1
|
Yi X, Wang Q, Zhang M, Shu Q, Zhu J. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2024; 178:117217. [PMID: 39079260 DOI: 10.1016/j.biopha.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Doxorubicin (DOX), a commonly used chemotherapy drug, is hindered due to its tendency to induce cardiotoxicity (DIC). Ferroptosis, a novel mode of programmed cell death, has received substantial attention for its involvement in DIC. Recently, natural product-derived ferroptosis regulator emerged as a potential strategy for treating DIC. In this review, a comprehensive search was conducted across PubMed, Web of Science, Google Scholar, and ScienceDirect databases to gather relevant articles on the use of natural products for treating DIC in relation to ferroptosis. The available papers were carefully reviewed to summarize the therapeutic effects and underlying mechanisms of natural products in modulating ferroptosis for DIC treatment. It was found that ferroptosis plays an important role in DIC pathogenesis, with dysregulated expression of ferroptosis-related proteins strongly implicated in the condition. Natural products, such as flavonoids, polyphenols, terpenoids, and quinones can act as GPX4 activators, Nrf2 agonists, and lipid peroxidation inhibitors, thereby enhancing cell viability, attenuating myocardial fibrosis, improving cardiac function, and suppressing ferroptosis in both in vitro and in vivo models of DIC. This review demonstrates a strong correlation between DOX-induced cardiac ferroptosis and key proteins, such as GPX4, Keap1, Nrf2, AMPK, and HMOX1. Natural products are likely to exert therapeutic effects against DIC by modulating the activity of these proteins.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Wang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Mengjie Zhang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Shu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
2
|
Manhas A, Tripathi D, Thomas D, Sayed N. Cardiovascular Toxicity in Cancer Therapy: Protecting the Heart while Combating Cancer. Curr Cardiol Rep 2024; 26:953-971. [PMID: 39042344 DOI: 10.1007/s11886-024-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE OF REVIEW This review explores the cardiovascular toxicity associated with cancer therapies, emphasizing the significance of the growing field of cardio-oncology. It aims to elucidate the mechanisms of cardiotoxicity due to radiotherapy, chemotherapy, and targeted therapies, and to discuss the advancements in human induced pluripotent stem cell technology (hiPSC) for predictive disease modeling. RECENT FINDINGS Recent studies have identified several chemotherapeutic agents, including anthracyclines and kinase inhibitors, that significantly increase cardiovascular risks. Advances in hiPSC technology have enabled the differentiation of these cells into cardiovascular lineages, facilitating more accurate modeling of drug-induced cardiotoxicity. Moreover, integrating hiPSCs into clinical trials holds promise for personalized cardiotoxicity assessments, potentially enhancing patient-specific therapeutic strategies. Cardio-oncology bridges oncology and cardiology to mitigate the cardiovascular side-effects of cancer treatments. Despite advancements in predictive models using hiPSCs, challenges persist in accurately replicating adult heart tissue and ensuring reproducibility. Ongoing research is essential for developing personalized therapies that balance effective cancer treatment with minimal cardiovascular harm.
Collapse
Affiliation(s)
- Amit Manhas
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dipti Tripathi
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
- Division of Vascular Surgery, Department of Surgery, Stanford, CA, 94305, USA
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA.
- Division of Vascular Surgery, Department of Surgery, Stanford, CA, 94305, USA.
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Stafford LK, Tang X, Brandt A, Ma J, Banchs J, Livingston JA, Roth ME, Morrison AC, Hildebrandt MAT. Risk of anthracycline-induced cardiac dysfunction in adolescent and young adult (AYA) cancer survivors: role of genetic susceptibility loci. THE PHARMACOGENOMICS JOURNAL 2024; 24:21. [PMID: 38951505 DOI: 10.1038/s41397-024-00343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
There is a known genetic susceptibility to anthracycline-induced cardiac dysfunction in childhood cancer survivors, but this has not been adequately shown in adolescent and young adult (AYA) patients. Our aim was to determine if the previously identified variants associated with cardiac dysfunction in childhood cancer patients affect AYA cancer patients similarly. Forty-five variants were selected for analysis in 253 AYAs previously treated with anthracyclines. We identified four variants that were associated with cardiac dysfunction: SLC10A2:rs7319981 (p = 0.017), SLC22A17:rs4982753 (p = 0.019), HAS3:rs2232228 (p = 0.023), and RARG:rs2229774 (p = 0.050). HAS3:rs2232228 and SLC10A2:rs7319981 displayed significant effects in our AYA cancer survivor population that were in the opposite direction than that reported in childhood cancer survivors. Genetic variants in the host genes were further analyzed for additional associations with cardiotoxicity in AYA cancer survivors. The host genes were then evaluated in a panel of induced pluripotent stem cell-derived cardiomyocytes to assess changes in levels of expression when treated with doxorubicin. Significant upregulation of HAS3 and SLC22A17 expression was observed (p < 0.05), with non-significant anthracycline-responsivity observed for RARG. Our study demonstrates that there is a genetic influence on cardiac dysfunction in AYA cancer patients, but there may be a difference in the role of genetics between childhood and AYA cancer survivors.
Collapse
Affiliation(s)
- Lily K Stafford
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaohui Tang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda Brandt
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianzhong Ma
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jose Banchs
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael E Roth
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michelle A T Hildebrandt
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Matthews ER, Johnson OD, Horn KJ, Gutiérrez JA, Powell SR, Ward MC. Anthracyclines induce cardiotoxicity through a shared gene expression response signature. PLoS Genet 2024; 20:e1011164. [PMID: 38416769 PMCID: PMC10927150 DOI: 10.1371/journal.pgen.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.
