogeneity in both their timing of activity and their contractile characteristics when active. These high levels of variation make investigations into function challenging, especially in systems where muscles power multiple behaviors. We used infant pigs as a model system to systematically evaluate variation in muscle firing patterns in two muscles (mylohyoid and genioglossus) during two activities (sucking and swallowing). We also evaluated the contractile characteristics of mylohyoid during activity in the anterior and posterior regions of the muscle. We found that the posterior regions of both muscles had different patterns of activity during sucking versus swallowing, whereas the anterior regions of the muscles did not. Furthermore, the anterior portion of mylohyoid exhibited concentric contractions when active during sucking, whereas the posterior portion was isometric during sucking and swallowing. This difference suggests that the anterior portion of mylohyoid in infant pigs is functioning in concert with the tongue and jaws to generate suction, whereas the posterior portion is likely acting as a hyoid stabilizer during sucking and swallowing. Our results demonstrate the need to evaluate both the contractile characteristics and activity patterns of a muscle in order to understand its function, especially in cases where there is potential for variation in either factor within a single muscle.
Collapse
Affiliation(s)
- C J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - K A Adjerid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - C E Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - F D H Gould
- Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - M L Johnson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - K E Steer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - L E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - R Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| |
Collapse
|
21
|
King SN, Greenwell E, Kaissieh N, Devara L, Carter Z, Fox J, Blackburn M. Acute effects of radiation treatment to submental muscles on burrowing and swallowing behaviors in a rat model. PLoS One 2022; 17:e0268457. [PMID: 35560040 PMCID: PMC9106154 DOI: 10.1371/journal.pone.0268457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Swallowing impairments are a major complication of radiation treatment for oropharyngeal cancers, influencing oral intake and quality of life. The timing and functional consequences of radiation treatment on the swallowing process is not clearly understood. A rodent radiation injury model was used to investigate the onset of oral and pharyngeal dysfunctions in deglutition related to radiation treatment. This study tested the hypothesis that (Wall et al., 2013) alterations in normal biting, licking, and swallowing performance would be measurable following 64Gy of fractionated radiation to the submental muscles; and (Kotz et al., 2004) radiation will affect the animal’s general well-being as measured via burrowing activity. Seven rats received radiation using a clinical linear accelerator given in 8 fractions of 8Gy and another seven animals received sham anesthesia only treatment. Swallowing bolus transit/size was assessed via videofluoroscopy, tongue movement during drinking was measured via an electrical lick sensor, and biting was analyzed from acoustic recordings of a vermicelli pasta test. Burrowing activity was measured by the amount of gravel substrate displaced within a container. Measurements were taken at baseline, during treatment (1–4 weeks), and after completion of treatment (weeks 5 & 6). Decreases in licking frequency and increases in inter-lick interval were observed 5- and 6-weeks post-treatment. Significant decreases in burrowing performance, swallowing frequency, and inter-swallow interval were observed starting the last week of treatment and continuing up to 2-weeks after completion. Results suggest that tongue dysfunction is one of the first treatment related feeding problems to present immediately after the completion of radiation to the submental muscles.
Collapse
Affiliation(s)
- Suzanne N. King
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Evan Greenwell
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Nada Kaissieh
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Lekha Devara
- School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Zachary Carter
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, United States of America
| | - James Fox
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, United States of America
| | - Megan Blackburn
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
22
|
Laurence-Chasen JD, Arce-McShane FI, Hatsopoulos NG, Ross CF. Loss of oral sensation impairs feeding performance and consistency of tongue-jaw coordination. J Oral Rehabil 2022; 49:806-816. [PMID: 35514258 PMCID: PMC9540871 DOI: 10.1111/joor.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Background Individuals with impaired oral sensation report difficulty chewing, but little is known about the underlying changes to tongue and jaw kinematics. Methodological challenges impede the measurement of 3D tongue movement and its relationship to the gape cycle. Objective The aim of this study was to quantify the impact of loss of oral somatosensation on feeding performance, 3D tongue kinematics and tongue‐jaw coordination. Methodology XROMM (X‐ray Reconstruction of Moving Morphology) was used to quantify 3D tongue and jaw kinematics during feeding in three rhesus macaques (Macaca mulatta) before and after an oral tactile nerve block. Feeding performance was measured using feeding sequence duration, number of manipulation cycles and swallow frequency. Coordination was measured using event‐ and correlation‐based metrics of jaw pitch, anterior tongue length, width and roll. Results In the absence of tactile sensation to the tongue and other oral structures, feeding performance decreased, and the fast open phase of the gape cycle became significantly longer, relative to the other phases (p < .05). The tongue made similar shapes in both the control and nerve block conditions, but the pattern of tongue‐jaw coordination became significantly more variable after the block (p < .05). Conclusion Disruption of oral somatosensation impacts feeding performance by introducing variability into the typically tight pattern of tongue‐jaw coordination.
