1
|
Mahajna A, Geurkink B, Gacesa R, Keesman KJ, Euverink GJW, Jayawardhana B. Metatranscriptomes of activated sludge microbiomes from saline wastewater treatment plant. Sci Data 2025; 12:348. [PMID: 40011462 DOI: 10.1038/s41597-025-04682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
The activated sludge microbiome (ASM) drives the biological wastewater treatment process in wastewater treatment plants. It has been established in the literature that the ASM is characterized by a high degree of taxonomic and metabolic diversity. However, meta-omics datasets have been derived from domestic wastewater treatment plants with little attention to saline wastewater treatment plants (SWWTP). Existing knowledge of how activated sludge microorganisms impact water quality, interrelate within habitat networks, and respond to environmental perturbations remains limited. Here we present datasets of the metatranscriptomes of SWWTP in The Netherlands, coupled with process data. The dataset represents a two-year and four-month time series of data collected from 2014 to 2017, with samples taken at approximately monthly intervals from the facultative zone in the activated sludge process of an SWWTP. In total, 32 activated sludge samples were analyzed. This dataset can be used to enhance understanding of the unique microbiome composition in SWWTPs, its dynamic responses to environmental variables, and the metabolic functions within the ASM.
Collapse
Affiliation(s)
- Asala Mahajna
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
- Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Bert Geurkink
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Karel J Keesman
- Mathematical and Statistical Methods - Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gert-Jan W Euverink
- Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bayu Jayawardhana
- Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
2
|
Hu X, Zhang S, Liu G, Wang J, Wang Y. Promoting mechanism of nitrogen removal by Fe 3O 4 magnetic particles during the start-up phase in sequencing batch reactor. Bioprocess Biosyst Eng 2024; 47:851-862. [PMID: 38676738 DOI: 10.1007/s00449-024-03006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
In this paper, a magnetic sequencing batch reactor (SBR) was constructed, and the influence rule of magnetic particle dosing performance of denitrification was investigated. The diversity, structure, and potential functions of the microbial community were comprehensively explored. The results showed that the particle size and the dosage of Fe3O4 magnetic particles were the main parameters affecting the sedimentation performance of activated sludge. The start-up phase of the SBR reactor with Fe3O4 magnetic particles was 5 days less than the control. Moreover, total nitrogen removal efficiency during the start-up phase was improved, with the maximum value reaching 91.93%, surpassing the control by 9.7% with the Fe3O4 dosage of 1.2 g L-1. In addition, the activated sludge concentration and dehydrogenase activity were improved, compared to the control. High-throughput sequencing showed that the denitrifying bacterium Saccharimonadales dominated the reactor and was enriched by magnetic particles. According to predicted functions, the abundance of genes for denitrification increased with the addition of magnetic particles, suggesting the capacity of nitrogen removal was enhanced in the microbial community. Overall, the Fe3O4 magnetic particles provide great potential for enhanced wastewater nitrogen removal.
Collapse
Affiliation(s)
- Xiaoyu Hu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Shuai Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Jiabin Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Yue Wang
- Shuifa Water Holding Group Limited, Jinan, 250000, China
| |
Collapse
|
3
|
Wang Y, Zhang X, Lin Y, Lin H. The electron transport mechanism of downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell when used to treat Cr(VI) and p-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37929-37945. [PMID: 36576625 DOI: 10.1007/s11356-022-24872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetland-microbial fuel cells are used to treat heavy metal and/or refractory organic wastewater. However, the electron transport mechanism of downflow Leersia hexandra constructed wetland-microbial fuel cells (DLCW-MFCs) is poorly understood when used to treat composite-polluted wastewater containing Cr(VI) and p-chlorophenol (4-CP) (C&P). In this study, metagenomics and in situ electrochemical techniques were used to investigate the electrochemical properties and the electricigens and their dominant gene functions. The DLCW-MFC was used to treat C&P and single-pollutant wastewater containing Cr(VI) (SC) and 4-CP (SP). The results showed that C&P had a higher current response and charge transfer capability and lower solution resistance plus charge transfer resistance. The anode bacteria solution of C&P contained more electron carriers (RF, FMN, FAD, CoQ10, and Cyt c). Metagenomic sequencing indicated that the total relative abundance of the microorganisms associated with electricity production (Desulfovibrio, Pseudomonas, Azospirillum, Nocardia, Microbacterium, Delftia, Geobacter, Acinetobacter, Bacillus, and Clostridium) was the highest in C&P (4.24%). However, Microbacterium was abundant in SP (0.12%), which exerted antagonistic effects on other electricigens. Among the 10 electricigens based on gene annotation, C&P had a higher overall relative abundance of the Unigene gene annotated to the KO pathway and CAZy level B compared with SC and SP, which were 1.31% and 0.582% respectively. Unigene153954 (ccmC), Unigene357497 (coxB), and Unigene1033667 (ubiG) were related to the electron carrier Cyt c, electron transfer, and CoQ biosynthesis, respectively. These were annotated to Desulfovibrio, Delftia, and Pseudomonas, respectively. Unigene161312 (AA1) used phenols and other substrates as electron donors and was annotated to Pseudomonas. Other functional carbohydrate enzyme genes (e.g., GT2, GT4, and GH31) used carbohydrates as donors and were annotated to other electricigens. This study provides a theoretical basis for electron transfer to promote the development of CW-MFCs.
