1
|
Nidhi, Iqbal N, Khan NA. Polyamines Interaction with Gaseous Signaling Molecules for Resilience Against Drought and Heat Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:273. [PMID: 39861624 PMCID: PMC11768214 DOI: 10.3390/plants14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (H2S), nitric oxide (NO), methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), and ethylene (ET). The functions of PAs and GSM in stress perception, signal transduction, and stress-responsive pathways have been explored. However, there is a lack of detailed, updated information on the interaction of PAs and GSM in the adaptation of drought and heat stress. This review explores the interaction between PAs and GSM for the adaptation to drought and heat stress. It explores their synergistic effects in mitigating the negative impacts of drought and heat stress on plant growth, development, and productivity. Moreover, a comprehensive analysis of physiological, biochemical, and molecular approaches demonstrates that their interaction activates key stress-responsive pathways, enhances antioxidant systems, and modulates gene expression. These combined effects contribute to improved drought and heat tolerance in plants. The information presented in the review provides valuable insights into plant stress resilience strategies and suggests potential measures for developing climate-resilient crops to address the increasing environmental challenges.
Collapse
Affiliation(s)
- Nidhi
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
2
|
Alijani S, Raji MR, Emami Bistgani Z, Ehtesham Nia A, Farajpour M. Spermidine-induced improvements in water relations and antioxidant defense enhance drought tolerance in yarrow ( Achillea millefolium L.). Heliyon 2025; 11:e41482. [PMID: 39831168 PMCID: PMC11741945 DOI: 10.1016/j.heliyon.2024.e41482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Drought stress poses a serious threat to agricultural productivity worldwide. This study investigated the mitigative effects of exogenous spermidine on drought stressed yarrow (Achillea millefolium L.). Plants were subjected to three drought levels (25 %, 50 % and 75 % field capacity) and foliar sprayed with 0, 1.5 and 3 μM spermidine. Drought significantly reduced relative water content, photosynthetic pigments (chlorophyll, carotenoids), osmolyte (proline, soluble sugars) accumulation and antioxidant enzyme activities such as catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX), indicating oxidative damage. Spermidine treatment attenuated drought injury by improving the above parameters. Maximum responses were observed at 1.5 μM for photosynthetic pigments and osmolytes, while 3 μM performed best for secondary metabolites (phenolics, flavonoids, anthocyanins) and antioxidant enzymes. Drought also upregulated secondary metabolites like phenolics, while spermidine further augmented their levels. Moreover, spermidine maintained membrane integrity and osmotic adjustment under water deficit. Overall, spermidine enhanced yarrow's drought tolerance by modulating physiological and biochemical processes. Our findings provide insights into spermidine-induced adaptation mechanisms in plants combating water scarcity. Optimization of spermidine concentration may help develop drought-resilient crops.
Collapse
Affiliation(s)
- Sajedeh Alijani
- Department of Horticulture, College of Agriculture, Lorestan University, Khoram Abad, 44316-68151, Iran
| | - Mohammad-Reza Raji
- Department of Horticulture, College of Agriculture, Lorestan University, Khoram Abad, 44316-68151, Iran
| | - Zohreh Emami Bistgani
- Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Isfahan, 81748-35117, Iran
| | - Abdollah Ehtesham Nia
- Department of Horticulture, College of Agriculture, Lorestan University, Khoram Abad, 44316-68151, Iran
| | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
| |
Collapse
|
3
|
