1
|
Qiu H, Zhang R, Si D, Shu Y, Liu J, Xia Y, Zhou O, Tan W, Yang K, Tian D, Luo Z, Liu E, Zou L, Fu Z, Peng D. Human Umbilical Cord-Mesenchymal Stem Cells Combined With Low Dosage Nintedanib Rather Than Using Alone Mitigates Pulmonary Fibrosis in Mice. Stem Cells Int 2025; 2025:9445735. [PMID: 39817116 PMCID: PMC11732289 DOI: 10.1155/sci/9445735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention. RNA-Seq followed with real-time PCR and western blot were used to find out the specific possible mechanisms of the effects of hUC-MSC and nintedanib on PF. Immunostaining, cell counting kit-8 (CCK-8), and 5-bromo-2'-deoxyuridine (BrdU) incorporation assay were used to detect the cell proliferation in vivo or in vitro separately. We found that hUC-MSCs alone had prophylactic, but not therapeutic effects on bleomycin induced mouse PF. Nevertheless, the combination therapy of hUC-MSCs and low-dose nintedanib significantly improved survival and reversed lung fibrosis in PF model mice. The factors secreted by hUC-MSCs have promotional effects on the proliferation both of fibroblasts and AECs. Nintedanib could hamper the facilitation of fibroblasts caused by hUC-MSCs without influence on AECs proliferation, which might be related with the inhibition on FGFR, PDGFR, and VEGFR activities. Our study indicated that the combination therapy of hUC-MSCs and nintedanib should be a promising strategy for PF.
Collapse
Affiliation(s)
- Huijun Qiu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Rong Zhang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Daozhu Si
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Yi Shu
- Centre for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jiang Liu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Yunqiu Xia
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Ou Zhou
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Wen Tan
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Ke Yang
- Chongqing Engineering Research Centre of Stem Cell Therapy, Chongqing 400014, China
| | - Daiyin Tian
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Enmei Liu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Lin Zou
- Centre for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Engineering Research Centre of Stem Cell Therapy, Chongqing 400014, China
| | - Zhou Fu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Engineering Research Centre of Stem Cell Therapy, Chongqing 400014, China
| | - Danyi Peng
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| |
Collapse
|
2
|
Yang L, Xia H, Smith K, Gilbertsen AJ, Jbeli AH, Abrahante JE, Bitterman PB, Henke CA. Tumor suppressors RBL1 and PTEN are epigenetically silenced in IPF mesenchymal progenitor cells by a CD44/Brg1/PRMT5 regulatory complex. Am J Physiol Lung Cell Mol Physiol 2024; 327:L949-L963. [PMID: 39406384 DOI: 10.1152/ajplung.00182.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
The idiopathic pulmonary fibrosis (IPF) lung contains mesenchymal progenitor cells (MPCs) that display durable activation of oncogenic signaling and cell-autonomous fibrogenicity in vivo. Prior work identified a CD44/Brg1/PRMT5 nuclear regulatory module in IPF MPCs that increased the expression of genes positively regulating pluripotency and self-renewal. Left unanswered is how IPF MPCs evade negative regulation of self-renewal. Here we sought to identify mechanisms disabling negative regulation of self-renewal in IPF MPCs. We demonstrate that expression of the tumor suppressor genes rbl1 and pten is decreased in IPF MPCs. The mechanism involves the CD44-facilitated association of the chromatin remodeler Brg1 with the histone-modifying methyltransferase PRMT5. Brg1 enhances chromatin accessibility leading to PRMT5-mediated methylation of H3R8 and H4R3 on the rbl1 and pten genes, repressing their expression. Genetic knockdown or pharmacological inhibition of either Brg1 or PRMT5 restored RBL1 and PTEN expression reduced IPF MPC self-renewal in vitro and inhibited IPF MPC-mediated pulmonary fibrosis in vivo. Our studies indicate that the CD44/Brg1/PRMT5 regulatory module not only functions to activate positive regulators of pluripotency and self-renewal but also functions to repress tumor suppressor genes rbl1 and pten. This confers IPF MPCs with the cancer-like property of cell-autonomous self-renewal providing a molecular mechanism for relentless fibrosis progression in IPF.NEW & NOTEWORTHY Here we demonstrate that a CD44/Brg1/PRMT5 epigenetic regulatory module represses the tumor suppressor genes RBL1 and PTEN in IPF mesenchymal progenitor cells, thereby promoting their self-renewal and maintenance of a critical pool of fibrogenic mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Adam J Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Aiham H Jbeli