Collapse
Affiliation(s)
- E. Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kandace J. Horn
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - José A. Gutiérrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Simon R. Powell
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
5
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Chaulin AM. The Essential Strategies to Mitigate Cardiotoxicity Caused by Doxorubicin. Life (Basel) 2023; 13:2148. [PMID: 38004288 PMCID: PMC10672543 DOI: 10.3390/life13112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 11/26/2023] Open
Abstract
The study of mechanisms underlying cardiotoxicity of doxorubicin and the development of strategies to mitigate doxorubicin-induced cardiotoxicity are the most relevant issues of modern cardio-oncology. This is due to the high prevalence of cancer in the population and the need for frequent use of highly effective chemotherapeutic agents, in particular anthracyclines, for optimal management of cancer patients. However, while being a potent agent to counteract cancer, doxorubicin also affects the cardiovascular systems of patients undergoing chemotherapy in a significant and unfavorable fashion. Consecutively reviewed in this article are risk factors and mechanisms of doxorubicin cardiotoxicity, and the essential strategies to mitigate cardiotoxic effects of doxorubicin treatment in cancer patients are discussed.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia;
- Department of Clinical Chemistry, Samara State Medical University, Samara 443099, Russia
| |
Collapse
|
7
|
Sangweni NF, Gabuza K, van Aarde R, Mabasa L, van Vuuren D, Huisamen B, Barry R, Johnson R. Doxorubicin-Induced Cardiomyopathy: A Preliminary Study on the Cardioprotective Benefits of 7-Hydroxyflavanone. Int J Mol Sci 2023; 24:15395. [PMID: 37895075 PMCID: PMC10607478 DOI: 10.3390/ijms242015395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The therapeutic properties of flavonoids are reported to offer cardioprotective benefits against doxorubicin (Dox)-induced cardiotoxicity (DIC). In the current study, we aimed to investigate the prophylactic properties of 7-hydroxyflavanone (7H), a flavonoid with antioxidative properties, against DIC. An in vitro model of DIC was established by exposing H9c2 cardiomyoblasts to Dox for 6 days. Similarly, cells were also co-treated with 7H to assess its ability to mitigate DIC. The data obtained indicate that 7H, as a co-treatment, alleviates Dox-induced oxidative stress by enhancing total glutathione content (p ≤ 0.001) and superoxide dismutase activity (p ≤ 0.001) whilst decreasing ROS (p ≤ 0.001), malondialdehyde production (p ≤ 0.001) and the secretion of interleukin-6 (p ≤ 0.001). The data also showed an improvement in mitochondrial function as shown via enhanced bioenergetics, mitochondrial membrane potential, and PGC1-alpha (p ≤ 0.05) and pAMPK (p ≤ 0.001) expression. The cardioprotective potential of 7H was further highlighted by its ability attenuate Dox-induced caspase 3/7 activity (p ≤ 0.001), apoptosis (p ≤ 0.001) and necrosis (p ≤ 0.05). In conclusion, our findings demonstrated the cardioprotective benefits of 7H and thus suggests that it could be a suitable candidate cardioprotective agent against DIC.
Collapse
Affiliation(s)
- Nonhlakanipho F. Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (K.G.); (R.v.A.); (L.M.); (R.J.)
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (D.v.V.); (B.H.)
| | - Kwazi Gabuza
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (K.G.); (R.v.A.); (L.M.); (R.J.)
| | - Ruzayda van Aarde
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (K.G.); (R.v.A.); (L.M.); (R.J.)
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (K.G.); (R.v.A.); (L.M.); (R.J.)
| | - Derick van Vuuren
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (D.v.V.); (B.H.)
| | - Barbara Huisamen
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (D.v.V.); (B.H.)
| | | | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (K.G.); (R.v.A.); (L.M.); (R.J.)
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (D.v.V.); (B.H.)
| |
Collapse
|
8
|
Alexandraki A, Papageorgiou E, Zacharia M, Keramida K, Papakonstantinou A, Cipolla CM, Tsekoura D, Naka K, Mazzocco K, Mauri D, Tsiknakis M, Manikis GC, Marias K, Marcou Y, Kakouri E, Konstantinou I, Daniel M, Galazi M, Kampouroglou E, Ribnikar D, Brown C, Karanasiou G, Antoniades A, Fotiadis D, Filippatos G, Constantinidou A. New Insights in the Era of Clinical Biomarkers as Potential Predictors of Systemic Therapy-Induced Cardiotoxicity in Women with Breast Cancer: A Systematic Review. Cancers (Basel) 2023; 15:3290. [PMID: 37444400 PMCID: PMC10340234 DOI: 10.3390/cancers15133290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiotoxicity induced by breast cancer therapies is a potentially serious complication associated with the use of various breast cancer therapies. Prediction and better management of cardiotoxicity in patients receiving chemotherapy is of critical importance. However, the management of cancer therapy-related cardiac dysfunction (CTRCD) lacks clinical evidence and is based on limited clinical studies. AIM To provide an overview of existing and potentially novel biomarkers that possess a promising predictive value for the early and late onset of CTRCD in the clinical setting. METHODS A systematic review of published studies searching for promising biomarkers for the prediction of CTRCD in patients with breast cancer was undertaken according to PRISMA guidelines. A search strategy was performed using PubMed, Google Scholar, and Scopus for the period 2013-2023. All subjects were >18 years old, diagnosed with breast cancer, and received breast cancer therapies. RESULTS The most promising biomarkers that can be used for the development of an alternative risk cardiac stratification plan for the prediction and/or early detection of CTRCD in patients with breast cancer were identified. CONCLUSIONS We highlighted the new insights associated with the use of currently available biomarkers as a standard of care for the management of CTRCD and identified potentially novel clinical biomarkers that could be further investigated as promising predictors of CTRCD.