Collapse
Affiliation(s)
- Yian Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Yi Lin
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China.
| |
Collapse
|
4
|
Wang C, Wang H, Yan Q, Chen C, Bao X, Pan M, Qian Y. Enhanced nitrogen removal from low C/N municipal wastewater employing algal biochar supported nano zero-valent iron (ABC-nZVI) using A/A/O-MBR: Duration and rehabilitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160396. [PMID: 36435251 DOI: 10.1016/j.scitotenv.2022.160396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
To bridge the organic-dependent barrier on nitrogen from low carbon/nitrogen (C/N) municipal wastewater, employing algal biochar supported nano zero-valent iron (ABC-nZVI) was investigated using A/A/O-MBR. Firstly, it can be seen that adequate carbon source is indispensable for the removal, since total nitrogen (TN) removal reached 77.89 % with the influent C/N of 7.8. Secondly, conducted in batch experiments with different doses of ABC-nZVI with/without active sludge, removal efficiency of total inorganic nitrogen (TIN) and the effective time achieved 84.94 % and 24 h with an ABC-nZVI dose of 300 mg/L, respectively. Thirdly, it was found that the duration of high-efficiency denitrification reached 9 h with the addition of 250 mg/L of ABC-nZVI to the anoxic tank of A/A/O-MBR, and the effluent ammonium nitrogen (NH4+-N) also meet the national discharge standard. Besides, biodiversity of both anoxic and aerobic sludge was apparently promoted with the addition of ABC-nZVI, while the lab-scale A/A/O-MBR could also be fully rehabilitated within 12 h. Finally, predicted through PICRUSt2, relevant abundance of functional genes involved in nitrogen metabolism could be enriched by nZVI addition. As an alternative supporting electron donor and mediator, ABC-nZVI can also be participated in the enhanced nitrogen removal in A/A/O-MBR at low C/N.
Collapse
Affiliation(s)
- Chaoyun Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Chongjun Chen
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiangming Bao
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| | - Meijuan Pan
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| | - Yunfei Qian
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| |
Collapse
|
5
|
The use of the electromagnetic field in microbial process bioengineering. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:27-72. [PMID: 36328731 DOI: 10.1016/bs.aambs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.
Collapse
|
6
|
Wang M, Xu Z, Huang Y, Dong B. Static magnetic field enhances Cladosporium sp. XM01 growth and fungal Mn(II) oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129332. [PMID: 35752045 DOI: 10.1016/j.jhazmat.2022.129332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Fungal Mn oxidation is a crucial pathway in the biogeochemical cycling of toxic substances. However, few studies have aimed to promote the process of fungal Mn oxidation or systematically establish the mechanism of action. The effects of static magnetic field (SMF) treatment on the growth and Mn(II) oxidation capability of an Mn-oxidizing fungus, Cladosporium sp. XM01, were investigated. Results showed that 20.1 mT SMF treatment promoted the growth of strain XM01, and increased the Mn(II) removal rate by accelerating the adsorption and oxidation of Mn(II). In addition, the results of RNA sequencing suggested that SMF mainly stimulated energy metabolism and protein synthesis, accelerating the growth of strain XM01. Notably, KEGG pathway enrichment analysis found that SMF treatment significantly up-regulated the pathway of oxidative phosphorylation system, which is capable of stimulating the generation of superoxide (O2•-). Moreover, exposure to 20.1 mT SMF significantly promoted the activities of antioxidant enzymes including SOD and CAT. These results indicate that SMF treatment stimulates the generation of O2•- by strain XM01, and therefore, accelerates Mn(II) oxidation. This is a novel study using external SMF treatment to enhance fungal Mn(II) oxidation.