Zhou R, Hu Q, Meng X, Zhang Y, Shuai X, Gu Y, Li Y, Chen M, Wang B, Cao Y. Effects of high temperature on grain quality and enzyme activity in heat-sensitive versus heat-tolerant rice cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9729-9741. [PMID: 39136353 DOI: 10.1002/jsfa.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 07/22/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND High-temperature (HT) stress significantly affects the quality of rice (Oryza sativa L.), although the underlying the mechanism remains unknown. Therefore, in the present study, we assessed protein components, amino acids, mineral element levels, starch biosynthesis enzyme activity and gene expression of two heat-sensitive and two heat-tolerant genotypes under HT treatment during early (from 1 to 10 days, T1) and mid-filling (from 11 to 20 days, T2) after anthesis. RESULTS Except for one cultivar, most rice varieties exhibited increased levels of amylose, chalky degree and protein content, along with elevated cracked grains and pasting temperatures and, consequently, suppressed amino acid levels under HT stress. HT treatment also increased protein components, macro- (Mg, K, P and S) and microelements (Cu, Zn, and Mo) in the rice flour. Both HT treatments reduced the activity of ADP-glucose pyrophosphate, ground-bound starch synthase, as well as the relative ratio of amylose to total starch, at the same time increasing starch branch enzyme activity. The expression levels of OsAGPL2, OsSSS1 and OsSBE1 in all varieties exhibited the same trends as enzyme activity under HT treatment. CONCLUSION High temperatures negatively affected rice quality during grain filling, which is related to heat tolerance and grain shape. Altered enzymatic activity is crucial to compensate for the lowered enzyme quality under heat stress. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rong Zhou
- School of Life Sciences, Nantong University, Nantong, China
| | - Qijuan Hu
- School of Life Sciences, Nantong University, Nantong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiangfeng Meng
- School of Life Sciences, Nantong University, Nantong, China
| | - Yue Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xingyang Shuai
- School of Life Sciences, Nantong University, Nantong, China
| | - Yangfan Gu
- School of Life Sciences, Nantong University, Nantong, China
| | - Yueyu Li
- School of Life Sciences, Nantong University, Nantong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
4
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
5
|
Pandey S, Divakar S, Singh A. Genome editing prospects for heat stress tolerance in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108989. [PMID: 39094478 DOI: 10.1016/j.plaphy.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - S Divakar
- Department of Agricultural Biotechnology Biotechnology and Molecular Biotechnology, CBSH, RPCAU, Pusa, Samastipur, Bihar, 8481253, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Bihar, 848125, India.
| |
Collapse
|
6
|
Alijani S, Raji MR, Bistgani ZE, Ehtesham Nia A, Farajpour M. Mitigation of salinity stress in yarrow (Achillea millefolium L.) plants through spermidine application. PLoS One 2024; 19:e0304831. [PMID: 38923971 PMCID: PMC11206933 DOI: 10.1371/journal.pone.0304831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the mitigating effects of spermidine on salinity-stressed yarrow plants (Achillea millefolium L.), an economically important medicinal crop. Plants were treated with four salinity levels (0, 30, 60, 90 mM NaCl) and three spermidine concentrations (0, 1.5, 3 μM). Salinity induced electrolyte leakage in a dose-dependent manner, increasing from 22% at 30 mM to 56% at 90 mM NaCl without spermidine. However, 1.5 μM spermidine significantly reduced leakage across salinities by 1.35-11.2% relative to untreated stressed plants. Photosynthetic pigments (chlorophyll a, b, carotenoids) also exhibited salinity- and spermidine-modulated responses. While salinity decreased chlorophyll a, both spermidine concentrations increased chlorophyll b and carotenoids under most saline conditions. Salinity and spermidine synergistically elevated osmoprotectants proline and total carbohydrates, with 3 μM spermidine augmenting proline and carbohydrates up to 14.4% and 13.1% at 90 mM NaCl, respectively. Antioxidant enzymes CAT, POD and APX displayed complex regulation influenced by treatment factors. Moreover, salinity stress and spermidine also influenced the expression of linalool and pinene synthetase genes, with the highest expression levels observed under 90 mM salt stress and the application of 3 μM spermidine. The findings provide valuable insights into the responses of yarrow plants to salinity stress and highlight the potential of spermidine in mitigating the adverse effects of salinity stress.