Collapse
Affiliation(s)
- Alexia Alexandraki
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Elisavet Papageorgiou
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Marina Zacharia
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Kalliopi Keramida
- 2nd Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
- Cardiology Department, General Anti-Cancer Oncological Hospital, Agios Savvas, 11522 Athens, Greece
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institute, 17176 Stockholm, Sweden;
- Department for Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Carlo M. Cipolla
- Cardioncology and Second Opinion Division, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Dorothea Tsekoura
- 2nd Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece; (D.T.); (E.K.)
| | - Katerina Naka
- 2nd Cardiology Department, University of Ioannina Medical School, 45110 Ioannina, Greece;
| | - Ketti Mazzocco
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, 20139 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Davide Mauri
- Department of Medical Oncology, University of Ioannina, 45110 Ioannina, Greece;
| | - Manolis Tsiknakis
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.T.); (K.M.)
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Kostas Marias
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.T.); (K.M.)
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Yiola Marcou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Eleni Kakouri
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Ifigenia Konstantinou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Maria Daniel
- Department of Radiation Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus;
| | - Myria Galazi
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Effrosyni Kampouroglou
- 2nd Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece; (D.T.); (E.K.)
| | - Domen Ribnikar
- Division of Medical Oncology, Institute of Oncology Ljubljana, Faculty of Medicine, University of Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia;
| | - Cameron Brown
- Translational Medicine, Stremble Ventures Ltd., 59 Christaki Kranou, Limassol 4042, Cyprus;
| | - Georgia Karanasiou
- Biomedical Research Institute, Foundation for Research and Technology, Hellas, 45500 Ioannina, Greece;
| | - Athos Antoniades
- Research and Development, Stremble Ventures Ltd., 59 Christaki Kranou, Limassol 4042, Cyprus;
| | - Dimitrios Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Gerasimos Filippatos
- Cardio-Oncology Clinic, Heart Failure Unit, Department of Cardiology, National and Kapodistrian University of Athens Medical School, Athens University Hospital Attikon, 11527 Athens, Greece;
| | - Anastasia Constantinidou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
- School of Medicine, University of Cyprus, Panepistimiou 1, Aglantzia, Nicosia 2408, Cyprus
| |
Collapse
|
9
|
Hurkmans EGE, Brand ACAM, Verdonschot JAJ, te Loo DMWM, Coenen MJH. Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 2022; 22:1326. [PMID: 36536332 PMCID: PMC9761983 DOI: 10.1186/s12885-022-10434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone tumor in children and adolescents. Despite multiagent chemotherapy, only 71% of patients survives and these survivors often experience long-term toxicities. The main objective of this systematic review is to provide an overview of the discovery of novel associations of germline polymorphisms with treatment response and/or chemotherapy-induced toxicities in osteosarcoma. METHODS: MEDLINE and Embase were systematically searched (2010-July 2022). Genetic association studies were included if they assessed > 10 germline genetic variants in > 5 genes in relevant drug pathways or if they used a genotyping array or other large-scale genetic analysis. Quality was assessed using adjusted STrengthening the REporting of Genetic Association studies (STREGA)-guidelines. To find additional evidence for the identified associations, literature was searched to identify replication studies. RESULTS After screening 1999 articles, twenty articles met our inclusion criteria. These range from studies focusing on genes in relevant pharmacokinetic pathways to whole genome sequencing. Eleven articles reported on doxorubicin-induced cardiomyopathy. For seven genetic variants in CELF4, GPR35, HAS3, RARG, SLC22A17, SLC22A7 and SLC28A3, replication studies were performed, however without consistent results. Ototoxicity was investigated in one study. Five small studies reported on mucosistis or bone marrow, nephro- and/or hepatotoxicity. Six studies included analysis for treatment efficacy. Genetic variants in ABCC3, ABCC5, FasL, GLDC, GSTP1 were replicated in studies using heterogeneous efficacy outcomes. CONCLUSIONS Despite that results are promising, the majority of associations were poorly reproducible due to small patient cohorts. For the future, hypothesis-generating studies in large patient cohorts will be necessary, especially for cisplatin-induced ototoxicity as these are largely lacking. In order to form large patient cohorts, national and international collaboration will be essential.
Collapse
Affiliation(s)
- Evelien G. E. Hurkmans
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Annouk C. A. M. Brand
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Job A. J. Verdonschot
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. Maroeska W. M. te Loo
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands ,grid.5645.2000000040459992XDepartment of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Hasbullah JS, Scott EN, Bhavsar AP, Gunaretnam EP, Miao F, Soliman H, Carleton BC, Ross CJD. All-trans retinoic acid (ATRA) regulates key genes in the RARG-TOP2B pathway and reduces anthracycline-induced cardiotoxicity. PLoS One 2022; 17:e0276541. [PMID: 36331922 PMCID: PMC9635745 DOI: 10.1371/journal.pone.0276541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
The effectiveness of anthracycline chemotherapeutics (e.g., doxorubicin) is limited by anthracycline-induced cardiotoxicity (ACT). A nonsynonymous variant (S427L) in the retinoic acid receptor-γ (RARG) gene has been associated with ACT. This variant causes reduced RARG activity, which is hypothesized to lead to increased susceptibility to ACT through reduced activation of the retinoic acid pathway. This study explored the effects of activating the retinoic acid pathway using a RAR-agonist, all-trans retinoic acid (ATRA), in human cardiomyocytes and mice treated with doxorubicin. In human cardiomyocytes, ATRA induced the gene expression of RARs (RARG, RARB) and repressed the expression of topoisomerase II enzyme genes (TOP2A, TOP2B), which encode for the molecular targets of anthracyclines and repressed downstream ACT response genes. Importantly, ATRA enhanced cell survival of human cardiomyocytes exposed to doxorubicin. The protective effect of ATRA was also observed in a mouse model (B6C3F1/J) of ACT, in which ATRA treatment improved heart function compared to doxorubicin-only treated mice. Histological analyses of the heart also indicated that ATRA treatment reduced the pathology associated with ACT. These findings provide additional evidence for the retinoic acid pathway's role in ACT and suggest that the RAR activator ATRA can modulate this pathway to reduce ACT.