Collapse
Affiliation(s)
- Mei Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yangrui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Enhancement Effects of Water Magnetization and/or Disinfection by Sodium Hypochlorite on Secondary Slaughterhouse Wastewater Effluent Quality and Disinfection By-Products. Processes (Basel) 2022. [DOI: 10.3390/pr10081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wastewater disinfection is one of the most critical issues in protecting human health against exposure to waterborne pathogenies. Chlorine is among the most commonly used disinfectants in many wastewaters’ treatment plants. Nevertheless, disquiets regarding chlorine’s disinfection by-products (DBPs) have grown recently. One of the most effective ways to reduce DBPs generation is to reduce chlorine dosage by increasing disinfectant efficiency. Using magnetic field (MF) in wastewater treatment is one of the promising research topics with significant progression. This study aimed to evaluate the efficiency of using a magnetic field and/or sodium hypochlorite (NaClO) disinfection on secondary slaughterhouse wastewater effluent quality and by-products. Three groups of secondary slaughterhouse wastewater effluents were used: G1 was treated with NaClO only at 0, 2, 4, and 6 mg/L; G2 was treated with exposure to MF at 14,500 gausses, and G3 was pretreated with MF, then NaClO at the exact chlorine dosages and MF strength. The results showed an augmented effect when using a magnetic field as a pre-treatment step before NaClO treatment in the remediation of slaughterhouse wastewater over the use of any of them solely. The removal rate of COD and BOD increased by up to 26 and 20%, respectively, when pre-treatment with MF was employed as a mean percentage at all chlorine dosages, while TSS, TDS, and EC increased by 23.5 and 5.5%, respectively. Over and above, the removal rate for each TN and TP increased by 12 and 6.5% as a mean percentage at all chlorine dosages when using a combination of the two. In addition, pre-treatment by MF reduced the required concentration of NaClO from 6 to 4 mg/L, resulting in an 11% increase in the reduction rate of total coliform count, 8% increase in the reduction rate of fecal coliforms, and 10% increase in the reduction rate of E. coli and 5% in Salmonella via increasing the disinfection efficiency of NaClO. Finally, it decreased the concentration of Chloroform produced by more than 77.2% by using the higher concentration of NaClO (6 mg/L). The issue that approved the promising approach of using MF as a pre-treatment step in the treatment of slaughterhouse wastewater provides the advantage of using smaller dosages of disinfection, lowering the cost of the procedure process, and reducing the harmful concentration of DBPs.