Collapse
Affiliation(s)
- Sajedeh Alijani
- Department of Horticulture, College of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohammad-Reza Raji
- Department of Horticulture, College of Agriculture, Lorestan University, Khorramabad, Iran
| | - Zohreh Emami Bistgani
- Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Isfahan, Iran
| | - Abdollah Ehtesham Nia
- Department of Horticulture, College of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
| |
Collapse
|
7
|
Kan Y, Mu XR, Gao J, Lin HX, Lin Y. The molecular basis of heat stress responses in plants. MOLECULAR PLANT 2023; 16:1612-1634. [PMID: 37740489 DOI: 10.1016/j.molp.2023.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
Collapse
Affiliation(s)
- Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Li JY, Yang C, Xu J, Lu HP, Liu JX. The hot science in rice research: How rice plants cope with heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:1087-1103. [PMID: 36478590 DOI: 10.1111/pce.14509] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Basit F, Ulhassan Z, Mou Q, Nazir MM, Hu J, Hu W, Song W, Sheteiwy MS, Zhou W, Bhat JA, Jeddi K, Hessini K, Guan Y. Seed priming with nitric oxide and/or spermine mitigate the chromium toxicity in rice ( Oryza sativa) seedlings by improving the carbon-assimilation and minimising the oxidative damages. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:121-135. [PMID: 35057906 DOI: 10.1071/fp21268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 05/13/2023]
Abstract
Chromium (Cr) is a serious environmental contaminant that drastically limited the crop yields. Nitric oxide (NO) and spermine (Spm) portrayal significance in improving the plant tolerance against abiotic stresses. Therefore, we investigate the protective efficacy of seed priming with NO (100μM) and/or Spm (0.01mM) in minimising the Cr-induced toxic effects in rice (Oryza sativa L.) plants. Our outcomes revealed that Cr alone treatments (100μM) notably reduced the seed germination rate, plant growth, photosynthetic apparatus, nutrients uptake and antioxidant defence system, but extra generation of reactive oxygen species (ROS). Interestingly, the combine applications of NO and Spm significantly reversed the Cr-induced toxic effects by reducing the Cr-accumulation, maintaining the nutrient balance, improving the germination indices, levels of photosynthetic pigments (chl a by 24.6%, chl b by 36.3%, chl (a+b ) by 57.2% and carotenoids by 79.4%), PSII, photosynthesis gas exchange parameters and total soluble sugar (74.9%) by improving antioxidative enzyme activities. As a result, NO+Spm lowered the accumulation of oxidative markers (H2 O2 by 93.9/70.4%, O2 ˙- by 86.3/69.9% and MDA by 97.2/73.7% in leaves/roots), electrolyte leakage (71.4% in leaves) and improved the plant growth traits. Based on these findings, it can be concluded that NO triggers Spm to minimise the Cr-accumulation and its adverse effects on rice plants. Additionally, combined treatments (NO+Spm) were more effective in minimising the Cr-induced toxic effects in comparison to NO and Spm alone treatments. Thus, co-exposure of NO and Spm may be utilised to boost rice tolerance under Cr stress conditions.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qingshan Mou
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Mudassar Nazir
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wenjian Song
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed Salah Sheteiwy
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; and State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaouthar Jeddi
- Laboratory of Plant Biodiversity and Dynamic of Ecosystems in Arid Area, Faculty of Sciences of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Xing B, Wan S, Su L, Riaz MW, Li L, Ju Y, Zhang W, Zheng Y, Shao Q. Two polyamines -responsive WRKY transcription factors from Anoectochilus roxburghii play opposite functions on flower development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111566. [PMID: 36513314 DOI: 10.1016/j.plantsci.2022.111566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Anoectochilus roxburghii is a rare and precious plant with medicinal and healthcare functions. Embryo abortion caused the lack of resources. Polyamine promoted its flowering and stress resistance in our previous study. But the mechanism remains unclear. The WRKY transcription factor family has been linked to a variety of biological processes in plants. In this study, two WRKY TFs (ArWRKY5 and ArWRKY20) of A. roxburghii, which showed significant response to Spd treatment, were identified and functionally analyzed. Tissue specific expression analyzation showed both of them mostly present in the flower. And ArWRKY5 expressed highest in the flower bud stage (-1 Flowering), while ArWRKY20 showed the highest expression in earlier flower bud stage (-2 Flowering) and the expression gradually decreased with flowering. The transcriptional activation activity assay and subcellular localization revealed that ArWRKY5 and ArWRKY20 were located in the nucleus and ArWRKY20 showed transcriptional activity. The heterologous expression of ArWRKY5 in Arabidopsis thaliana showed earlier flowering, while overexpression of ArWRKY20 delayed flowering. But the OE-ArWRKY20 lines had a robust body shape and a very significant increase in the number of rosette leaves. Furthermore, stamens and seed development were positively regulated by these two ArWRKYs. These results indicated that ArWRKY5 and ArWRKY20 not only play opposite roles in the floral development, but also regulate the plant growth and seed development in A. thaliana. But their specific biological functions and mechanism in A. roxburghii need to be investigated further.