Collapse
Affiliation(s)
- Jafar S. Hasbullah
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Erika N. Scott
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erandika P. Gunaretnam
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fudan Miao
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hesham Soliman
- School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce C. Carleton
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J. D. Ross
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Li MY, Peng LM, Chen XP. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future. Front Cardiovasc Med 2022; 9:966261. [PMID: 36312261 PMCID: PMC9606405 DOI: 10.3389/fcvm.2022.966261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
Drug-induced cardiotoxicity (DICT) is an important concern of drug safety in both drug development and clinical application. The clinical manifestations of DICT include cardiomyopathy, arrhythmia, myocardial ischemia, heart failure, and a series of cardiac structural and functional changes. The occurrence of DICT has negative impacts on the life quality of the patients, brings additional social and economic burden. It is important to identify the potential factors and explore the mechanisms of DICT. Traditional cardiovascular risk factors can only partially explain the risk of DICT. Pharmacogenomic studies show accumulated evidence of genetics in DICT and suggest the potential to guide precision therapy to reduce risk of cardiotoxicity. The comprehensive application of technologies such as third-generation sequencing, human induced pluripotent stem (iPS) cells and genome editing has promoted the in-depth understanding of the functional role of susceptible genes in DICT. This paper reviewed drugs that cause DICT, the clinical manifestations and laboratory tests, as well as the related content of genetic variations associated with the risk of DICT, and further discussed the implication of new technologies in pharmacogenomics of DICT.
Collapse
Affiliation(s)
- Mo-Yun Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Li-Ming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Li-Ming Peng
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Xiao-Ping Chen
| |
Collapse
|
12
|
Altena R, Bajalica-Lagercrantz S, Papakonstantinou A. Pharmacogenomics for Prediction of Cardiovascular Toxicity: Landscape of Emerging Data in Breast Cancer Therapies. Cancers (Basel) 2022; 14:cancers14194665. [PMID: 36230587 PMCID: PMC9563074 DOI: 10.3390/cancers14194665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacogenomics is an emerging field in oncology, one that could provide valuable input on identifying patients with inherent risk of toxicity, thus allowing for treatment tailoring and personalization on the basis of the clinical and genetic characteristics of a patient. Cardiotoxicity is a well-known side effect of anthracyclines and anti-HER2 agents, although at a much lower incidence for the latter. Data on single-nucleotide polymorphisms related to cardiotoxicity are emerging but are still scarce, mostly being of retrospective character and heterogeneous. A literature review was performed, aiming to describe current knowledge in pharmacogenomics and prediction of cardiotoxicity related to breast cancer systemic therapies and radiotherapies. Most available data regard genes encoding various enzymes related to anthracycline metabolism and HER2 polymorphisms. The available data are presented, together with the challenges and open questions in the field.
Collapse
Affiliation(s)
- Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Breast cancer, Endocrine tumors and Sarcoma, Theme Cancer, Karolinska University Hospital, 17 176 Stockholm, Sweden
| | - Svetlana Bajalica-Lagercrantz
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, 17 176 Stockholm, Sweden
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Breast cancer, Endocrine tumors and Sarcoma, Theme Cancer, Karolinska University Hospital, 17 176 Stockholm, Sweden
- Breast Cancer Group, Vall D’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
13
|
Hamledari H, Asghari P, Jayousi F, Aguirre A, Maaref Y, Barszczewski T, Ser T, Moore E, Wasserman W, Klein Geltink R, Teves S, Tibbits GF. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front Cardiovasc Med 2022; 9:967659. [PMID: 36061558 PMCID: PMC9429949 DOI: 10.3389/fcvm.2022.967659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and reduced quality of life globally. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a personalized platform to study inherited heart diseases, drug-induced cardiac toxicity, and cardiac regenerative therapy. However, the immaturity of CMs obtained by current strategies is a major hurdle in utilizing hiPSC-CMs at their fullest potential. Here, the major findings and limitations of current maturation methodologies to enhance the utility of hiPSC-CMs in the battle against a major source of morbidity and mortality are reviewed. The most recent knowledge of the potential signaling pathways involved in the transition of fetal to adult CMs are assimilated. In particular, we take a deeper look on role of nutrient sensing signaling pathways and the potential role of cap-independent translation mediated by the modulation of mTOR pathway in the regulation of cardiac gap junctions and other yet to be identified aspects of CM maturation. Moreover, a relatively unexplored perspective on how our knowledge on the effects of preterm birth on cardiovascular development can be actually utilized to enhance the current understanding of CM maturation is examined. Furthermore, the interaction between the evolving neonatal human heart and brown adipose tissue as the major source of neonatal thermogenesis and its endocrine function on CM development is another discussed topic which is worthy of future investigation. Finally, the current knowledge regarding transcriptional mediators of CM maturation is still limited. The recent studies have produced the groundwork to better understand CM maturation in terms of providing some of the key factors involved in maturation and development of metrics for assessment of maturation which proves essential for future studies on in vitro PSC-CMs maturation.