Collapse
|
8
|
Li Z, Chen Q, Gao F, Meng Q, Li M, Zhang Y, Zhang P, Zhang M, Liu Z. Controlled-release urea combined with fulvic acid enhanced carbon/nitrogen metabolic processes and maize growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3644-3654. [PMID: 34888887 DOI: 10.1002/jsfa.11711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Controlled-release urea (CRU) or fulvic acid (FA), when applied, have been shown to increase nitrogen (N) use efficiency (NUE) or to stimulate plant growth, yet their interactive effects are not well explored. The objective of this study was to investigate the synergistic mechanisms of CRU combined with FA (CRU + FA) on maize (Zea mays L.) growth. Through the experimental design with five treatments, the N metabolism through the transcriptomic analysis of maize leaf, endogenous hormones, photosynthesis enzymes in maize leaf and root, and maize yield and NUE were evaluated. RESULTS Compared with CRU treatment, CRU + FA treatment significantly increased auxin, nitrate reductase, and glutamate dehydrogenase in leaf by 35.4%, 43.9%, 40.8% and 19.5%, respectively, as well as, the relative content of the leaf chlorophyll and photosynthetic rate by 14.8% and 45.6%, respectively, at 12-leaf collar stage; the carbon/nitrogen (C/N) metabolic process was significantly enriched in CRU + FA treatment by 312 and 418 genes, according to transcriptome profiles of C/N metabolic in leaves from various fertilizer treated maize; maize yield and NUE of CRU + FA treatment were increased by 6.3% and 38.4%, respectively. CONCLUSIONS These results demonstrated that CRU + FA is a viable fertilization scheme that can enhance maize growth, yield and NUE through their synergies in improving N uptake, promoting photosynthesis, increasing C/N metabolic processes, and enhancing enzyme activities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeli Li
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Qi Chen
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Feng Gao
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Qingmin Meng
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Mingyang Li
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Yan Zhang
- Shandong Pengbo Biotechnology Co., Ltd, Taian, China
| | - Peng Zhang
- Shandong Wanhao Fertilizer Co. Ltd, Jinan, China
| | - Min Zhang
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| |
Collapse
|
9
|
Effect of an Electromagnetic Field on Anaerobic Digestion: Comparing an Electromagnetic System (ES), a Microbial Electrolysis System (MEC), and a Control with No External Force. Molecules 2022; 27:molecules27113372. [PMID: 35684310 PMCID: PMC9182473 DOI: 10.3390/molecules27113372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
This study examined the application of an electromagnetic field to anaerobic digestion by using an electromagnetic system (ES), a microbial electrolysis cell (MEC), and a control with no external force. The experimental work was performed by carrying out biochemical methane potential (BMP) tests using 1 L biodigesters. The bioelectrochemical digesters were supplied with 0.4 V for 30 days at 40 °C. The electromagnetic field of the ES was generated by coiling copper wire to form a solenoid in the BMP system, whereas the MEC consisted of zinc and copper electrodes inside the BMP system. The best performing system was the MEC, with a yield of 292.6 mL CH4/g chemical oxygen demand removed (CODremoved), methane content of 86%, a maximum current density of 23.3 mA/m2, a coulombic efficiency of 110.4%, and an electrical conductivity of 180 µS/cm. Above 75% removal of total suspended solids (TSS), total organic carbon (TOC), phosphate, and ammonia nitrogen (NH3-N) was also recorded. However, a longer exposure (>8 days) to higher magnetic intensity (6.24 mT) on the ES reduced its overall performance. In terms of energy, the MEC produced the greatest annual energy profit (327.0 ZAR/kWh or 23.36 USD/kWh). The application of an electromagnetic field in anaerobic digestion, especially a MEC, has the potential to maximize the methane production and the degradability of the wastewater organic content.
Collapse
|
10
|
Yang S, Zhou H, Dai W, Xiong J, Chen F. Effect of Static Magnetic Field on Monascus ruber M7 Based on Transcriptome Analysis. J Fungi (Basel) 2021; 7:256. [PMID: 33808107 PMCID: PMC8066190 DOI: 10.3390/jof7040256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
The effects of a static magnetic field (SMF) on Monascus ruber M7 (M. ruber M7) cultured on potato dextrose agar (PDA) plates under SMF treatment at different intensities (5, 10, and 30 mT) were investigated in this paper. The results revealed that, compared with the control (CK, no SMF treatment), the SMF at all tested intensities did not significantly influence the morphological characteristics of M. ruber M7, while the intracellular and extracellular Monascus pigments (MPs) and extracellular citrinin (CIT) of M. ruber M7 were increased at 10 and 30 mT SMF but there was no impact on the MPs and CIT at 5 mT SMF. The transcriptome data of M. ruber M7 cultured at 30 mT SMF on PDA for 3 and 7 d showed that the SMF could increase the transcriptional levels of some relative genes with the primary metabolism, including the carbohydrate metabolism, amino acid metabolism, and lipid metabolism, especially in the early growing period (3 d). SMF could also affect the transcriptional levels of the related genes to the biosynthetic pathways of MPs, CIT, and ergosterol, and improve the transcription of the relative genes in the mitogen-activated protein kinase (MAPK) signaling pathway of M. ruber M7. These findings provide insights into a comprehensive understanding of the effects of SMF on filamentous fungi.
Collapse
Affiliation(s)
- Shuyan Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyi Zhou
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihua Dai
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- College of Science, Huazhong Agricultural University, Wuhan 430070, China;
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|