Collapse
Affiliation(s)
- Bingcong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Siqi Wan
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Liyang Su
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Muhammad Waheed Riaz
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Lihong Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yulin Ju
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wangshu Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ying Zheng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
11
|
Li Z, Cheng B, Wu X, Zhang Y, Feng G, Peng Y. Spermine-mediated metabolic homeostasis improves growth and stress tolerance in creeping bentgrass ( Agrostis stolonifera) under water or high-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:944358. [PMID: 36035666 PMCID: PMC9404338 DOI: 10.3389/fpls.2022.944358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Plants have developed diverse defense strategies to reduce the detrimental effects of a wide range of environmental stresses. The objectives of this study were to explore the function of spermine (Spm) on mediating growth and physiological changes in water homeostasis, photosynthetic performance, and oxidative damage and to further examine the regulatory mechanism of Spm on global metabolites reprogramming and associated metabolic pathways in horticultural creeping bentgrass (Agrostis stolonifera) under water and heat stresses. The 21-days-old plants were pretreated with or without 100 μM Spm for 3 days and then subjected to water stress (17% polyethylene glycol 6000), high-temperature stress (40/35°C, day/night), or normal condition (control without water stress and heat stress) for 18 days. Results demonstrated that exogenous application of Spm could significantly increase endogenous polyamine (PAs), putrescine (Put), spermidine (Spd), and Spm contents, followed by effective alleviation of growth retardant, water imbalance, photoinhibition, and oxidative damage induced by water and heat stress. Metabolites' profiling showed that a total of 61 metabolites were differentially or commonly regulated by Spm in leaves. Spm upregulated the accumulation of mannose, maltose, galactose, and urea in relation to enhanced osmotic adjustment (OA), antioxidant capacity, and nitrogen metabolism for growth maintenance under water and heat stress. Under water stress, Spm mainly induced the accumulation of sugars (glucose-1-phosphate, sucrose-6-phosphate, fructose, kestose, maltotriose, and xylose), amino acids (glutamic acid, methionine, serine, and threonine), and organic acids (pyruvic acid, aconitic acid, and ketoglutaric acid) involved in the respiratory pathway and myo-inositol associated with energy production, the ROS-scavenging system, and signal transduction. In response to heat stress, the accumulation of alanine, glycine, gallic acid, malic acid, or nicotinic acid was specifically enhanced by Spm contributing to improvements in antioxidant potency and metabolic homeostasis. This study provides novel evidence of Spm-induced,tolerance to water and heat stresses associated with global metabolites reprogramming in favor of growth maintenance and physiological responses in horticultural plants.
Collapse
|
12
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
13
|
Kolupaev YE, Kokorev AI, Dmitriev AP. Polyamines: Involvement in Cellular Signaling and Plant Adaptation to the Effect of Abiotic Stressors. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Xie DL, Zheng XL, Zhou CY, Kanwar MK, Zhou J. Functions of Redox Signaling in Pollen Development and Stress Response. Antioxidants (Basel) 2022; 11:antiox11020287. [PMID: 35204170 PMCID: PMC8868224 DOI: 10.3390/antiox11020287] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular redox homeostasis is crucial for normal plant growth and development. Each developmental stage of plants has a specific redox mode and is maintained by various environmental cues, oxidants, and antioxidants. Reactive oxygen species (ROS) and reactive nitrogen species are the chief oxidants in plant cells and participate in cell signal transduction and redox balance. The production and removal of oxidants are in a dynamic balance, which is necessary for plant growth. Especially during reproductive development, pollen development depends on ROS-mediated tapetal programmed cell death to provide nutrients and other essential substances. The deviation of the redox state in any period will lead to microspore abortion and pollen sterility. Meanwhile, pollens are highly sensitive to environmental stress, in particular to cell oxidative burst due to its peculiar structure and function. In this regard, plants have evolved a series of complex mechanisms to deal with redox imbalance and oxidative stress damage. This review summarizes the functions of the main redox components in different stages of pollen development, and highlights various redox protection mechanisms of pollen in response to environmental stimuli. In continuation, we also discuss the potential applications of plant growth regulators and antioxidants for improving pollen vigor and fertility in sustaining better agriculture practices.