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Juan E Abrahante
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, United States
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
3
|
Jbeli AH, Yang L, Xia H, Gilbertsen AJ, Bitterman PB, Henke CA. Brg1/PRMT5 nuclear complex epigenetically regulates FOXO1 in IPF mesenchymal progenitor cells. Am J Physiol Lung Cell Mol Physiol 2024; 326:L344-L352. [PMID: 38252663 PMCID: PMC11281790 DOI: 10.1152/ajplung.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
We have discovered intrinsically fibrogenic mesenchymal progenitor cells (MPCs) in the human idiopathic pulmonary fibrosis (IPF) lung. IPF MPCs display a durably distinct transcriptome, suggesting that they have undergone epigenetic modifications. Prior studies indicate that the chromatin remodeler Brg1 associates with the arginine methyltransferase PRMT5 to epigenetically regulate transcription factors. We hypothesize that a Brg1/PRMT5 nuclear complex epigenetically regulates critical nodes in IPF MPC self-renewal signaling networks. IPF and control MPCs were isolated from primary mesenchymal cell lines established from IPF and control patients. RNA-sequencing identified increased expression of the FOXO1 transcription factor in IPF MPCs compared with controls, a result we confirmed by Q-PCR and Western blot analysis. Immunoprecipitation identified a CD44/Brg1/PRMT5 nuclear complex in IPF MPCs. Chromatin immunoprecipitation assays showed that PRMT5 and its methylation mark H3R2me2 are enriched on the FOXO1 promoter. We show that loss of Brg1 and PRMT5 function decreases FOXO1 expression and impairs IPF MPC self-renewal, and that loss of FOXO1 function decreases IPF MPC self-renewal and expression of the SOX2 and OCT4 stemness markers. Our findings indicate that the FOXO1 gene is overexpressed in IPF MPCs in a CD44/Brg1/PRMT5 nuclear complex-dependent manner. Our data suggest that Brg1 alters chromatin accessibility, enriching PRMT5 occupancy on the FOXO1 promoter, and PRMT5 methylates histone H3 arginine 2 (H3R2) on the FOXO1 promoter, increasing its expression. Our data are in accord with the concept that this coordinated interplay is responsible for promoting IPF MPC self-renewal and maintaining a critical pool of fibrogenic MPCs that drive IPF progression.NEW & NOTEWORTHY Our research offers valuable understanding regarding the epigenetic control of IPF MPC. The data we obtained strongly support the idea that the coordination between chromatin remodeling and histone methylation plays a key role in regulating transcription factors. Specifically, our findings indicate that FOXO1, an essential transcription factor, likely governs the self-renewal of IPF MPC, which is crucial for maintaining a critical pool of fibrogenic MPCs. This interplay could be an important therapeutic target.
Collapse
Affiliation(s)
- Aiham H Jbeli
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Adam J Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
4
|
Escarrer-Garau G, Martín-Medina A, Truyols-Vives J, Gómez-Bellvert C, Elowsson L, Westergren-Thorsson G, Molina-Molina M, Mercader-Barceló J, Sala-Llinàs E. In Vivo and In Vitro Pro-Fibrotic Response of Lung-Resident Mesenchymal Stem Cells from Patients with Idiopathic Pulmonary Fibrosis. Cells 2024; 13:160. [PMID: 38247851 PMCID: PMC10814068 DOI: 10.3390/cells13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Lung-resident mesenchymal stem cells (LR-MSC) are thought to participate in idiopathic pulmonary fibrosis (IPF) by differentiating into myofibroblasts. On the other hand, LR-MSC in IPF patients present senescence-related features. It is unclear how they respond to a profibrotic environment. Here, we investigated the profibrotic response of LR-MSC isolated from IPF and control (CON) patients. LR-MSC were inoculated in mice 48 h after bleomycin (BLM) instillation to analyze their contribution to lung damage. In vitro, LR-MSC were exposed to TGFβ. Mice inoculated with IPF LR-MSC exhibited worse maintenance of their body weight. The instillation of either IPF or CON LR-MSC sustained BLM-induced histological lung damage, bronchoalveolar lavage fluid cell count, and the expression of the myofibroblast marker, extracellular matrix (ECM) proteins, and proinflammatory cytokines in the lungs. In vitro, IPF LR-MSC displayed higher basal protein levels of aSMA and fibronectin than CON LR-MSC. However, the TGFβ response in the expression of TGFβ, aSMA, and ECM genes was attenuated in IPF LR-MSC. In conclusion, IPF LR-MSC have acquired myofibroblastic features, but their capacity to further respond to profibrotic stimuli seems to be attenuated. In an advanced stage of the disease, LR-MSC may participate in disease progression owing to their limited ability to repair epithelial damage.
