1
|
Fardi F, Bahari Khasraghi L, Shahbakhti N, Salami Naseriyan A, Najafi S, Sanaaee S, Alipourfard I, Zamany M, Karamipour S, Jahani M, Majidpoor J, Kalhor K, Talebi M, Mohsen Aghaei-Zarch S. An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Res Clin Pract 2023:110739. [PMID: 37270071 DOI: 10.1016/j.diabres.2023.110739] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Humans have a complicated symbiotic relationship with their gut microbiome, which is postulated to impact host health and disease broadly. Epigenetic alterations allow host cells to regulate gene expression without altering the DNA sequence. The gut microbiome, offering environmental hints, can influence responses to stimuli by host cells with modifications on their epigenome and gene expression. Recent increasing data suggest that regulatory non-coding RNAs (miRNAs, circular RNAs, and long lncRNA) may affect host-microbe interactions. These RNAs have been suggested as potential host response biomarkers in microbiome-associated disorders, including diabetes and cancer. This article reviews the current understanding of the interplay between gut microbiota and non-coding RNA, including lncRNA, miRNA, and circular RNA. This can lead to a profound understanding of human disease and influence therapy. Furthermore, microbiome engineering as a mainstream strategy for improving human health has been discussed and confirms the hypothesis about a direct cross-talk between microbiome composition and non-coding RNA.
Collapse
Affiliation(s)
- Fatemeh Fardi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, Kish international, Kish, Iran
| | - Leila Bahari Khasraghi
- 15 Khordad Educational Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Negin Shahbakhti
- Department of biology, Faculty of Zoology, University of Razi, Kermanshah, Iran
| | - Amir Salami Naseriyan
- Department of Microbial Biotechnology, Islamic Azad University, Varamin-Pishva Branch, Tabriz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saameh Sanaaee
- Department of New Science, Faculty of Cellular and Molecular biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Marzieh Zamany
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of medical Science, Tehran, Iran
| | - Saman Karamipour
- Department of Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical science, Tehran, Iran
| | - Mehdi Jahani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA.
| | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical science, Tehran, Iran.
| |
Collapse
|
2
|
Kim S, Lee I, Piao S, Nagar H, Choi SJ, Kim YR, Irani K, Jeon BH, Kim CS. miR204 potentially promotes non-alcoholic fatty liver disease by inhibition of cpt1a in mouse hepatocytes. Commun Biol 2022; 5:1002. [PMID: 36130994 PMCID: PMC9492679 DOI: 10.1038/s42003-022-03945-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 12/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with hepatic metabolism dysfunction. However, the mechanistic role of miR204 in the development of NAFLD is unknown. We investigate the functional significance of miR204 in the evolution of NAFLD. IDH2 KO mice feed a normal diet (ND) or HFD increased body weight, epididymal fat-pad weight, lipid droplet in liver, blood parameter and inflammation compared to WT mice fed a ND or HFD. Moreover, the expression of miR204 is increased in mice with IDH2 deficiency. Increased miR204 by IDH2 deficiency regulates carnitine palmitoyltransferase 1a (cpt1a) synthesis, which inhibits fatty acid β-oxidation. Inhibition of miR204 prevents the disassembly of two fatty acid-related genes by activating CPT1a expression, which decreases lipid droplet in liver, inflammatory cytokines, epididymal fat pad weight, blood parameters. Increased miR204 by IDH2 deficiency promotes the pathogenesis of HFD-induced NAFLD by regulating hepatic fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Seonhee Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Ikjun Lee
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Shuyu Piao
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Harsha Nagar
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Young-Rae Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
3
|
Gundagatti S, Srivastava S. Development of Electrochemical Biosensor for miR204-Based Cancer Diagnosis. Interdiscip Sci 2022; 14:596-606. [PMID: 35471629 DOI: 10.1007/s12539-022-00508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
With increase in cancer burden worldwide and poor survival rates due to delayed diagnosis, it is pertinent to develop a device for early diagnosis. We report an electrochemical biosensor for quantification of miRNA-204 (miR-204) biomarker that is dysregulated in most of the cancers. The proposed methodology uses the gold nanoparticles-modified carbon screen-printed electrode for immobilization of single-stranded DNA probe against miR-204. Colloidal gold nanoparticles were synthesized using L-glutamic acid as reducing agent. Nanoparticles were characterized by UV-visible spectroscopy and transmission electron microscopy. Spherical gold nanoparticles were of 7-28 nm in size. Biosensor fabricated using these nanoparticles was characterized by cyclic voltammetry after spiking 0.1 fg/mL-0.1 µg/mL of miR-204 in fetal bovine serum. Response characteristics of the miR-204 biosensor displayed high sensitivity of 8.86 µA/µg/µL/cm2 with wide detection range of 15.5 aM to 15.5 nM. The low detection limit makes it suitable for early diagnosis and screening of cancer.