Collapse
Affiliation(s)
- Dong-Ling Xie
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Xue-Lian Zheng
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Can-Yu Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| |
Collapse
|
15
|
Chen M, Fu Y, Mou Q, An J, Zhu X, Ahmed T, Zhang S, Basit F, Hu J, Guan Y. Spermidine Induces Expression of Stress Associated Proteins (SAPs) Genes and Protects Rice Seed from Heat Stress-Induced Damage during Grain-Filling. Antioxidants (Basel) 2021; 10:antiox10101544. [PMID: 34679679 PMCID: PMC8533277 DOI: 10.3390/antiox10101544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023] Open
Abstract
Heat stress during seed maturation significantly reduced seed size and quality. Polyamines, especially spermidine (Spd), were reported to be closely related to seed development and plant heat tolerance. Stress-associated proteins (SAPs) also played a critical role in plant heat resistance, but the relationship between Spd and SAPs in improving rice tolerance to heat stress during grain filling has not been reported. Our results showed that the external spraying Spd (1.5 mM) significantly increased seed germination rate, germination index, vigor index and 1000-grain weight, significantly increased endogenous Spd, spermine (Spm) content and peroxidase activity; significantly reduced MDA content; and greatly alleviated the impact of heat stress on rice seed quality during grain filling stage as compared with high temperature control. OsSAP5 was the most upregulated expression induced by Spd, and may be mainly involved in the Spd-mediated enhancement of high-temperature resistance during rice seed development. Overexpression of OsSAP5 in Arabidopsis enhanced 1000-grain weight and seed heat resistance. Exogenous Spd alleviated the survival rate and seedling length, reduced MDA content, and upregulated the expression levels of SPDS and SPMS in Atsap4 mutant under high temperature during seed germination. In all, exogenous Spd alleviated the heat damage on seed quality during the grain filling stage and seed germination stage by improving endogenous Spd and Spm. OsSAP5, a key gene induced by Spd, might be involved in the rice heat resistance and seed quality in coordination with Spd and Spm.
Collapse
Affiliation(s)
- Min Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Yuying Fu
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230041, China;
| | - Qingshan Mou
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Jianyu An
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China;
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Sheng Zhang
- Taizhou Agricultural Technology Extension Center, Taizhou 318000, China;
| | - Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
- Hainan Research Institute, Zhejiang University, Sanya 572025, China;
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
- Correspondence:
| |
Collapse
|
16
|
Chen J, Miao W, Fei K, Shen H, Zhou Y, Shen Y, Li C, He J, Zhu K, Wang Z, Yang J. Jasmonates Alleviate the Harm of High-Temperature Stress During Anthesis to Stigma Vitality of Photothermosensitive Genetic Male Sterile Rice Lines. FRONTIERS IN PLANT SCIENCE 2021; 12:634959. [PMID: 33854518 PMCID: PMC8039518 DOI: 10.3389/fpls.2021.634959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 05/19/2023]
Abstract
Using photothermosensitive genic male sterile (PTSGMS) rice (Oryza sativa L.) lines to produce hybrids can obtain great heterosis. However, PTSGMS rice lines exhibit low stigma vitality when high-temperature (HT) stress happens during anthesis. Jasmonates (JAs) are novel phytohormones and play vital roles in mediating biotic and abiotic stresses. Little is known, however, if and how JAs could alleviate the harm of HT stress during anthesis to the stigma vitality of PTSGMS lines. This study investigated the question. Two PTSGMS lines and one restorer line of rice were pot-grown and subjected to normal temperature and HT stress during anthesis. The stigma exertion rate, sigma fresh weight, stigma area, contents of JAs, hydrogen peroxide (H2O2), and ascorbic acid (AsA), activity of catalase in stigmas, and the number of pollens germinated on the stigma of PTSGMS lines were determined. The results showed that a rice line with higher JAs content in the stigma under HT stress showed lower H2O2 content, higher AsA content and catalase activity in stigmas, larger stigma area, heavier stigma fresh weight, more pollens germinated on the stigma, and higher fertilization and seed-setting and rates. Applying methyl JAs during anthesis to rice panicles decreased the accumulation of reactive oxygen species and enhanced stigma vitality, thereby increasing fertilization and seed-setting rates of the hybrids of PTSGMS rice lines under HT stress. The results demonstrate that JAs attenuate the injury of HT stress to the stigma vitality of PTSGMS rice lines through enhancing antioxidant ability.
Collapse
|