Collapse
Affiliation(s)
| | - Aina Martín-Medina
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joan Truyols-Vives
- MolONE Research Group, University of the Balearic Islands (UIB), 07122 Palma, Spain
| | | | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | | | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Josep Mercader-Barceló
- MolONE Research Group, University of the Balearic Islands (UIB), 07122 Palma, Spain
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Ernest Sala-Llinàs
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
5
|
Mercader-Barceló J, Martín-Medina A, Truyols-Vives J, Escarrer-Garau G, Elowsson L, Montes-Worboys A, Río-Bocos C, Muncunill-Farreny J, Velasco-Roca J, Cederberg A, Kadefors M, Molina-Molina M, Westergren-Thorsson G, Sala-Llinàs E. Mitochondrial Dysfunction in Lung Resident Mesenchymal Stem Cells from Idiopathic Pulmonary Fibrosis Patients. Cells 2023; 12:2084. [PMID: 37626894 PMCID: PMC10453747 DOI: 10.3390/cells12162084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by an aberrant repair response with uncontrolled turnover of extracellular matrix involving mesenchymal cell phenotypes, where lung resident mesenchymal stem cells (LRMSC) have been supposed to have an important role. However, the contribution of LRMSC in lung fibrosis is not fully understood, and the role of LRMSC in IPF remains to be elucidated. Here, we performed transcriptomic and functional analyses on LRMSC isolated from IPF and control patients (CON). Both over-representation and gene set enrichment analyses indicated that oxidative phosphorylation is the major dysregulated pathway in IPF LRMSC. The most relevant differences in biological processes included complement activation, mesenchyme development, and aerobic electron transport chain. Compared to CON LRMSC, IPF cells displayed impaired mitochondrial respiration, lower expression of genes involved in mitochondrial dynamics, and dysmorphic mitochondria. These changes were linked to an impaired autophagic response and a lower mRNA expression of pro-apoptotic genes. In addition, IPF TGFβ-exposed LRMSC presented different expression profiles of mitochondrial-related genes compared to CON TGFβ-treated cells, suggesting that TGFβ reinforces mitochondrial dysfunction. In conclusion, these results suggest that mitochondrial dysfunction is a major event in LRMSC and that their occurrence might limit LRMSC function, thereby contributing to IPF development.
Collapse
Affiliation(s)
- Josep Mercader-Barceló
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- MolONE Research Group, University of the Balearic Islands, 07122 Palma, Spain
| | - Aina Martín-Medina
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joan Truyols-Vives
- MolONE Research Group, University of the Balearic Islands, 07122 Palma, Spain
| | | | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Ana Montes-Worboys
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Carlos Río-Bocos
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | | | - Julio Velasco-Roca
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Anna Cederberg
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Måns Kadefors
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | | | - Ernest Sala-Llinàs
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Department, Son Espases University Hospital, 07120 Palma, Spain
| |
Collapse
|
6
|
Yang L, Xia H, Gilbertsen A, Smith K, Racila E, Bitterman PB, Henke CA. IL-8 concurrently promotes idiopathic pulmonary fibrosis mesenchymal progenitor cell senescence and PD-L1 expression enabling escape from immune cell surveillance. Am J Physiol Lung Cell Mol Physiol 2023; 324:L849-L862. [PMID: 37121574 PMCID: PMC10228676 DOI: 10.1152/ajplung.00028.