Collapse
Affiliation(s)
- Homa Hamledari
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Farah Jayousi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Alejandro Aguirre
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Yasaman Maaref
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tiffany Barszczewski
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Terri Ser
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Edwin Moore
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ramon Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Sheila Teves
- Department of Biochemistry and Molecular Biology, University of British Colombia, Vancouver, BC, Canada
| | - Glen F. Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
15
|
Cartas‐Espinel I, Telechea‐Fernández M, Manterola Delgado C, Ávila Barrera A, Saavedra Cuevas N, Riffo‐Campos AL. Novel molecular biomarkers of cancer therapy-induced cardiotoxicity in adult population: a scoping review. ESC Heart Fail 2022; 9:1651-1665. [PMID: 35261178 PMCID: PMC9065865 DOI: 10.1002/ehf2.13735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
AIM Cancer treatments are associated with cardiotoxic events that predispose to cardiac pathology and compromise the survival of patients, making necessary the identification of new molecular biomarkers to detect cardiotoxicity. This scoping review aims to identify the available evidence on novel molecular biomarkers associated with cardiotoxicity in the adult population undergoing cancer therapy. METHODS AND RESULTS The databases Medline, Web of Science, Scopus, and Embase were screened for the identification of published studies until 23 August 2020, searching for novel molecular biomarkers reported in cancer therapy-related cardiac dysfunction in adult patients. A total of 42 studies that met the eligibility criteria were included. Fourteen studies reported 44 new protein biomarkers, 18 studies reported 57 new single nucleotide polymorphism biomarkers, and 11 studies reported 171 new gene expression profiles associated with cardiotoxicity. Data were extracted for 272 novel molecular biomarkers reported and evaluated in 7084 cancer patients, of which only 13 were identified in more than one study (MPO, sST2, GDF-15, TGF-B1, rs1056892, rs1883112, rs4673, rs13058338, rs1695, miR-1, miR-25-3p, miR-34a-5p, and miR-423-5p), showing values for area under the curve > 0.73 (range 0.74-0.85), odds ratio 0.26-7.17, and hazard ratio 1.28-1.80. CONCLUSIONS Multiple studies presented a significant number of novel molecular biomarkers as promising predictors for risk assessment of cardiac dysfunction related to cancer therapy, but the characteristics of the studies carried out and the determinations applied do not allow suggesting the clinical use of these molecular biomarkers in the assessment of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Irene Cartas‐Espinel
- Programa de Doctorado en Ciencias mención Biología Celular y Molecular AplicadaUniversidad de La FronteraTemucoChile
| | | | - Carlos Manterola Delgado
- Departamento de CirugíaUniversidad de La FronteraTemucoChile
- Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ)Universidad de La FronteraTemucoChile
- Programa de Doctorado en Ciencias MédicasUniversidad de La FronteraTemucoChile
| | - Andrés Ávila Barrera
- Centro de Excelencia de Modelación y Computación CientíficaUniversidad de La FronteraTemucoChile
| | | | - Angela L. Riffo‐Campos
- Programa de Doctorado en Ciencias MédicasUniversidad de La FronteraTemucoChile
- Vicerrectoría AcadémicaUniversidad de La FronteraTemucoChile
| |
Collapse
|
16
|
Bosire R, Fadel L, Mocsár G, Nánási P, Sen P, Sharma AK, Naseem MU, Kovács A, Kugel J, Kroemer G, Vámosi G, Szabó G. Doxorubicin impacts chromatin binding of HMGB1, Histone H1 and retinoic acid receptor. Sci Rep 2022; 12:8087. [PMID: 35577872 PMCID: PMC9110345 DOI: 10.1038/s41598-022-11994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Doxorubicin (Dox), a widely used anticancer DNA-binding drug, affects chromatin in multiple ways, and these effects contribute to both its efficacy and its dose-limiting side effects, especially cardiotoxicity. Here, we studied the effects of Dox on the chromatin binding of the architectural proteins high mobility group B1 (HMGB1) and the linker histone H1, and the transcription factor retinoic acid receptor (RARα) by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) in live cells. At lower doses, Dox increased the binding of HMGB1 to DNA while decreasing the binding of the linker histone H1. At higher doses that correspond to the peak plasma concentrations achieved during chemotherapy, Dox reduced the binding of HMGB1 as well. This biphasic effect is interpreted in terms of a hierarchy of competition between the ligands involved and Dox-induced local conformational changes of nucleosome-free DNA. Combined, FRAP and FCS mobility data suggest that Dox decreases the overall binding of RARα to DNA, an effect that was only partially overcome by agonist binding. The intertwined interactions described are likely to contribute to both the effects and side effects of Dox.
