1
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
2
|
Zhang C, Ran F, Du L, Wang X, Liu L, Liu J, Chen Q, Cao Y, Bi L, Hang H. The Humanization and Maturation of an Anti-PrPc Antibody. Bioengineering (Basel) 2024; 11:242. [PMID: 38534516 DOI: 10.3390/bioengineering11030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
The cellular prion protein (PrPc) is a cell surface glycoprotein that is highly expressed in a variety of cancer tissues in addition to the nervous system, and its elevated expression is correlated to poor prognosis in many cancer patients. Our team previously found that patients with colorectal cancer (CRC) with high-level PrPc expression had significantly poorer survival than those with no or low-level PrPc expression. Mouse antibodies for PrPc inhibited tumor initiation and liver metastasis of PrPc-positive human CRC cells in mouse model experiments. PrPc is a candidate target for CRC therapy. In this study, we newly cloned a mouse anti-PrPc antibody (Clone 6) and humanized it, then affinity-matured this antibody using a CHO cell display with a peptide antigen and full-length PrPc, respectively. We obtained two humanized antibody clones with affinities toward a full-length PrPc of about 10- and 100-fold of that of the original antibody. The two humanized antibodies bound to the PrPc displayed significantly better on the cell surface than Clone 6. Used for Western blotting and immunohistochemistry, the humanized antibody with the highest affinity is superior to the two most frequently used commercial antibodies (8H4 and 3F4). The two new antibodies have the potential to be developed as useful reagents for PrPc detection and even therapeutic antibodies targeting PrPc-positive cancers.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanlei Ran
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaohui Wang
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jinming Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiying Hang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Liang M, Ran F, Li L, Hang H, An L. In vitro evolution of diagnostic antibodies targeting native antigens in plasma by sandwich flow cytometry. Biotechnol J 2024; 19:e2300492. [PMID: 38403438 DOI: 10.1002/biot.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Monoclonal antibodies (mAbs) that recognize and bind to specific antigens (Ags) have a wide range of applications in research, therapy, and diagnostics. However, many of these antibodies cannot bind well to the native Ags. In this study, based on the Chinese hamster ovary (CHO) cell display platform developed previously in our lab, we reported a novel artificial evolution procedure to improve the affinity of mAb against the native Ag directly using the plasma samples without purification of the native Ag. In this procedure, a pair of antibodies able to bind the Ag in sandwich manner are first confirmed (Ab1/Ab2) and the antibody (Ab) to be affinity-improved (Ab1) is displayed on CHO cells for Ab mutation. Then the cells were detected and sorted with flow cytometry in the form of Ab1-Ag-fluorescence labeled Ab2, which we named sandwich flow cytometry. Here, we used soluble isoform of suppression of tumorigenicity 2 (sST2) protein as model Ag, carried out "sandwich" maturation directly using the plasma samples containing the native sST2 protein and optimized a pair of antibodies with significantly improved sensitivity in the detection of the native sST2 in plasma. This method could be very useful in optimization of the diagnostic Ab pairs working in a "sandwich" manner if more antibodies were also successfully affinity-matured with this method.
Collapse
Affiliation(s)
- Mingxia Liang
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, Beijing, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Fanlei Ran
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, Beijing, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Li Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiying Hang
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, Beijing, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Lili An
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, Beijing, China
| |
Collapse
|
4
|
Chang J, Rader C, Peng H. A mammalian cell display platform based on scFab transposition. Antib Ther 2023; 6:157-169. [PMID: 37492588 PMCID: PMC10365156 DOI: 10.1093/abt/tbad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/27/2023] Open
Abstract
In vitro display technologies have been successfully utilized for the discovery and evolution of monoclonal antibodies (mAbs) for diagnostic and therapeutic applications, with phage display and yeast display being the most commonly used platforms due to their simplicity and high efficiency. As their prokaryotic or lower eukaryotic host organisms typically have no or different post-translational modifications, several mammalian cell-based display and screening technologies for isolation and optimization of mAbs have emerged and are being developed. We report here a novel and useful mammalian cell display platform based on the PiggyBac transposon system to display mAbs in a single-chain Fab (scFab) format on the surface of HEK293F cells. Immune rabbit antibody libraries encompassing ~7 × 107 independent clones were generated in an all-in-one transposon vector, stably delivered into HEK293F cells and displayed as an scFab with rabbit variable and human constant domains. After one round of magnetic activated cell sorting and two rounds of fluorescence activated cell sorting, mAbs with high affinity in the subnanomolar range and cross-reactivity to the corresponding human and mouse antigens were identified, demonstrating the power of this platform for antibody discovery. We developed a highly efficient mammalian cell display platform based on the PiggyBac transposon system for antibody discovery, which could be further utilized for humanization as well as affinity and specificity maturation.
