1
|
Dowden RA, Kerkhof LJ, Wisniewski PJ, Häggblom MM, Campbell SC. Temporal changes in the mouse gut bacteriota influenced by host sex, diet, and exercise. J Appl Physiol (1985) 2024; 137:1374-1388. [PMID: 39298618 DOI: 10.1152/japplphysiol.00487.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota plays an important role in host physiology. However, the effects of host sex, lifestyle, and temporal influences on the bacterial community within the gut remain ill-defined. To address this gap, we evaluated 56 male and female mice over a 10-wk study to assess the effects of sex, diet, and exercise on gut community dynamics. Mice were randomly assigned to high-fat or control diet feeding and had free access to running wheels or remained sedentary throughout the study period. The fecal bacterial community was characterized by rRNA operon profiling via nanopore sequencing. Differential abundance testing indicated that ∼200 bacterial taxa were significantly influenced by sex, diet, or exercise (4.2% of total community), which also changed over time (82 taxa, 1.7% of total community). Phylogenetic analysis of taxa closely related to Dysosmobacter welbionis, and several members of the family Muribaculaceae were examined more closely and demonstrated distinct species/strain level subclustering by host sex, diet, and exercise. Collectively, these data suggest that sex and lifestyle can alter the gut bacteriota at the species/strain level that may play a role in host health. These results also highlight the need for improved characterization methods to survey microbial communities at finer taxonomic resolution.NEW & NOTEWORTHY This study demonstrates that host sex, diet, and exercise can each modulate gut bacterial community structure, which may have consequences to host physiology. Our analysis shows selection of novel strains and genera for some members of the Oscillospiraceae and Muribaculaceae by host sex, diet, and activity status. Overall, these findings provide a framework for detecting the next generation of beneficial bacteria targeting obesity and associated metabolic diseases in a sex-specific manner.
Collapse
Affiliation(s)
- Robert A Dowden
- Department of Kinesiology and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
- 10x Genomics, Pleasanton, California, United States
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| | | | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| | - Sara C Campbell
- Department of Kinesiology and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| |
Collapse
|
2
|
Huang B, Zhao L, Campbell SC. Bidirectional Link Between Exercise and the Gut Microbiota. Exerc Sport Sci Rev 2024; 52:132-144. [PMID: 39190614 DOI: 10.1249/jes.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exercise is well known to exert beneficial changes to the gut microbiota. An emerging area is how the gut microbiota may regulate exercise tolerance. This review will summarize the current evidence on how exercise influences gut microbial communities, with emphasis on how disruptions or depletion of an intact gut microbiota impacts exercise tolerance as well as future directions.
Collapse
Affiliation(s)
- Belle Huang
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | | | | |
Collapse
|
3
|
Walsh CJ, Srinivas M, Stinear TP, van Sinderen D, Cotter PD, Kenny JG. GROND: a quality-checked and publicly available database of full-length 16S-ITS-23S rRNA operon sequences. Microb Genom 2024; 10:001255. [PMID: 38847800 PMCID: PMC11261877 DOI: 10.1099/mgen.0.001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/07/2024] [Indexed: 07/24/2024] Open
Abstract
Sequence comparison of 16S rRNA PCR amplicons is an established approach to taxonomically identify bacterial isolates and profile complex microbial communities. One potential application of recent advances in long-read sequencing technologies is to sequence entire rRNA operons and capture significantly more phylogenetic information compared to sequencing of the 16S rRNA (or regions thereof) alone, with the potential to increase the proportion of amplicons that can be reliably classified to lower taxonomic ranks. Here we describe GROND (Genome-derived Ribosomal Operon Database), a publicly available database of quality-checked 16S-ITS-23S rRNA operons, accompanied by multiple taxonomic classifications. GROND will aid researchers in analysis of their data and act as a standardised database to allow comparison of results between studies.