Collapse
Affiliation(s)
- Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Lina Fadel
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Pialy Sen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anshu Kumar Sharma
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Kovács
- Department of Radiation Therapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jennifer Kugel
- Department of Biochemistry, University of Colorado, Boulder, USA
| | - Guido Kroemer
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
17
|
Huang H, Christidi E, Shafaattalab S, Davis MK, Tibbits GF, Brunham LR. RARG S427L attenuates the DNA repair response to doxorubicin in induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 2022; 17:756-765. [PMID: 35364012 PMCID: PMC9023798 DOI: 10.1016/j.stemcr.2022.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Doxorubicin is a commonly used chemotherapeutic drug, but its use is limited by doxorubicin-induced cardiotoxicity (DIC), which can lead to irreversible heart failure and death. A missense variant rs2229774 (p.S427L) in the retinoic acid receptor gamma (RARG) gene is associated with increased susceptibility to DIC, but the precise mechanism underlying this association is incompletely understood. We performed molecular dynamic simulations to determine the effect of this variant on RARG structure and then validated these predictions using CRISPR-Cas9-genome-edited, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We found that this variant leads to reduced activation of its target genes in response to doxorubicin, including gene pathways involved in DNA repair and consequently an inability to mediate DNA repair after exposure to doxorubicin. Our findings establish a role of RARG p.S427L in attenuating DNA repair in DIC and provide insight into the pathogenesis of this cardiotoxic effect. RARG p.S427L is predicted to alter the stability of the C terminus of the protein The RARG p.S427L variant has impaired ability to activate its target genes This variant attenuates the DNA repair response to doxorubicin
Collapse
Affiliation(s)
- Haojun Huang
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Effimia Christidi
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Margot K Davis
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
18
|
Eisvand F, Imenshahidi M, Ghasemzadeh Rahbardar M, Tabatabaei Yazdi SA, Rameshrad M, Razavi BM, Hosseinzadeh H. Cardioprotective effects of alpha‐mangostin on doxorubicin‐induced cardiotoxicity in rats. Phytother Res 2021; 36:506-524. [DOI: 10.1002/ptr.7356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | | | | | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
19
|
Velasco-Ruiz A, Nuñez-Torres R, Pita G, Wildiers H, Lambrechts D, Hatse S, Delombaerde D, Van Brussel T, Alonso MR, Alvarez N, Herraez B, Vulsteke C, Zamora P, Lopez-Fernandez T, Gonzalez-Neira A. POLRMT as a Novel Susceptibility Gene for Cardiotoxicity in Epirubicin Treatment of Breast Cancer Patients. Pharmaceutics 2021; 13:1942. [PMID: 34834357 PMCID: PMC8622627 DOI: 10.3390/pharmaceutics13111942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
Anthracyclines are among the most used chemotherapeutic agents in breast cancer (BC). However their use is hampered by anthracycline-induced cardiotoxicity (AIC). The currently known clinical and genetic risk factors do not fully explain the observed inter-individual variability and only have a limited ability to predict which patients are more likely to develop this severe toxicity. To identify novel predictive genes, we conducted a two-stage genome-wide association study in epirubicin-treated BC patients. In the discovery phase, we genotyped over 700,000 single nucleotide variants in a cohort of 227 patients. The most interesting finding was rs62134260, located 4kb upstream of POLRMT (OR = 5.76, P = 2.23 × 10-5). We replicated this association in a validation cohort of 123 patients (P = 0.021). This variant regulates the expression of POLRMT, a gene that encodes a mitochondrial DNA-directed RNA polymerase, responsible for mitochondrial gene expression. Individuals harbouring the risk allele had a decreased expression of POLRMT in heart tissue that may cause an impaired capacity to maintain a healthy mitochondrial population in cardiomyocytes under stressful conditions, as is treatment with epirubicin. This finding suggests a novel molecular mechanism involved in the development of AIC and may improve our ability to predict patients who are at risk.
Collapse
Affiliation(s)
- Alejandro Velasco-Ruiz
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Rocio Nuñez-Torres
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Guillermo Pita
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Multidisciplinary Breast Centre, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Katholieke Universiteit (KU) Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Centre for Cancer Biology (CCB), Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, 9052 Leuven, Belgium; (D.L.); (T.V.B.)
| | - Sigrid Hatse
- Multidisciplinary Breast Centre, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Katholieke Universiteit (KU) Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Danielle Delombaerde
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, 9000 Ghent, Belgium; (D.D.); (C.V.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Thomas Van Brussel
- Laboratory of Translational Genetics, Centre for Cancer Biology (CCB), Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, 9052 Leuven, Belgium; (D.L.); (T.V.B.)
| | - M. Rosario Alonso
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Nuria Alvarez
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Belen Herraez
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Christof Vulsteke
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, 9000 Ghent, Belgium; (D.D.); (C.V.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Pilar Zamora
- Department of Medical Oncology, University Hospital La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Teresa Lopez-Fernandez
- Department of Cardiology, University Hospital La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Anna Gonzalez-Neira
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| |
Collapse
|
20
|
Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now. Cells 2021; 10:cells10113112. [PMID: 34831333 PMCID: PMC8623147 DOI: 10.3390/cells10113112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.
Collapse
|
21
|
Huang MF, Pang LK, Chen YH, Zhao R, Lee DF. Cardiotoxicity of Antineoplastic Therapies and Applications of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells 2021; 10:2823. [PMID: 34831045 PMCID: PMC8616116 DOI: 10.3390/cells10112823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The therapeutic landscape for the treatment of cancer has evolved significantly in recent decades, aided by the development of effective oncology drugs. However, many cancer drugs are often poorly tolerated by the body and in particular the cardiovascular system, causing adverse and sometimes fatal side effects that negate the chemotherapeutic benefits. The prevalence and severity of chemotherapy-induced cardiotoxicity warrants a deeper investigation of the mechanisms and implicating factors in this phenomenon, and a consolidation of scientific efforts to develop mitigating strategies. Aiding these efforts is the emergence of induced pluripotent stem cells (iPSCs) in recent years, which has allowed for the generation of iPSC-derived cardiomyocytes (iPSC-CMs): a human-based, patient-derived, and genetically variable platform that can be applied to the study of chemotherapy-induced cardiotoxicity and beyond. After surveying chemotherapy-induced cardiotoxicity and the associated chemotherapeutic agents, we discuss the use of iPSC-CMs in cardiotoxicity modeling, drug screening, and other potential applications. Improvements to the iPSC-CM platform, such as the development of more adult-like cardiomyocytes and ongoing advances in biotechnology, will only enhance the utility of iPSC-CMs in both basic science and clinical applications.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (L.K.P.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lon Kai Pang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (L.K.P.)
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hung Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (L.K.P.)