Collapse
Affiliation(s)
- Jing Chang
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
5
|
Qu B, Zhao Y, An L, Hang H. The application of adenine deaminase in antibody affinity maturation. Appl Microbiol Biotechnol 2023; 107:2661-2670. [PMID: 36929186 DOI: 10.1007/s00253-022-12324-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 03/18/2023]
Abstract
Previously, we established a platform for antibody/protein affinity maturation based on CHO cell display. The gene of interest was mutated by activation-induced cytidine deaminase (AID), and then, a mutation library mainly containing G/C to A/T conversion was obtained by simply proliferating cells. However, the AID-induced G/C to A/T conversion limits the diversity space of the mutation library. In contrast to AID, adenine deaminase (ADA) can convert A/T to G/C. In this study, we demonstrated that ADA could efficiently induce random A/T to G/C mutations on the target gene in the CHO cell display and could be applied in affinity maturation. Our data also showed that more mutant types were obtained through the combined use of AID and ADA, thus offering an opportunity to acquire new mutants offering higher affinities than those obtained by only using AID. Examples presented in this study showed that ADA contributed to the improvement of antibody affinity either with or without AID in CHO display. KEY POINTS: • ADA is able to induce random mutations on antibody gene in mammalian cells. • ADA induces mutations on A/T bases to compensate AID which can induce mutation on G/C. • Combination of AID and ADA can increase mutation types and maturation efficiencies.
Collapse
Affiliation(s)
- Baole Qu
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Gaa R, Mayer HM, Noack D, Kumari K, Guenther R, Tsai SP, Ji Q, Doerner A. Mammalian display to secretion switchable libraries for antibody preselection and high throughput functional screening. MAbs 2023; 15:2251190. [PMID: 37646089 PMCID: PMC10469430 DOI: 10.1080/19420862.2023.2251190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
Recently, there has been a co-evolution of mammalian libraries and diverse microfluidic approaches for therapeutic antibody hit discovery. Mammalian libraries enable the preservation of full immune repertoires, produce hit candidates in final format and facilitate broad combinatorial bispecific antibody screening, while several available microfluidic methodologies offer opportunities for rapid high-content screens. Here, we report proof-of-concept studies exploring the potential of combining microfluidic technologies with mammalian libraries for antibody discovery. First, antibody secretion, target co-expression and integration of appropriate reporter cell lines enabled the selection of in-trans acting agonistic bispecific antibodies. Second, a functional screen for internalization was established and comparison of autocrine versus co-encapsulation setups highlighted the advantages of an autocrine one cell approach. Third, synchronization of antibody-secreting cells prior to microfluidic screens reduced assay variability. Furthermore, a display to secretion switchable system was developed and applied for pre-enrichment of antibody clones with high manufacturability in conjunction with subsequent screening for functional properties. These case studies demonstrate the system's feasibility and may serve as basis for further development of integrated workflows combining manufacturability sorting and functional screens for the identification of optimal therapeutic antibody candidates.
Collapse
Affiliation(s)
- Ramona Gaa
- NBE Technologies, Merck KGaA, Darmstadt, Germany
| | | | | | - Kavita Kumari
- Discovery Biology, Syngene International, Bangalore, India
| | | | | | - Qingyong Ji
- NBE Technologies, EMD Serono, Billerica, MA, USA
| | | |
Collapse
|
7
|
Correlation between the binding affinity and the conformational entropy of nanobody SARS-CoV-2 spike protein complexes. Proc Natl Acad Sci U S A 2022; 119:e2205412119. [PMID: 35858383 PMCID: PMC9351521 DOI: 10.1073/pnas.2205412119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the structural principles that determine the binding affinity of nanobodies to the spike protein of severe acute respiratory syndrome coronavirus 2 has been difficult. We analyzed electron microscopy maps of nanobody-spike complexes and quantified the conformational entropy of binding. This informed the design of an engineered nanobody with improved binding to the spike protein. This result offers a guiding principle for the rational maturation of nanobodies directed against the spike. High-binding potency nanobodies have been shown to be effective in animal models; thus, this technology could have application in future pandemics. Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure–activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein–nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.
Collapse
|
8
|
Luo R, Qu B, An L, Zhao Y, Cao Y, Ren P, Hang H. Simultaneous Maturation of Single Chain Antibody Stability and Affinity by CHO Cell Display. Bioengineering (Basel) 2022; 9:bioengineering9080360. [PMID: 36004885 PMCID: PMC9404881 DOI: 10.3390/bioengineering9080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Antibody stability and affinity are two important features of its applications in therapy and diagnosis. Antibody display technologies such as yeast and bacterial displays have been successfully used for improving both affinity and stability. Although mammalian cell display has also been utilized for maturing antibody affinity, it has not been applied for improving antibody stability. Previously, we developed a Chinese hamster ovary (CHO) cell display platform in which activation-induced cytidine deaminase (AID) was used to induce antibody mutation, and antibody affinity was successfully matured using the platform. In the current study, we developed thermo-resistant (TR) CHO cells for the purpose of maturing both antibody stability and affinity. We cultured TR CHO cells displaying an antibody mutant library and labeled them at temperatures above 41 °C, enriching cells that displayed antibody mutants with both the highest affinities and the highest display levels. To evaluate our system, we chose three antibodies to improve their affinities and stabilities. We succeeded in simultaneously improving both affinities and stabilities of all three antibodies. Of note, we obtained an anti-TNFα antibody mutant with a Tm (dissolution temperature) value 12 °C higher and affinity 160-fold greater than the parent antibody after two rounds of cell proliferation and flow cytometric sorting. By using CHO cells with its advantages in protein folding, post-translational modifications, and code usage, this procedure is likely to be widely used in maturing antibodies and other proteins in the future.
Collapse
Affiliation(s)
- Ruiqi Luo
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Baole Qu
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| |
Collapse
|
9
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|