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease. We discovered fibrogenic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients that display cell-autonomous fibrogenicity and drive fibrotic progression. In a study of the IPF MPC nuclear proteome, we identified DNA damage as one of the most altered functions in IPF MPCs. In prior work we found that IL-8 drives IPF MPC self-renewal. IL-8 can promote replicative stress and DNA damage and induce senescence through the CXCR2 receptor. We hypothesized that IL-8 promotes DNA damage-mediated senescence in IPF MPCs. We show that IL-8 induces DNA damage and promotes IPF MPC senescence. We discovered that IL-8 concurrently promotes senescence and upregulation of the programmed death ligand 1 (PD-L1) in a CXCR2-dependent manner. Disruption of programmed cell death protein-1 (PD-1)-PD-L1 interaction promotes natural killer (NK) cell killing of IPF MPCs in vitro and arrests IPF MPC-mediated experimental lung fibrosis in vivo. Immunohistochemical (IHC) analysis of IPF lung tissue identified PD-L1-expressing IPF MPCs codistributing with NK cells and β-galactosidase-positive cells. Our data indicate that IL-8 simultaneously promotes IPF MPC DNA damage-induced senescence and high PD-L1 expression, enabling IPF MPCs to elude immune cell-targeted removal. Disruption of PD-1-PD-L1 interaction may limit IPF MPC-mediated fibrotic progression.NEW & NOTEWORTHY Here we show that IL-8 concurrently promotes senescence and upregulation of PD-L1 in IPF MPCs. IHC analysis identifies the presence of senescent IPF MPCs intermingled with NK cells in the fibroblastic focus, suggesting that senescent MPCs elude immune cell surveillance. We demonstrate that disruption of PD-1/PD-L1 interaction promotes NK cell killing of IPF MPCs and arrests IPF MPC-mediated experimental lung fibrosis. Disruption of PD-1/PD-L1 interaction may be one means to limit fibrotic progression.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Emil Racila
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
7
|
Yang L, Gilbertsen A, Xia H, Benyumov A, Smith K, Herrera J, Racila E, Bitterman PB, Henke CA. Hypoxia enhances IPF mesenchymal progenitor cell fibrogenicity via the lactate/GPR81/HIF1α pathway. JCI Insight 2023; 8:e163820. [PMID: 36656644 PMCID: PMC9977506 DOI: 10.1172/jci.insight.163820] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Hypoxia is a sentinel feature of idiopathic pulmonary fibrosis (IPF). The IPF microenvironment contains high lactate levels, and hypoxia enhances cellular lactate production. Lactate, acting through the GPR81 lactate receptor, serves as a signal molecule regulating cellular processes. We previously identified intrinsically fibrogenic mesenchymal progenitor cells (MPCs) that drive fibrosis in the lungs of patients with IPF. However, whether hypoxia enhances IPF MPC fibrogenicity is unclear. We hypothesized that hypoxia increases IPF MPC fibrogenicity via lactate and its cognate receptor GPR81. Here we show that hypoxia promotes IPF MPC self-renewal. The mechanism involves hypoxia-mediated enhancement of LDHA function and lactate production and release. Hypoxia also increases HIF1α levels, and this increase in turn augments the expression of GPR81. Exogenous lactate operating through GPR81 promotes IPF MPC self-renewal. IHC analysis of IPF lung tissue demonstrates IPF MPCs expressing GPR81 and hypoxic markers on the periphery of the fibroblastic focus. We show that hypoxia enhances IPF MPC fibrogenicity in vivo. We demonstrate that knockdown of GPR81 inhibits hypoxia-induced IPF MPC self-renewal in vitro and attenuates hypoxia-induced IPF MPC fibrogenicity in vivo. Our data demonstrate that hypoxia creates a feed-forward loop that augments IPF MPC fibrogenicity via the lactate/GPR81/HIF1α pathway.
Collapse
Affiliation(s)
| | | | | | | | - Karen Smith
- CSENG Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Emil Racila
- Department of Laboratory Medicine and Pathology, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
8
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
9
|
Glenn LM, Troy LK, Corte TJ. Novel diagnostic techniques in interstitial lung disease. Front Med (Lausanne) 2023; 10:1174443. [PMID: 37188089 PMCID: PMC10175799 DOI: 10.3389/fmed.2023.1174443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Research into novel diagnostic techniques and targeted therapeutics in interstitial lung disease (ILD) is moving the field toward increased precision and improved patient outcomes. An array of molecular techniques, machine learning approaches and other innovative methods including electronic nose technology and endobronchial optical coherence tomography are promising tools with potential to increase diagnostic accuracy. This review provides a comprehensive overview of the current evidence regarding evolving diagnostic methods in ILD and to consider their future role in routine clinical care.