Collapse
Affiliation(s)
- Calum J. Walsh
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, 792 Elizabeth Street, Melbourne VIC 3000, Australia
| | - Meghana Srinivas
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Timothy P. Stinear
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, 792 Elizabeth Street, Melbourne VIC 3000, Australia
| | - Douwe van Sinderen
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc Moorepark, Cork, Ireland
| | - John G. Kenny
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc Moorepark, Cork, Ireland
| |
Collapse
|
4
|
Xiao J, Chen C, Fu Z, Wang S, Luo F. Assessment of the Safety and Probiotic Properties of Enterococcus faecium B13 Isolated from Fermented Chili. Microorganisms 2024; 12:994. [PMID: 38792822 PMCID: PMC11123876 DOI: 10.3390/microorganisms12050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Enterococcus faecium B13, selected from fermentation chili, has been proven to promote animal growth by previous studies, but it belongs to opportunistic pathogens, so a comprehensive evaluation of its probiotic properties and safety is necessary. In this study, the probiotic properties and safety of B13 were evaluated at the genetic and phenotype levels in vitro and then confirmed in vivo. The genome of B13 contains one chromosome and two plasmids. The average nucleotide identity indicated that B13 was most closely related to the fermentation-plant-derived strain. The strain does not carry the major virulence genes of the clinical E. faecium strains but contains aac(6')-Ii, ant (6)-Ia, msrC genes. The strain had a higher tolerance to acid at pH 3.0, 4.0, and 0.3% bile salt and a 32.83% free radical DPPH clearance rate. It can adhere to Caco-2 cells and reduce the adhesion of E. coli to Caco-2 cells. The safety assessment revealed that the strain showed no hemolysis and did not exhibit gelatinase, ornithine decarboxylase, lysine decarboxylase, or tryptophanase activity. It was sensitive to twelve antibiotics but was resistant to erythromycin, rifampicin, tetracycline, doxycycline, and minocycline. Experiments in vivo have shown that B13 can be located in the ileum and colon and has no adverse effects on experiment animals. After 28 days of feeding, B13 did not remarkable change the α-diversity of the gut flora or increase the virulence genes. Our study demonstrated that E. faecium B13 may be used as a probiotic candidate.
Collapse
Affiliation(s)
- Jingmin Xiao
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Cai Chen
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Zhuxian Fu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Shumin Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| | - Fan Luo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
5
|
Huang R, Duan J, Huang W, Cheng Y, Zhu B, Li F. Inhibition of CYP1A1 Alleviates Colchicine-Induced Hepatotoxicity. Toxins (Basel) 2024; 16:35. [PMID: 38251251 PMCID: PMC10818746 DOI: 10.3390/toxins16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Colchicine, a natural compound extracted from Colchicum autumnale, is a phytotoxin, but interestingly, it also has multiple pharmacological activities. Clinically, colchicine is widely used for the treatment of gouty arthritis, familial Mediterranean fever, cardiovascular dysfunction and new coronary pneumonia. However, overdose intake of colchicine could cause lethal liver damage, which is a limitation of its application. Therefore, exploring the potential mechanism of colchicine-induced hepatotoxicity is meaningful. Interestingly, it was found that CYP1A1 played an important role in the hepatotoxicity of colchicine, while it might also participate in its metabolism. Inhibition of CYP1A1 could alleviate oxidative stress and pyroptosis in the liver upon colchicine treatment. By regulating CYP1A1 through the CASPASE-1-GSDMD pathway, colchicine-induced liver injury was effectively relieved in a mouse model. In summary, we concluded that CYP1A1 may be a potential target, and the inhibition of CYP1A1 alleviates colchicine-induced liver injury through pyroptosis regulated by the CASPASE-1-GSDMD pathway.
Collapse
Affiliation(s)
- Ruoyue Huang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyi Duan
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Cheng
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Silvestri A, Gil-Gomez A, Vitale M, Braga D, Demitri C, Brescia P, Madaghiele M, Spadoni I, Jones B, Fornasa G, Mouries J, Carloni S, Lizier M, Romero-Gomez M, Penna G, Sannino A, Rescigno M. Biomimetic superabsorbent hydrogel acts as a gut protective dynamic exoskeleton improving metabolic parameters and expanding A. muciniphila. Cell Rep Med 2023; 4:101235. [PMID: 37852177 PMCID: PMC10591066 DOI: 10.1016/j.xcrm.2023.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
The rising prevalence of obesity and metabolic disorders worldwide highlights the urgent need to find new long-term and clinically meaningful weight-loss therapies. Here, we evaluate the therapeutic potential and the mechanism of action of a biomimetic cellulose-based oral superabsorbent hydrogel (OSH). Treatment with OSH exerts effects on intestinal tissue and gut microbiota composition, functioning like a protective dynamic exoskeleton. It protects from gut barrier permeability disruption and induces rapid and consistent changes in the gut microbiota composition, specifically fostering Akkermansia muciniphila expansion. The mechanobiological, physical, and chemical structures of the gel are required for A. muciniphila growth. OSH treatment induces weight loss and reduces fat accumulation, in both preventative and therapeutic settings. OSH usage also prevents liver steatosis, immune infiltration, and fibrosis, limiting the progression of non-alcoholic fatty liver disease. Our work shows the potential of using OSH as a non-systemic mechanobiological approach to treat metabolic syndrome and its comorbidities.