Collapse
Affiliation(s)
- Shilpa Gundagatti
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India.
| |
Collapse
|
4
|
Díez-Sainz E, Milagro FI, Riezu-Boj JI, Lorente-Cebrián S. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. J Physiol Biochem 2022; 78:485-499. [PMID: 34472032 PMCID: PMC8410452 DOI: 10.1007/s13105-021-00837-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
Obesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota-derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet-induced increase of the proteobacterium Pseudomonas panacis-derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet-induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota-derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota-derived EV.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - José I Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), Zaragoza, Spain
| |
Collapse
|
5
|
Gaddam RR, Dhuri K, Kim YR, Jacobs JS, Kumar V, Li Q, Irani K, Bahal R, Vikram A. γ Peptide Nucleic Acid-Based miR-122 Inhibition Rescues Vascular Endothelial Dysfunction in Mice Fed a High-Fat Diet. J Med Chem 2022; 65:3332-3342. [PMID: 35133835 PMCID: PMC8883473 DOI: 10.1021/acs.jmedchem.1c01831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The blood levels
of microRNA-122 (miR-122) is associated with the
severity of cardiovascular disorders, and targeting it with efficient
and safer miR inhibitors could be a promising approach. Here, we report
the generation of a γ-peptide nucleic acid (γPNA)-based
miR-122 inhibitor (γP-122-I) that rescues vascular endothelial
dysfunction in mice fed a high-fat diet. We synthesized diethylene
glycol-containing γP-122-I and found that its systemic administration
counteracted high-fat diet (HFD)-feeding-associated increase in blood
and aortic miR-122 levels, impaired endothelial function, and reduced
glycemic control. A comprehensive safety analysis established that
γP-122-I affects neither the complete blood count nor biochemical
tests of liver and kidney functions during acute exposure. In addition,
long-term exposure to γP-122-I did not change the overall adiposity,
or histology of the kidney, liver, and heart. Thus, γP-122-I
rescues endothelial dysfunction without any evidence of toxicity in vivo and demonstrates the suitability of γPNA technology
in generating efficient and safer miR inhibitors.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Karishma Dhuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Young-Rae Kim
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Julia S Jacobs
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Qiuxia Li
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Kaikobad Irani
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Sugino KY, Mandala A, Janssen RC, Gurung S, Trammell M, Day MW, Brush RS, Papin JF, Dyer DW, Agbaga MP, Friedman JE, Castillo-Castrejon M, Jonscher KR, Myers DA. Western diet-induced shifts in the maternal microbiome are associated with altered microRNA expression in baboon placenta and fetal liver. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:945768. [PMID: 36935840 PMCID: PMC10012127 DOI: 10.3389/fcdhc.2022.945768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael W. Day
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Richard S. Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- CORRESPONDENCE: Karen R. Jonscher,
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
7
|
Gaddam RR, Kim Y, Jacobs JS, Yoon J, Li Q, Cai A, Shankaiahgari H, London B, Irani K, Vikram A. The microRNA-204-5p inhibits APJ signalling and confers resistance to cardiac hypertrophy and dysfunction. Clin Transl Med 2022; 12:e693. [PMID: 35060347 PMCID: PMC8777385 DOI: 10.1002/ctm2.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MicroRNAs regulate cardiac hypertrophy development, which precedes and predicts the risk of heart failure. microRNA-204-5p (miR-204) is well expressed in cardiomyocytes, but its role in developing cardiac hypertrophy and cardiac dysfunction (CH/CD) remains poorly understood. METHODS We performed RNA-sequencing, echocardiographic, and molecular/morphometric analysis of the heart of mice lacking or overexpressing miR-204 five weeks after trans-aortic constriction (TAC). The neonatal rat cardiomyocytes, H9C2, and HEK293 cells were used to determine the mechanistic role of miR-204. RESULTS The stretch induces miR-204 expression, and miR-204 inhibits the stretch-induced hypertrophic response of H9C2 cells. The mice lacking miR-204 displayed a higher susceptibility to CH/CD during pressure overload, which was reversed by the adeno-associated virus serotype-9-mediated cardioselective miR-204 overexpression. Bioinformatic analysis of the cardiac transcriptomics of miR-204 knockout mice following pressure overload suggested deregulation of apelin-receptor (APJ) signalling. We found that the stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and hypertrophy-related genes expression depend on the APJ, and both of these effects are subject to miR-204 levels. The dynamin inhibitor dynasore inhibited both stretch-induced APJ endocytosis and ERK1/2 activation. In contrast, the miR-204-induced APJ endocytosis was neither inhibited by dynamin inhibitors (dynasore and dyngo) nor associated with ERK1/2 activation. We find that the miR-204 increases the expression of ras-associated binding proteins (e.g., Rab5a, Rab7) that regulate cellular endocytosis. CONCLUSIONS Our results show that miR-204 regulates trafficking of APJ and confers resistance to pressure overload-induced CH/CD, and boosting miR-204 can inhibit the development of CH/CD.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Young‐Rae Kim