Collapse
Affiliation(s)
- Laura M. Glenn
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Laura M. Glenn,
| | - Lauren K. Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
10
|
Herrera JA, Dingle L, Montero MA, Venkateswaran RV, Blaikley JF, Lawless C, Schwartz MA. The UIP/IPF fibroblastic focus is a collagen biosynthesis factory embedded in a distinct extracellular matrix. JCI Insight 2022; 7:e156115. [PMID: 35852874 PMCID: PMC9462507 DOI: 10.1172/jci.insight.156115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Usual interstitial pneumonia (UIP) is a histological pattern characteristic of idiopathic pulmonary fibrosis (IPF). The UIP pattern is patchy with histologically normal lung adjacent to dense fibrotic tissue. At this interface, fibroblastic foci (FF) are present and are sites where myofibroblasts and extracellular matrix (ECM) accumulate. Utilizing laser capture microdissection-coupled mass spectrometry, we interrogated the FF, adjacent mature scar, and adjacent alveoli in 6 fibrotic (UIP/IPF) specimens plus 6 nonfibrotic alveolar specimens as controls. The data were subjected to qualitative and quantitative analysis and histologically validated. We found that the fibrotic alveoli protein signature is defined by immune deregulation as the strongest category. The fibrotic mature scar classified as end-stage fibrosis whereas the FF contained an overabundance of a distinctive ECM compared with the nonfibrotic control. Furthermore, FF were positive for both TGFB1 and TGFB3, whereas the aberrant basaloid cell lining of FF was predominantly positive for TGFB2. In conclusion, spatial proteomics demonstrated distinct protein compositions in the histologically defined regions of UIP/IPF tissue. These data revealed that FF are the main site of collagen biosynthesis and that the adjacent alveoli are abnormal. This essential information will inform future mechanistic studies on fibrosis progression.
Collapse
Affiliation(s)
| | - Lewis Dingle
- Blond McIndoe Laboratories, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - M. Angeles Montero
- Department of Histopathology, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | - Rajamiyer V. Venkateswaran
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Transplant, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | - John F. Blaikley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Transplant, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | | | - Martin A. Schwartz
- The Wellcome Centre for Cell-Matrix Research and
- Yale Cardiovascular Research Center and
- Departments of Internal Medicine (Cardiology) and Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Yang L, Gilbertsen A, Smith K, Xia H, Higgins L, Guerrero C, Henke CA. Proteomic analysis of the IPF mesenchymal progenitor cell nuclear proteome identifies abnormalities in key nodal proteins that underlie their fibrogenic phenotype. Proteomics 2022; 22:e2200018. [PMID: 35633524 PMCID: PMC9541064 DOI: 10.1002/pmic.202200018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
IPF is a progressive fibrotic lung disease whose pathogenesis remains incompletely understood. We have previously discovered pathologic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients. IPF MPCs display a distinct transcriptome and create sustained interstitial fibrosis in immune deficient mice. However, the precise pathologic alterations responsible for this fibrotic phenotype remain to be uncovered. Quantitative mass spectrometry and interactomics is a powerful tool that can define protein alterations in specific subcellular compartments that can be implemented to understand disease pathogenesis. We employed quantitative mass spectrometry and interactomics to define protein alterations in the nuclear compartment of IPF MPCs compared to control MPCs. We identified increased nuclear levels of PARP1, CDK1, and BACH1. Interactomics implicated PARP1, CDK1, and BACH1 as key hub proteins in the DNA damage/repair, differentiation, and apoptosis signaling pathways respectively. Loss of function and inhibitor studies demonstrated important roles for PARP1 in DNA damage/repair, CDK1 in regulating IPF MPC stemness and self-renewal, and BACH1 in regulating IPF MPC viability. Our quantitative mass spectrometry studies combined with interactomic analysis uncovered key roles for nuclear PARP1, CDK1, and BACH1 in regulating IPF MPC fibrogenicity.
Collapse
Affiliation(s)
- Libang Yang
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Adam Gilbertsen
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Karen Smith
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Hong Xia
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - LeeAnn Higgins
- Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Candace Guerrero
- Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Craig A. Henke
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
12
|
Uthaya Kumar DB, Motakis E, Yurieva M, Kohar V, Martinek J, Wu TC, Khoury J, Grassmann J, Lu M, Palucka K, Kaminski N, Koff JL, Williams A. Bronchial epithelium epithelial-mesenchymal plasticity forms aberrant basaloid-like cells in vitro. Am J Physiol Lung Cell Mol Physiol 2022; 322:L822-L841. [PMID: 35438006 PMCID: PMC9142163 DOI: 10.1152/ajplung.00254.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is controversial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differential expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-specific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907 lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work supports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of potential roles in the lung epithelium in health and lung disease.