Collapse
Affiliation(s)
| | - Antonio Gil-Gomez
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Milena Vitale
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, 73021 Calimera, Lecce, Italy
| | - Paola Brescia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, 73021 Calimera, Lecce, Italy
| | - Ilaria Spadoni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | | | - Giulia Fornasa
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Juliette Mouries
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Sara Carloni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Manuel Romero-Gomez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, Boston, MA 02116, USA
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
7
|
Quilumbaquin W, Carrera-Gonzalez A, Van der heyden C, Ortega-Andrade HM. Environmental DNA and visual encounter surveys for amphibian biomonitoring in aquatic environments of the Ecuadorian Amazon. PeerJ 2023; 11:e15455. [PMID: 37456876 PMCID: PMC10348306 DOI: 10.7717/peerj.15455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
Background The development of anthropogenic activities has generated a decline in aquatic fauna populations, and amphibians have been the most affected. The decline of batrachofauna is concerning, as 41% of all species worldwide are endangered. For this reason, rapid, efficient, and non-invasive biodiversity monitoring techniques are needed, and environmental DNA (eDNA) is one such tool that has been sparsely applied in Ecuador. This technique has allowed scientists generates information on species diversity and amphibian community composition from a water sample. This study applied eDNA-based biomonitoring analyses and visual encounter surveys (VES) as inventory techniques to identify the diversity of aquatic amphibians in the Tena River micro-basin (TRMB). Methods The experimental design was divided into three components: (1) fieldwork: all amphibians were recorded by the VES technique and water samples were collected; (2) laboratory work: DNA isolation from amphibian tissue samples and eDNA-containing filters, amplification, electrophoresis, and sequencing were performed; (3) Data analysis: a local DNA reference database was constructed, and eDNA sequence data were processed for classification, taxonomic assignment, and ecological interpretation. Results Using both eDNA and VES, we detected 33 amphibian species (13 with eDNA only, five with VES only, and 15 with both methods). These species belonged to six amphibian families: Hylidae being the richest with 14 species (three eDNA, one VES, and 10 with both methods), followed by Strabomantidae with nine species (six eDNA, one VES, and two with both methods). All families were detected with both methods, except for the Aromobatidae, having one single record (Allobates aff. insperatus) by VES. Individually, eDNA detected 28 species and had a detection probability (DP) of 0.42 CI [0.40-0.45], while VES recorded 20 species with a DP of 0.17 CI [0.14-0.20]. Similarly, using VES, Cochranella resplendens was detected for the first time in TRMB, while with eDNA, four mountain frogs Pristimantis acerus, Pristimantis eriphus, Pristimantis mallii, and Pristimantis sp. (INABIO 15591) previously recorded at 1,518 m.a.s.l. at altitudes below 600 m.a.s.l. were detected. Conclusions Results obtained in this study showed that eDNA-based detection had a greater capacity to detect amphibians in aquatic environments compared to VES. The combination of VES and eDNA improves the sensitivity of species detection and provides more reliable, robust, and detailed information. The latter is essential for developing conservation strategies in the Ecuadorian Amazon.