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Julia S. Jacobs
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Jin‐Young Yoon
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Qiuxia Li
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Angela Cai
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Hamsitha Shankaiahgari
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Barry London
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Kaikobad Irani
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Ajit Vikram
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| |
Collapse
|
8
|
The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021; 10:cells10113097. [PMID: 34831320 PMCID: PMC8619171 DOI: 10.3390/cells10113097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRs) are emerging as attractive therapeutic targets because of their small size, specific targetability, and critical role in disease pathogenesis. However, <20 miR targeting molecules have entered clinical trials, and none progressed to phase III. The difficulties in miR target identification, the moderate efficacy of miR inhibitors, cell type-specific delivery, and adverse outcomes have impeded the development of miR therapeutics. These hurdles are rooted in the functional complexity of miR's role in disease and sequence complementarity-dependent/-independent effects in nontarget tissues. The advances in understanding miR's role in disease, the development of efficient miR inhibitors, and innovative delivery approaches have helped resolve some of these hurdles. In this review, we provide a multidisciplinary viewpoint on the challenges and opportunities in the development of miR therapeutics.
Collapse
|
9
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
10
|
Gaddam RR, Kim YR, Li Q, Jacobs JS, Gabani M, Mishra A, Promes JA, Imai Y, Irani K, Vikram A. Genetic deletion of miR-204 improves glycemic control despite obesity in db/db mice. Biochem Biophys Res Commun 2020; 532:167-172. [PMID: 32950230 DOI: 10.1016/j.bbrc.2020.08.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are small non-coding RNAs that regulate the target gene expression. A change in miR profile in the pancreatic islets during diabetes is known, and multiple studies have demonstrated that miRs influence the pancreatic β-cell function. The miR-204 is highly expressed in the β-cells and reported to regulate insulin synthesis. Here we investigated whether the absence of miR-204 rescues the impaired glycemic control and obesity in the genetically diabetic (db/db) mice. We found that the db/db mice overexpressed miR-204 in the islets. The db/db mice lacking miR-204 (db/db-204-/-) initially develops hyperglycemia and obesity like the control (db/db) mice but later displayed a gradual improvement in glycemic control despite remaining obese. The db/db-204-/- mice had a lower fasting blood glucose and higher serum insulin level compared to the db/db mice. A homeostatic model assessment (HOMA) suggests the improvement of β-cell function contributes to the improvement in glycemic control in db/db-204-/- mice. Next, we examined the cellular proliferation and endoplasmic reticulum (ER) stress and found an increased frequency of proliferating cells (PCNA + ve) and a decreased CHOP expression in the islets of db/db-204-/- mice. Next, we determined the effect of systemic miR-204 inhibition in improving glycemic control in the high-fat diet (HFD)-fed insulin-resistant mice. MiR-204 inhibition for 6 weeks improved the HFD-triggered impairment in glucose disposal. In conclusion, the absence of miR-204 improves β-cell proliferation, decreases islet ER stress, and improves glycemic control with limited change in body weight in obese mice.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Young-Rae Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Quixia Li
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Julia S Jacobs
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mohanad Gabani
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Akansha Mishra
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Joseph A Promes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yumi Imai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|