Collapse
Affiliation(s)
- Dinesh Babu Uthaya Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Johad Khoury
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
13
|
Moss BJ, Ryter SW, Rosas IO. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. ANNUAL REVIEW OF PATHOLOGY 2022; 17:515-546. [PMID: 34813355 DOI: 10.1146/annurev-pathol-042320-030240] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche.
Collapse
Affiliation(s)
- Benjamin J Moss
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| |
Collapse
|
14
|
Kadefors M, Rolandsson Enes S, Åhrman E, Michaliková B, Löfdahl A, Dellgren G, Scheding S, Westergren-Thorsson G. CD105 +CD90 +CD13 + identifies a clonogenic subset of adventitial lung fibroblasts. Sci Rep 2021; 11:24417. [PMID: 34952905 PMCID: PMC8709856 DOI: 10.1038/s41598-021-03963-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal cells are important components of specified niches in the lung, and can mediate a wide range of processes including tissue regeneration and repair. Dysregulation of these processes can lead to improper remodeling of tissue as observed in several lung diseases. The mesenchymal cells responsible remain poorly described, partially due to the heterogenic nature of the mesenchymal compartment and the absence of appropriate markers. Here, we describe that CD105+CD90+ mesenchymal cells can be divided into two populations based on their expression of CD13/aminopeptidase N (CD105+CD90+CD13− and CD105+CD90+CD13+). By prospective isolation using FACS, we show that both these populations give rise to clonogenic fibroblast-like cells, but with an increased clonogenic and proliferative capacity of CD105+CD90+CD13+ cells. Transcriptomic and spatial analysis pinpoints an adventitial fibroblast subset as the origin of CD105+CD90+CD13+ clonogenic mesenchymal cells in human lung.
Collapse
Affiliation(s)
- Måns Kadefors
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | - Emma Åhrman
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Anna Löfdahl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Hematology, Skåne University Hospital Lund, Lund, Sweden
| | | |
Collapse
|
15
|
Cummins KA, Bitterman PB, Tschumperlin DJ, Wood DK. A scalable 3D tissue culture pipeline to enable functional therapeutic screening for pulmonary fibrosis. APL Bioeng 2021; 5:046102. [PMID: 34805716 PMCID: PMC8598262 DOI: 10.1063/5.0054967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease targeting the alveolar gas exchange apparatus, leading to death by asphyxiation. IPF progresses on a tissue scale through aberrant matrix remodeling, enhanced cell contraction, and subsequent microenvironment densification. Although two pharmaceuticals modestly slow progression, IPF patient survival averages less than 5 years. A major impediment to therapeutic development is the lack of high-fidelity models that account for the fibrotic microenvironment. Our goal is to create a three-dimensional (3D) platform to enable lung fibrosis studies and recapitulate IPF tissue features. We demonstrate that normal lung fibroblasts encapsulated in collagen microspheres can be pushed toward an activated phenotype, treated with FDA-approved therapies, and their fibrotic function quantified using imaging assays (extracellular matrix deposition, contractile protein expression, and microenvironment compaction). Highlighting the system's utility, we further show that fibroblasts isolated from IPF patient lungs maintain fibrotic phenotypes and manifest reduced fibrotic function when treated with epigenetic modifiers. Our system enables enhanced screening due to improved predictability and fidelity compared to 2D systems combined with superior tractability and throughput compared to 3D systems.