Collapse
Affiliation(s)
- Walter Quilumbaquin
- Biogeography and Spatial Ecology Research Group, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Andrea Carrera-Gonzalez
- Biogeography and Spatial Ecology Research Group, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- Molecular Biology and Biochemistry Lab, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Christine Van der heyden
- Health and Water Technology Research Centre, Department of Biosciences and Industrial Technology, HOGENT–Univesity of Applied Sciences and arts, Gent, Belgium
| | - H. Mauricio Ortega-Andrade
- Biogeography and Spatial Ecology Research Group, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| |
Collapse
|
8
|
See JRC, Amos D, Wright J, Lamendella R, Santanam N. Synergistic effects of exercise and catalase overexpression on gut microbiome. Environ Microbiol 2022; 24:4220-4235. [PMID: 34270161 PMCID: PMC8761204 DOI: 10.1111/1462-2920.15670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Exercise influences metabolic parameters in part by modulating redox stress and as recently suggested, by affecting the gut microbiome. However, whether excess endogenous antioxidant potentiates or interferes with the beneficial effects of exercise on the gut microbiome is not known. A comparison of the gut microbiome of C57Bl6 (C57/WT) mice to the 'stress-less' catalase overexpressing mice models ([Tg(CAT)± ] and Bob-Cat), that were either exercised or remained sedentary, showed differences in both alpha and beta diversity. The significant variation was explained by genotypes along with exercise, suggesting a synergistic relationship between exercise and genotypic traits. Linear discriminant analysis effect size (LEfSe) analysis also revealed differential taxa within the exercised/genotype cohorts in contrast to those within sedentary/genotype cohorts. Functional pathway predictions from PICRUSt2 showed enrichment for the metabolism of short-chain fatty acids, butanoate and propanoate pathways in exercised groups. Spearman correlations between enriched taxa and metabolic parameters showed correlations with body or fat weight in some of the cohorts. However, there were significant correlations of differential taxa among all cohorts against parameters that predict energy metabolism, such as respiratory exchange ratio and energy expenditure. Overall, our study showed that there was a synergistic beneficial influence of antioxidant overexpression and exercise on the gut microbiome.
Collapse
Affiliation(s)
| | - Deborah Amos
- Department of Biomedical Sciences, Joan C. Edwards School
of Medicine, Marshall University, Huntington, WV, USA
| | - Justin Wright
- Department of Biological Sciences, Juniata College,
Huntingdon, PA
| | | | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School
of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
9
|
Benítez-Páez A, Hartstra AV, Nieuwdorp M, Sanz Y. Species- and strain-level assessment using rrn long-amplicons suggests donor's influence on gut microbial transference via fecal transplants in metabolic syndrome subjects. Gut Microbes 2022; 14:2078621. [PMID: 35604764 PMCID: PMC9132484 DOI: 10.1080/19490976.2022.2078621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is currently used for treating Clostridium difficile infection and explored for other clinical applications in experimental trials. However, the effectiveness of this therapy could vary, and partly depend on the donor's bacterial species engraftment, whose evaluation is challenging because there are no cost-effective strategies for accurately tracking the microbe transference. In this regard, the precise identification of bacterial species inhabiting the human gut is essential to define their role in human health unambiguously. We used Nanopore-based device to sequence bacterial rrn operons (16S-ITS-23S) and to reveal species-level abundance changes in the human gut microbiota of a FMT trial. By assessing the donor and recipient microbiota before and after FMT, we further evaluated whether this molecular approach reveals strain-level genetic variation to demonstrate microbe transfer and engraftment. Strict control over sequencing data quality and major microbiota covariates was critical for accurately estimating the changes in gut microbial species abundance in the recipients after FMT. We detected strain-level variation via single-nucleotide variants (SNVs) at rrn regions in a species-specific manner. We showed that it was possible to explore successfully the donor-bacterial strain (e.g., Parabacteroides merdae) engraftment in recipients of the FMT by assessing the nucleotide frequencies at rrn-associated SNVs. Our findings indicate that the engraftment of donors' microbiota is to some extent correlated with the improvement of metabolic health in recipients and that parameters such as the baseline gut microbiota configuration, sex, and age of donors should be considered to ensure the success of FMT in humans. The study was prospectively registered at the Dutch Trial registry - NTR4488 (https://www.trialregister.nl/trial/4488).