Collapse
Affiliation(s)
- J D Laurence-Chasen
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | | | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Feilich KL, Laurence-Chasen JD, Orsbon C, Gidmark NJ, Ross CF. Twist and chew: three-dimensional tongue kinematics during chewing in macaque primates. Biol Lett 2021; 17:20210431. [PMID: 34905722 PMCID: PMC8670948 DOI: 10.1098/rsbl.2021.0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Three-dimensional (3D) tongue movements are central to performance of feeding functions by mammals and other tetrapods, but 3D tongue kinematics during feeding are poorly understood. Tongue kinematics were recorded during grape chewing by macaque primates using biplanar videoradiography. Complex shape changes in the tongue during chewing are dominated by a combination of flexion in the tongue's sagittal planes and roll about its long axis. As hypothesized for humans, in macaques during tongue retraction, the middle (molar region) of the tongue rolls to the chewing (working) side simultaneous with sagittal flexion, while the tongue tip flexes to the other (balancing) side. Twisting and flexion reach their maxima early in the fast close phase of chewing cycles, positioning the food bolus between the approaching teeth prior to the power stroke. Although 3D tongue kinematics undoubtedly vary with food type, the mechanical role of this movement-placing the food bolus on the post-canine teeth for breakdown-is likely to be a powerful constraint on tongue kinematics during this phase of the chewing cycle. The muscular drivers of these movements are likely to include a combination of intrinsic and extrinsic tongue muscles.
Collapse
Affiliation(s)
- Kara L. Feilich
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - J. D. Laurence-Chasen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Courtney Orsbon
- Department of Radiology, University of Vermont Medical Center, Burlington, VT, USA
| | | | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Olson RA, Montuelle SJ, Curtis H, Williams SH. Regional Tongue Deformations During Chewing and Drinking in the Pig. Integr Org Biol 2021; 3:obab012. [PMID: 34805747 PMCID: PMC8601049 DOI: 10.1093/iob/obab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As a muscular hydrostat, the tongue undergoes complex deformations during most oral
behaviors, including chewing and drinking. During thesebehaviors, deformations occur in
concert with tongue and jaw movements to position and transport the bolus. Moreover, the
various parts of the tongue may move and deform at similar timepoints relative to the gape
cycle or they may occur at different timepoints, indicating regional biomechanical and
functional variation. The goal of this study is to quantify tongue deformations during
chewing and drinking in pigs by characterizing intrinsic changes in tongue dimensions
(i.e., length and width) across multiple regions simultaneously. Tongue deformations are
generally larger during chewing cycles compared to drinking cycles. Chewing and drinking
also differ in the timing, relative to the gape cycle, of regional length and width, but
not total length, deformations. This demonstrates functional differences in the temporal
dynamics of localized shape changes, whereas the global properties of jaw–tongue
coordination are maintained. Finally, differences in the trade-off between length and
width deformations demonstrate that the properties of a muscular hydrostat are observed at
the whole tongue level, but biomechanical variation (e.g., changes in movements and
deformations) at the regional level exists. This study provides new critical insights into
the regional contributions to tongue deformations as a basis for future work on
multidimensional shape changes in soft tissues.
Collapse
Affiliation(s)
- Rachel A Olson
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Stéphane J Montuelle
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Warrensville Heights, OH 44122, USA
| | - Hannah Curtis
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Susan H Williams
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| |
Collapse
|
25
|
Li P, Ross CF, Luo ZX. Morphological disparity and evolutionary transformations in the primate hyoid apparatus. J Hum Evol 2021; 162:103094. [PMID: 34808474 DOI: 10.1016/j.jhevol.2021.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 10/19/2022]
Abstract
The hyoid apparatus plays an integral role in swallowing, respiration, and vocalization in mammals. Most placental mammals have a rod-shaped basihyal connected to the basicranium via both soft tissues and a mobile bony chain-the anterior cornu-whereas anthropoid primates have broad, shield-like or even cup-shaped basihyals suspended from the basicranium by soft tissues only. How the unique anthropoid hyoid morphology evolved is unknown, and hyoid morphology of nonanthropoid primates is poorly documented. Here we use phylogenetic comparative methods and linear morphometrics to address knowledge gaps in hyoid evolution among primates and their euarchontan outgroups. We find that dermopterans have variable reduction of cornu elements. Cynocephalus volans are sexually dimorphic in hyoid morphology. Tupaia and all lemuroids except Daubentonia have a fully ossified anterior cornu connecting a rod-shaped basihyal to the basicranium; this is the ancestral mammalian pattern that is also characteristic of the last common ancestor of Primates. Haplorhines exhibit a reduced anterior cornu, and anthropoids underwent further increase in basihyal aspect ratio values and in relative basihyal volume. Convergent with haplorhines, lorisoid strepsirrhines independently evolved a broad basihyal and reduced anterior cornua. While a reduced anterior cornu is hypothesized to facilitate vocal tract lengthening and lower formant frequencies in some mammals, our results suggest vocalization adaptations alone are unlikely to drive the iterative reduction of anterior cornua within Primates. Our new data on euarchontan hyoid evolution provide an anatomical basis for further exploring the form-function relationships of the hyoid across different behaviors, including vocalization, chewing, and swallowing.