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (L.K.P.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
22
|
Guo H, Liu L, Nishiga M, Cong L, Wu JC. Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends Genet 2021; 37:1109-1123. [PMID: 34509299 DOI: 10.1016/j.tig.2021.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Genetic variants play an important role in conferring risk for cardiovascular diseases (CVDs). With the rapid development of next-generation sequencing (NGS), thousands of genetic variants associated with CVDs have been identified by genome-wide association studies (GWAS), but the function of more than 40% of genetic variants is still unknown. This gap of knowledge is a barrier to the clinical application of the genetic information. However, determining the pathogenicity of a variant of uncertain significance (VUS) is challenging due to the lack of suitable model systems and accessible technologies. By combining clustered regularly interspaced short palindromic repeats (CRISPR) and human induced pluripotent stem cells (iPSCs), unprecedented advances are now possible in determining the pathogenicity of VUS in CVDs. Here, we summarize recent progress and new strategies in deciphering pathogenic variants for CVDs using CRISPR-edited human iPSCs.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Berkman AM, Hildebrandt MA, Landstrom AP. The genetic underpinnings of anthracycline-induced cardiomyopathy predisposition. Clin Genet 2021; 100:132-143. [PMID: 33871046 PMCID: PMC9902211 DOI: 10.1111/cge.13968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Anthracyclines, chemotherapeutic agents that have contributed to significant improvements in cancer survival, also carry risk of both acute and chronic cardiotoxicity. This has led to significantly elevated risks of cardiac morbidity and mortality among cancer survivors treated with these agents. Certain treatment related, demographic, and medical factors increase an individual's risk of anthracycline induced cardiotoxicity; however, significant variability among those affected suggests that there is an underlying genetic predisposition to anthracycline induced cardiotoxicity. The current narrative review seeks to summarize the literature to date that has identified genetic variants associated with anthracycline induced cardiotoxicity. These include variants found in genes that encode proteins associated with anthracycline transportation and metabolism, those that encode proteins associated with the generation of reactive oxygen species, and those known to be associated with cardiac disease. While there is strong evidence that susceptibility to anthracycline induced cardiotoxicity has genetic underpinnings, the majority of work to date has been candidate gene analyses. Future work should focus on genome-wide analyses including genome-wide association and sequencing-based studies to confirm and expand these findings.
Collapse
Affiliation(s)
- Amy M. Berkman
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, 2301 Erwin Drive, Durham, North Carolina, United States
| | - Michelle A.T. Hildebrandt
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, United States
| | - Andrew P. Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, 2301 Erwin Drive, Durham, North Carolina, United States
- Department of Cell Biology, Duke University School of Medicine, 2301 Erwin Drive, Durham, North Carolina, United States
| |
Collapse
|
24
|
Retinoids in hematology: a timely revival? Blood 2021; 137:2429-2437. [PMID: 33651885 DOI: 10.1182/blood.2020010100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
The retinoic acid receptors (RARA, RARB, and RARG) are ligand-regulated nuclear receptors that act as transcriptional switches. These master genes drew significant interest in the 1990s because of their key roles in embryogenesis and involvement in a rare malignancy, acute promyelocytic leukemia (APL), in which the RARA (and very rarely, RARG or RARB) genes are rearranged, underscoring the central role of deregulated retinoid signaling in leukemogenesis. Several recent provocative observations have revived interest in the roles of retinoids in non-APL acute myeloid leukemia (AML), as well as in normal hematopoietic differentiation. We review the role of retinoids in hematopoiesis, as well as in the treatment of non-APL AMLs. From this perspective, broader uses of retinoids in the management of hematopoietic tumors are discussed.
Collapse
|
25
|
Modeling Precision Cardio-Oncology: Using Human-Induced Pluripotent Stem Cells for Risk Stratification and Prevention. Curr Oncol Rep 2021; 23:77. [PMID: 33937943 PMCID: PMC8088904 DOI: 10.1007/s11912-021-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
Purpose of Review Cardiovascular toxicity is a leading cause of mortality among cancer survivors and has become increasingly prevalent due to improved cancer survival rates. In this review, we synthesize evidence illustrating how common cancer therapeutic agents, such as anthracyclines, human epidermal growth factors receptors (HER2) monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been evaluated in cardiomyocytes (CMs) derived from human-induced pluripotent stem cells (hiPSCs) to understand the underlying mechanisms of cardiovascular toxicity. We place this in the context of precision cardio-oncology, an emerging concept for personalizing the prevention and management of cardiovascular toxicities from cancer therapies, accounting for each individual patient’s unique factors. We outline steps that will need to be addressed by multidisciplinary teams of cardiologists and oncologists in partnership with regulators to implement future applications of hiPSCs in precision cardio-oncology. Recent Findings Current prevention of cardiovascular toxicity involves routine screenings and management of modifiable risk factors for cancer patients, as well as the initiation of cardioprotective medications. Despite recent advancements in precision cardio-oncology, knowledge gaps remain and limit our ability to appropriately predict with precision which patients will develop cardiovascular toxicity. Investigations using patient-specific CMs facilitate pharmacological discovery, mechanistic toxicity studies, and the identification of cardioprotective pathways. Studies with hiPSCs demonstrate that patients with comorbidities have more frequent adverse responses, compared to their counterparts without cardiac disease. Further studies utilizing hiPSC modeling should be considered, to evaluate the impact and mitigation of known cardiovascular risk factors, including blood pressure, body mass index (BMI), smoking status, diabetes, and physical activity in their role in cardiovascular toxicity after cancer therapy. Future real-world applications will depend on understanding the current use of hiPSC modeling in order for oncologists and cardiologists together to inform their potential to improve our clinical collaborative practice in cardio-oncology. Summary When applying such in vitro characterization, it is hypothesized that a safety score can be assigned to each individual to determine who has a greater probability of developing cardiovascular toxicity. Using hiPSCs to create personalized models and ultimately evaluate the cardiovascular toxicity of individuals’ treatments may one day lead to more patient-specific treatment plans in precision cardio-oncology while reducing cardiovascular disease (CVD) morbidity and mortality.