Collapse
Affiliation(s)
- Katherine A. Cummins
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Peter B. Bitterman
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Lagares D, Hinz B. Animal and Human Models of Tissue Repair and Fibrosis: An Introduction. Methods Mol Biol 2021; 2299:277-290. [PMID: 34028750 DOI: 10.1007/978-1-0716-1382-5_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reductionist cell culture systems are not only convenient but essential to understand molecular mechanisms of myofibroblast activation and action in carefully controlled conditions. However, tissue myofibroblasts do not act in isolation and the complexity of tissue repair and fibrosis in humans cannot be captured even by the most elaborate culture models. Over the past five decades, numerous animal models have been developed to study different aspects of myofibroblast biology and interactions with other cells and extracellular matrix. The underlying principles can be broadly classified into: (1) organ injury by trauma such as prototypical full thickness skin wounds or burns; (2) mechanical challenges, such as pressure overload of the heart by ligature of the aorta or the pulmonary vein; (3) toxic injury, such as administration of bleomycin to lungs and carbon tetrachloride to the liver; (4) organ infection with viruses, bacteria, and parasites, such as nematode infections of liver; (5) cytokine and inflammatory models, including local delivery or viral overexpression of active transforming growth factor beta; (6) "lifestyle" and metabolic models such as high-fat diet; and (7) various genetic models. We will briefly summarize the most widely used mouse models used to study myofibroblasts in tissue repair and fibrosis as well as genetic tools for manipulating myofibroblast repair functions in vivo.
Collapse
Affiliation(s)
- David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Suri GS, Kaur G, Jha CK, Tiwari M. Understanding idiopathic pulmonary fibrosis - Clinical features, molecular mechanism and therapies. Exp Gerontol 2021; 153:111473. [PMID: 34274426 DOI: 10.1016/j.exger.2021.111473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung fibrosing disease with high prevalence that has a prognosis worse than many cancers. There has been a recent influx of new observations aimed at explaining the mechanisms responsible for the initiation and progression of pulmonary fibrosis. However, despite this, the pathogenesis of the disease is largely unclear. Recent progress has been made in the characterization of specific pathologic and clinical features that have enhanced the understanding of pathologically activated molecular pathways during the onset and progression of IPF. This review highlights several of the advances that have been made and focus on the pathobiology of IPF. The work also details the different factors that are responsible for the disposition of the disease - these may be internal factors such as cellular mechanisms and genetic alterations, or they may be external factors from the environment. The changes that primarily occur in epithelial cells and fibroblasts that lead to the activation of profibrotic pathways are discussed in depth. Finally, a complete repertoire of the treatment therapies that have been used in the past as well as future medications and therapies is provided.
Collapse
|
18
|
Yang L, Xia H, Smith K, Gilbertsen A, Beisang D, Kuo J, Bitterman PB, Henke CA. A CD44/Brg1 nuclear complex confers mesenchymal progenitor cells with enhanced fibrogenicity in idiopathic pulmonary fibrosis. JCI Insight 2021; 6:144652. [PMID: 33822772 PMCID: PMC8262361 DOI: 10.1172/jci.insight.144652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease. We previously identified fibrogenic mesenchymal progenitor cells (MPCs) in the lungs of patients with IPF who serve as drivers of progressive fibrosis. Recent single-cell RNA sequencing work revealed that IPF MPCs with the highest transcriptomic network entropy differ the most from control MPCs and that increased CD44 was a marker of these IPF MPCs. We hypothesize that IPF MPCs with high CD44 (CD44hi) expression will display enhanced fibrogenicity. We demonstrate that CD44-expressing MPCs are present at the periphery of the IPF fibroblastic focus, placing them in regions of active fibrogenesis. In a humanized mouse xenograft model, CD44hi IPF MPCs are more fibrogenic than CD44lo IPF MPCs, and knockdown of CD44 diminishes their fibrogenicity. CD44hi IPF MPCs display increased expression of pluripotency markers and enhanced self-renewal compared with CD44lo IPF MPCs, properties potentiated by IL-8. The mechanism involves the accumulation of CD44 within the nucleus, where it associates with the chromatin modulator protein Brahma-related gene 1 (Brg1) and the zinc finger E-box binding homeobox 1 (Zeb1) transcription factor. This CD44/Brg1/Zeb1 nuclear protein complex targets the Sox2 gene, promoting its upregulation and self-renewal. Our data implicate CD44 interaction with the epigenetic modulator protein Brg1 in conveying IPF MPCs with cell-autonomous fibrogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Beisang
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
19
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Xia H, Herrera J, Smith K, Yang L, Gilbertsen A, Benyumov A, Racila E, Bitterman PB, Henke CA. Hyaluronan/CD44 axis regulates S100A4-mediated mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L926-L941. [PMID: 33719561 DOI: 10.1152/ajplung.00456.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite modest improvement in patient outcomes from recent advances in pharmacotherapy targeting fibrogenic signaling pathways, idiopathic pulmonary fibrosis (IPF) remains a major unsolved clinical problem. One reason for this is that available antifibrotic agents slow down but do not arrest fibrotic progression. To arrest fibrotic progression, its obligatory drivers need to be identified. We previously discovered that fibrogenic mesenchymal progenitor cells (MPCs) are key drivers of fibrotic progression in IPF, serving as cells of origin for disease-mediating myofibroblasts. IPF MPCs have high levels of nuclear S100A4, which interacts with the proteasome to promote p53 degradation and self-renewal. However, the mechanism underlying S100A4 accumulation in the nucleus of IPF MPCs remains unknown. Here we show that hyaluronan (HA) is present in the fibroblastic focus together with CD44-expressing MPCs and that ligation of CD44 by HA triggers S100A4 nuclear translocation to support IPF MPC self-renewal. The mechanism involves HA-mediated formation of a CD44/S100A4/transportin 1 complex, which promotes S100A4 nuclear import. In a humanized mouse model of pulmonary fibrosis, IPF MPC fibrogenicity was significantly attenuated by 1) knockdown of CD44 or 2) introduction of an S100A4 mutant construct that prevents S100A4 nuclear import. These data indicate that signaling through the HA/CD44/S100A4 axis is an integral component of IPF MPC fibrogenicity.