Collapse
Affiliation(s)
- Peishu Li
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
26
|
Shiraishi Y, Yamada A, Sahara G, Yambe T, Kato K, Ohta J, Katori Y, Homma D. Design of an Artificial Tongue Driven by Shape Memory Alloy Fibers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1573-1576. [PMID: 34891585 DOI: 10.1109/embc46164.2021.9630283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dysphasia is one of the complications which may cause functional disability after the surgical treatment of oral cancer. The loss of the function derived by tongue and other oral tissues impairs the retention and delivery of liquids and food masses as well as the swallowing motion into pharynx. As accumulation of liquids or food masses in the larynx can lead to pneumonia, therefore swallowing support to improve each coordination of the tongue, the epiglottis and the esophagus in the process of swallowing is highly desirable. In this study, we designed a new artificial tongue which was capable of contracting to deliver the bolus masses in the swallowing propulsion phase in the oral cavity. We designed a two-layered artificial tongue simulating the anatomical identical muscle structures with the longitudinal muscle, and the transverse muscle-genioglossus layer. A silicone rubber material was used for the surface layer, and the covalent shape memory alloy fibers (diameter: 150µm) were implemented in the secondary structure beneath of the silicone rubber material of the artificial tongue. Its contraction was driven by with shape memory alloy fibers shortage inside of the artificial tongue unit. The actuation was accurately controlled by the originally designed electrical current input with pulse width modulation. Firstly, we examined a prototype structure of the artificial tongue as well as the changes in unit thickness as it constricted by electric power supply switching. Secondly, we performed a feasibility study of the prototype into the head-neck medical training model with larynx-tracheal structure with esophagus. The results were as follows: a) the artificial tongue model showed a large contraction with a motion to increase upward pressure, b) the tongue unit expressed the capability of reducing shallow space between dorsal tongue surface and palate in the oral cavity model. Therefore, the first artificial tongue design with active contractile motion will be useful orally installable device for improving delivery function of bolus masses through swallowing procedure in dysphasia.Clinical Relevance- The active artificial tongue system designed for the first time exhibited an effective contractile motion to support bolus food masses propulsion in swallowing process in the oral cavity in the patients with dysphasia.
Collapse
|
27
|
King SN, Hurley J, Carter Z, Bonomo N, Wang B, Dunlap N, Petruska J. Swallowing dysfunction following radiation to the rat mylohyoid muscle is associated with sensory neuron injury. J Appl Physiol (1985) 2021; 130:1274-1285. [PMID: 33600281 DOI: 10.1152/japplphysiol.00664.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Radiation-based treatments for oropharyngeal and hypopharyngeal cancers result in impairments in swallowing mobility, but the mechanisms behind the dysfunction are not clear. The purpose of this study was to determine if we could establish an animal model of radiation-induced dysphagia in which mechanisms could be examined. We hypothesized that 1) radiation focused at the depth of the mylohyoid muscle would alter normal bolus transport and bolus size and 2) radiation to the mylohyoid muscle will induce an injury/stress-like response in trigeminal sensory neurons whose input might modulate swallow. Rats were exposed to 48 or 64 Gy of radiation to the mylohyoid given 8 Gy in 6 or 8 fractions. Swallowing function was evaluated by videofluoroscopy 2 and 4 wk following treatment. Neuronal injury/stress was analyzed in trigeminal ganglion by assessing activating transcription factor (ATF)3 and GAP-43 mRNAs at 2, 4, and 8 wk post treatment. Irradiated rats exhibited decreases in bolus movement through the pharynx and alterations in bolus clearance. In addition, ATF3 and GAP-43 mRNAs were upregulated in trigeminal ganglion in irradiated rats, suggesting that radiation to mylohyoid muscle induced an injury/stress response in neurons with cell bodies that are remote from the irradiated tissue. These results suggest that radiation-induced dysphagia can be assessed in the rat and radiation induces injury/stress-like responses in sensory neurons.NEW & NOTEWORTHY Radiation-based treatments for head and neck cancer can cause significant impairments in swallowing mobility. This study provides new evidence supporting the possibility of a neural contribution to the mechanisms of swallowing dysfunction in postradiation dysphagia. Our data demonstrated that radiation to the mylohyoid muscle, which induces functional deficits in swallowing, also provokes an injury/stress-like response in the ganglion, innervating the irradiated muscle.
Collapse
Affiliation(s)
- Suzanne N King
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, Kentucky
| | - Justin Hurley
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Zachary Carter
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Nicholas Bonomo
- School of Medicine, University of Louisville, Louisville, Kentucky
| | - Brian Wang
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Neal Dunlap
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Jeffrey Petruska
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky.,Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|