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, Spain,Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain,CONTACT Alfonso Benítez-Páez Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Annick V. Hartstra
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, Spain,Yolanda Sanz Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia46980, Spain
| |
Collapse
|
10
|
Kerkhof LJ, Roth PA, Deshpande SV, Bernhards RC, Liem AT, Hill JM, Häggblom MM, Webster NS, Ibironke O, Mirzoyan S, Polashock JJ, Sullivan RF. A ribosomal operon database and MegaBLAST settings for strain-level resolution of microbiomes. FEMS MICROBES 2022; 3:xtac002. [PMID: 37332502 PMCID: PMC10117742 DOI: 10.1093/femsmc/xtac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/28/2021] [Accepted: 01/14/2022] [Indexed: 10/07/2023] Open
Abstract
Current methods to characterize microbial communities generally employ sequencing of the 16S rRNA gene (<500 bp) with high accuracy (∼99%) but limited phylogenetic resolution. However, long-read sequencing now allows for the profiling of near-full-length ribosomal operons (16S-ITS-23S rRNA genes) on platforms such as the Oxford Nanopore MinION. Here, we describe an rRNA operon database with >300 ,000 entries, representing >10 ,000 prokaryotic species and ∼ 150, 000 strains. Additionally, BLAST parameters were identified for strain-level resolution using in silico mutated, mock rRNA operon sequences (70-95% identity) from four bacterial phyla and two members of the Euryarchaeota, mimicking MinION reads. MegaBLAST settings were determined that required <3 s per read on a Mac Mini with strain-level resolution for sequences with >84% identity. These settings were tested on rRNA operon libraries from the human respiratory tract, farm/forest soils and marine sponges ( n = 1, 322, 818 reads for all sample sets). Most rRNA operon reads in this data set yielded best BLAST hits (95 ± 8%). However, only 38-82% of library reads were compatible with strain-level resolution, reflecting the dominance of human/biomedical-associated prokaryotic entries in the database. Since the MinION and the Mac Mini are both portable, this study demonstrates the possibility of rapid strain-level microbiome analysis in the field.
Collapse
Affiliation(s)
- Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8521, USA
| | - Pierce A Roth
- DCS Corp, 4696 Millennium Drive, Suite 450, Belcamp, MD 21017, USA
| | - Samir V Deshpande
- U.S. Army, DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - R Cory Bernhards
- U.S. Army, DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Alvin T Liem
- DCS Corp, 4696 Millennium Drive, Suite 450, Belcamp, MD 21017, USA
| | - Jessica M Hill
- DCS Corp, 4696 Millennium Drive, Suite 450, Belcamp, MD 21017, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901-8525, USA
| | - Nicole S Webster
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
- Australian Antarctic Division, GPO Box 858, Canberra City, ACT 2601, Australia
| | - Olufunmilola Ibironke
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8521, USA
| | - Seda Mirzoyan
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8521, USA
| | - James J Polashock
- U.S. Department of Agriculture—Agricultural Research Service, Genetic Improvement for Fruits & Vegetables Laboratory, 125A Lake Oswego Rd, Chatsworth, NJ 08019, USA
| | - Raymond F Sullivan
- U.S. Army, DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
11
|
Qiang L, Cheng J, Mirzoyan S, Kerkhof LJ, Häggblom MM. Characterization of Microplastic-Associated Biofilm Development along a Freshwater-Estuarine Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16402-16412. [PMID: 34846850 DOI: 10.1021/acs.est.1c04108] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microplastic contamination is an increasing concern worldwide. Biofilms rapidly develop on surfaces in aquatic habitats, but the processes of biofilm formation and variation in bacterial community succession on different microplastics introduced into freshwater and estuarine environments are not well understood. In this study, the biofilm bacterial communities that developed on three different types of microplastics that are prevalent in the environment, high-density polyethylene (HDPE), polyethylene terephthalate (PET), and polystyrene (PS), was investigated. Virgin microplastics were incubated in microcosms over a period of 31 days with water collected along a freshwater-estuarine gradient of the Raritan River in New Jersey. Through long-read MinION sequencing of bacterial ribosomal operons, we were able to examine biofilm bacterial communities at a species- and strain-level resolution. Results indicated that both salinity level and microplastic type impacted biofilm formation and promoted colonization by distinct microbial communities. Limnobacter thiooxidans was found to be one of the most abundant microplastics colonizing-bacteria, and it is hypothesized that different types of microplastics could select for different strains. Our findings indicate that multiple groups of highly similar L. thiooxidans rRNA operons could be discerned within the community profiles. Phylogenetic reconstruction further established that various Linmobacter species uniquely colonized the different microplastics from the different sampling sites. Our findings indicate that microplastics support abundant and diverse bacterial communities and that the various types of microplastics can influence how different bacterial biofilms develop, which may have ecological impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Liyuan Qiang
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, New Jersey 08901-8525, United States
- College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang 832003, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jinping Cheng