Collapse
Affiliation(s)
- Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Herrera
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexy Benyumov
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Emilian Racila
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
21
|
Pardo A, Selman M. The Interplay of the Genetic Architecture, Aging, and Environmental Factors in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 64:163-172. [PMID: 32946290 DOI: 10.1165/rcmb.2020-0373ps] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing lung disease of indeterminate etiology and limited therapeutic options. The initiation, development, and progression of IPF are influenced by genetic predisposition, aging, and host and environmental factors, but the magnitude of the contribution of each of them and the sequence of the pathogenic events are uncertain. Current evidence indicates that accumulated environmental exposures in a genetically predisposed individual, usually over 60 years of age, leads to phenotypic and functional alterations of the lung epithelium. Aberrant activation of epithelial cells results, through a complex release of numerous mediators, in the local expansion of peculiar subsets of aggressive fibroblasts and myofibroblasts, which are crucial effector cells of fibrotic remodeling and loss of the normal lung architecture and function. Progressive increase of the mechanical stiffness activates cell-autonomous and matrix-dependent processes contributing to the perpetuation of the fibrotic response. This Perspective provides an integral overview of the major risk factors underpinning the pathogenesis of IPF, including gene variants, aging alterations, environmental factors, host risk factors, and epigenetic reprogramming.
Collapse
Affiliation(s)
- Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, Mexico; and
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," México City, Mexico
| |
Collapse
|
22
|
Hamanaka RB, Mutlu GM. Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J 2021; 288:6331-6352. [PMID: 33393204 DOI: 10.1111/febs.15693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Fibrosis is a pathologic condition characterized by excessive deposition of extracellular matrix and chronic scaring that can affect every organ system. Organ fibrosis is associated with significant morbidity and mortality, contributing to as many as 45% of all deaths in the developed world. In the lung, many chronic lung diseases may lead to fibrosis, the most devastating being idiopathic pulmonary fibrosis (IPF), which affects approximately 3 million people worldwide and has a median survival of 3.8 years. Currently approved therapies for IPF do not significantly extend lifespan, and thus, there is pressing need for novel therapeutic strategies to treat IPF and other fibrotic diseases. At the heart of pulmonary fibrosis are myofibroblasts, contractile cells with characteristics of both fibroblasts and smooth muscle cells, which are the primary cell type responsible for matrix deposition in fibrotic diseases. Much work has centered around targeting the extracellular growth factors and intracellular signaling regulators of myofibroblast differentiation. Recently, metabolic changes associated with myofibroblast differentiation have come to the fore as targetable mechanisms required for myofibroblast function. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, as well as the mechanisms by which these changes promote myofibroblast function. We will then discuss the potential for this new knowledge to lead to the development of novel therapies for IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| |
Collapse
|
23
|
Postow L, Noel P, Lin S, Zhou G, Fessel J, Kiley JP. Diagnosing and treating lung disease at the cellular level. Am J Physiol Lung Cell Mol Physiol 2020; 319:L541-L544. [PMID: 32783624 PMCID: PMC7518057 DOI: 10.1152/ajplung.00372.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Lisa Postow
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia Noel
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sara Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Josh Fessel
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - James P Kiley
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|