Collapse
|
26
|
Chen H, Jiang B, Shamul JG, He X. Image entropy-based label-free functional characterization of human induced pluripotent stem cell-derived 3D cardiac spheroids. Biosens Bioelectron 2021; 179:113055. [PMID: 33582565 DOI: 10.1016/j.bios.2021.113055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Human induced pluripotent stem cell-derived cardiac spheroids (iPSC-CSs) in 3D possess tremendous potential for treating heart diseases and screening drugs for their cardiac effect. The beating pattern (including beating frequency and amplitude) of iPSC-CSs is a direct indicator of their health and function. However, detecting the beating pattern of 3D cardiac spheroid is not well studied and the probes commonly used for labeling cardiomyocytes for their beating pattern detection is toxic during long-term culture. Here, we reveal that the beating pattern of 3D iPSC-CSs can be conveniently detected/quantified by calculating the relative change of entropy in all the frames/images of non-fluorescent optical signal without labeling any cells. The entropy rate superpixel segmentation method is used for image segmentation in frames containing multiple or aggregated iPSC-CSs to identify individual iPSC-CSs, enabling rapid detection/quantification of the beating pattern of each iPSC-CS. Moreover, the responses of iPSC-CSs to both anticancer and cardiac drugs can be reliably detected with the image entropy-based label-free method in terms of their beating patterns. This novel label-free approach may be valuable for convenient and efficient functional evaluation of 3D and 2D cardiac constructs, which is important not only for drug screening but also the advancement of manufacturing functional cardiac constructs to treat heart diseases.
Collapse
Affiliation(s)
- Hao Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA; College of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
27
|
Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis 2021; 12:339. [PMID: 33795647 PMCID: PMC8017015 DOI: 10.1038/s41419-021-03614-x] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Doxorubicin is a chemotherapeutic drug used for the treatment of various malignancies; however, patients can experience cardiotoxic effects and this has limited the use of this potent drug. The mechanisms by which doxorubicin kills cardiomyocytes has been elusive and despite extensive research the exact mechanisms remain unknown. This review focuses on recent advances in our understanding of doxorubicin induced regulated cardiomyocyte death pathways including autophagy, ferroptosis, necroptosis, pyroptosis and apoptosis. Understanding the mechanisms by which doxorubicin leads to cardiomyocyte death may help identify novel therapeutic agents and lead to more targeted approaches to cardiotoxicity testing.
Collapse
Affiliation(s)
- Effimia Christidi
- grid.17091.3e0000 0001 2288 9830Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Liam R. Brunham
- grid.17091.3e0000 0001 2288 9830Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medicine, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
28
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
29
|
Lam CK, Wu JC. Clinical Trial in a Dish: Using Patient-Derived Induced Pluripotent Stem Cells to Identify Risks of Drug-Induced Cardiotoxicity. Arterioscler Thromb Vasc Biol 2021; 41:1019-1031. [PMID: 33472401 PMCID: PMC11006431 DOI: 10.1161/atvbaha.120.314695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cardiotoxicity is a significant clinical issue, with many drugs in the market being labeled with warnings on cardiovascular adverse effects. Treatments are often prematurely halted when cardiotoxicity is observed, which limits their therapeutic potential. Moreover, cardiotoxicity is a major reason for abandonment during drug development, reducing available treatment options for diseases and creating a significant financial burden and disincentive for drug developers. Thus, it is important to minimize the cardiotoxic effects of medications that are in use or in development. To this end, identifying patients at a higher risk of developing cardiovascular adverse effects for the drug of interest may be an effective strategy. The discovery of human induced pluripotent stem cells has enabled researchers to generate relevant cell types that retain a patient's own genome and examine patient-specific disease mechanisms, paving the way for precision medicine. Combined with the rapid development of pharmacogenomic analysis, the ability of induced pluripotent stem cell-derivatives to recapitulate patient-specific drug responses provides a powerful platform to identify subsets of patients who are particularly vulnerable to drug-induced cardiotoxicity. In this review, we will discuss the current use of patient-specific induced pluripotent stem cells in identifying populations who are at risk to drug-induced cardiotoxicity and their potential applications in future precision medicine practice. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
30
|
Bhatia S. Genetics of Anthracycline Cardiomyopathy in Cancer Survivors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2020; 2:539-552. [PMID: 33364618 PMCID: PMC7757557 DOI: 10.1016/j.jaccao.2020.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
Anthracyclines are an integral part of chemotherapy regimens used to treat a variety of childhood-onset and adult-onset cancers. However, the development of cardiac dysfunction and heart failure often compromises the clinical utility of anthracyclines. The risk of cardiac dysfunction increases with anthracycline dose. This anthracycline-cardiac dysfunction association is modified by several demographic and clinical factors, such as age at anthracycline exposure (<4 years and ≥65 years); female sex; chest radiation; presence of cardiovascular risk factors (diabetes, hypertension); and concurrent use of cyclophosphamide, paclitaxel, and trastuzumab. However, the clinical variables alone yield modest predictive power in detecting cardiac dysfunction. Recently, attention has focused on the molecular basis of anthracycline-related cardiac dysfunction, providing an initial understanding of the mechanism of anthracycline-related cardiomyopathy. This review describes the current state of knowledge with respect to the pathogenesis of anthracycline-related cardiomyopathy and identifies the critical next steps to mitigate this problem.
Collapse
Affiliation(s)
- Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Rhee JW, Ky B, Armenian SH, Yancy CW, Wu JC. Primer on Biomarker Discovery in Cardio-Oncology: Application of Omics Technologies. JACC: CARDIOONCOLOGY 2020; 2:379-384. [PMID: 33073248 PMCID: PMC7560982 DOI: 10.1016/j.jaccao.2020.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- June-Wha Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Bonnie Ky
- Department of Medicine, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saro H Armenian
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Clyde W Yancy
- Department of Medicine, Division of Cardiology, Northwestern Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|