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution & Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Seda Mirzoyan
- Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, New Jersey 08901-8521, United States
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, New Jersey 08901-8521, United States
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, New Jersey 08901-8525, United States
| |
Collapse
|
12
|
Pu Y, Tan Y, Qu Y, Chang L, Wang S, Wei Y, Wang X, Hashimoto K. A role of the subdiaphragmatic vagus nerve in depression-like phenotypes in mice after fecal microbiota transplantation from Chrna7 knock-out mice with depression-like phenotypes. Brain Behav Immun 2021; 94:318-326. [PMID: 33422641 DOI: 10.1016/j.bbi.2020.12.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
Abstract
The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR: coded by Chrna7) regulates the cholinergic ascending anti-inflammatory pathway involved in depression. We previously reported that Chrna7 knock-out (KO) mice show depression-like phenotypes through systemic inflammation. In this study, we investigated whether fecal microbiota transplantation (FMT) from Chrna7 KO mice causes depression-like phenotypes in mice treated with an antibiotic cocktail (ABX). Chrna7 KO mice with depression-like phenotypes show an abnormal gut microbiota composition, although the alpha diversity and beta diversity were not altered. FMT from Chrna7 KO mice caused depression-like phenotypes, systemic inflammation, and downregulation of synaptic proteins in the prefrontal cortex (PFC) in the ABX-treated mice compared to FMT from the control mice. The Principal component analysis based on the OTU level showed that the FMT group from the KO mice were different from the FMT group from the control mice. We found differences in abundance for several bacteria in the FMT group from the KO mice at the taxonomic level when compared with the other group. Interestingly, subdiaphragmatic vagotomy significantly blocked the development of depression-like phenotypes in the ABX-treated mice after FMT from Chrna7 KO mice. These data suggest that FMT from Chrna7 KO mice produce depression-like phenotypes in ABX-treated mice via the subdiaphragmatic vagus nerve. The brain-gut-microbiota axis association with the subdiaphragmatic vagus nerve plays an important role in the development of depression.
Collapse
Affiliation(s)
- Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
13
|
Kerkhof LJ. Is Oxford Nanopore sequencing ready for analyzing complex microbiomes? FEMS Microbiol Ecol 2021; 97:6098400. [PMID: 33444433 PMCID: PMC8068755 DOI: 10.1093/femsec/fiab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
This minireview will discuss the improvements in Oxford Nanopore (Oxford; sequencing technology that make the MinION a viable platform for microbial ecology studies. Specific issues being addressed are the increase in sequence accuracy from 65 to 96.5% during the last 5 years, the ability to obtain a quantifiable/predictive signal from the MinION with respect to target molecule abundance, simple-to-use GUI-based pathways for data analysis and the modest additional equipment needs for sequencing in the field. Coupling these recent improvements with the low capital costs for equipment and the reasonable per sample cost makes MinION sequencing an attractive option for virtually any laboratory.
Collapse
Affiliation(s)
- Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
14
|
McNamara MP, Singleton JM, Cadney MD, Ruegger PM, Borneman J, Garland T. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. J Exp Biol 2021; 224:jeb239699. [PMID: 33431595 PMCID: PMC7929929 DOI: 10.1242/jeb.239699] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Alterations to the gut microbiome caused by changes in diet, consumption of antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome during critical developmental periods potentially has long-lasting impacts on hosts. Using four selectively bred high runner and four non-selected control lines of mice, we examined the effects of early-life diet and exercise manipulations on the adult microbiome by sequencing the hypervariable internal transcribed spacer region of the bacterial gut community. Mice from high runner lines run ∼3-fold more on wheels than do controls, and have several other phenotypic differences (e.g. higher food consumption and body temperature) that could alter the microbiome, either acutely or in terms of coevolution. Males from generation 76 were given wheels and/or a Western diet from weaning until sexual maturity at 6 weeks of age, then housed individually without wheels on standard diet until 14 weeks of age, when fecal samples were taken. Juvenile Western diet reduced bacterial richness and diversity after the 8-week washout period (equivalent to ∼6 human years). We also found interactive effects of genetic line type, juvenile diet and/or juvenile exercise on microbiome composition and diversity. Microbial community structure clustered significantly in relation to both line type and diet. Western diet also reduced the relative abundance of Muribaculum intestinale These results constitute one of the first reports of juvenile diet having long-lasting effects on the adult microbiome after a substantial washout period. Moreover, we found interactive effects of diet with early-life exercise exposure, and a dependence of these effects on genetic background.
Collapse
Affiliation(s)
- Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| |
Collapse
|
15
|
Campbell SC. Exercise and Sport Sciences Reviews: 2019 Paper of the Year. Exerc Sport Sci Rev 2020; 48:149-150. [PMID: 32925523 DOI: 10.1249/jes.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sara C Campbell
- Department of Kinesiology and Health Rutgers University New Brunswick, NJ
| |
Collapse
|