1
|
Grossi B, Barati S, Ramella A, Migliavacca F, Rodriguez Matas JF, Dubini G, Chakfé N, Heim F, Cozzi O, Condorelli G, Stefanini GG, Luraghi G. Validation evidence with experimental and clinical data to establish credibility of TAVI patient-specific simulations. Comput Biol Med 2024; 182:109159. [PMID: 39303394 DOI: 10.1016/j.compbiomed.2024.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE The objective of this study is to validate a novel workflow for implementing patient-specific finite element (FE) simulations to virtually replicate the Transcatheter Aortic Valve Implantation (TAVI) procedure. METHODS Seven patients undergoing TAVI were enrolled. Patient-specific anatomical models were reconstructed from pre-operative computed tomography (CT) scans and subsequentially discretized, considering the native aortic leaflets and calcifications. Moreover, high-fidelity models of CoreValve Evolut R and Acurate Neo2 valves were built. To determine the most suitable material properties for the two stents, an accurate calibration process was undertaken. This involved conducting crimping simulations and fine-tuning Nitinol parameters to fit experimental force-diameter curves. Subsequently, FE simulations of TAVI procedures were conducted. To validate the reliability of the implemented implantation simulations, qualitative and quantitative comparisons with post-operative clinical data, such as angiographies and CT scans, were performed. RESULTS For both devices, the simulation curves closely matched the experimental data, indicating successful validation of the valves mechanical behaviour. An accurate qualitative superimposition with both angiographies and CTs was evident, proving the reliability of the simulated implantation. Furthermore, a mean percentage difference of 1,79 ± 0,93 % and 3,67 ± 2,73 % between the simulated and segmented final configurations of the stents was calculated in terms of orifice area and eccentricity, respectively. CONCLUSION This study shows the successful validation of TAVI simulations in patient-specific anatomies, offering a valuable tool to optimize patients care through personalized pre-operative planning. A systematic approach for the validation is presented, laying the groundwork for enhanced predictive modeling in clinical practice.
Collapse
Affiliation(s)
- Benedetta Grossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Sara Barati
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Anna Ramella
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Francesco Migliavacca
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Gabriele Dubini
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Nabil Chakfé
- Department of Vascular Surgery, Kidney Transplantation and Innovation, University Hospital of Strasbourg, Strasbourg, France; GEPROMED, Strasbourg, France
| | - Frédéric Heim
- GEPROMED, Strasbourg, France; Laboratoire de Physique et Mecanique des Textiles, Universite' de Haute-Alsace, Mulhouse, France
| | - Ottavia Cozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulio G Stefanini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Luraghi
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
2
|
Reza S, Kovarovic B, Bluestein D. Assessing post-TAVR cardiac conduction abnormalities risk using an electromechanically coupled beating heart. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01893-9. [PMID: 39361113 DOI: 10.1007/s10237-024-01893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Transcatheter aortic valve replacement (TAVR) has rapidly displaced surgical aortic valve replacement (SAVR). However, certain post-TAVR complications persist, with cardiac conduction abnormalities (CCA) being one of the major ones. The elevated pressure exerted by the TAVR stent onto the conduction fibers situated between the aortic annulus and the His bundle, in proximity to the atrioventricular (AV) node, may disrupt the cardiac conduction leading to the emergence of CCA. In this study, an in silico framework was developed to assess the CCA risk, incorporating the effect of a dynamic beating heart and preprocedural parameters such as implantation depth and preexisting cardiac asynchrony in the new onset of post-TAVR CCA. A self-expandable TAVR device deployment was simulated inside an electromechanically coupled beating heart model in five patient scenarios, including three implantation depths and two preexisting cardiac asynchronies: (i) a right bundle branch block (RBBB) and (ii) a left bundle branch block (LBBB). Subsequently, several biomechanical parameters were analyzed to assess the post-TAVR CCA risk. The results manifested a lower cumulative contact pressure on the conduction fibers following TAVR for aortic deployment (0.018 MPa) compared to nominal condition (0.29 MPa) and ventricular deployment (0.52 MPa). Notably, the preexisting RBBB demonstrated a higher cumulative contact pressure (0.34 MPa) compared to the nominal condition and preexisting LBBB (0.25 MPa). Deeper implantation and preexisting RBBB cause higher stresses and contact pressure on the conduction fibers leading to an increased risk of post-TAVR CCA. Conversely, implantation above the MS landmark and preexisting LBBB reduces the risk.
Collapse
Affiliation(s)
- Symon Reza
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
3
|
Puleo S, Pasta S, Scardulla F, D’Acquisto L. Fluid-Solid Interaction Analysis for Developing In-Situ Strain and Flow Sensors for Prosthetic Valve Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:5040. [PMID: 39124087 PMCID: PMC11314931 DOI: 10.3390/s24155040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Transcatheter aortic valve implantation (TAVI) was initially developed for adult patients, but there is a growing interest to expand this procedure to younger individuals with longer life expectancies. However, the gradual degradation of biological valve leaflets in transcatheter heart valves (THV) presents significant challenges for this extension. This study aimed to establish a multiphysics computational framework to analyze structural and flow measurements of TAVI and evaluate the integration of optical fiber and photoplethysmography (PPG) sensors for monitoring valve function. A two-way fluid-solid interaction (FSI) analysis was performed on an idealized aortic vessel before and after the virtual deployment of the SAPIEN 3 Ultra (S3) THV. Subsequently, an analytical analysis was conducted to estimate the PPG signal using computational flow predictions and to analyze the effect of different pressure gradients and distances between PPG sensors. Circumferential strain estimates from the embedded optical fiber in the FSI model were highest in the sinus of Valsalva; however, the optimal fiber positioning was found to be distal to the sino-tubular junction to minimize bending effects. The findings also demonstrated that positioning PPG sensors both upstream and downstream of the bioprosthesis can be used to effectively assess the pressure gradient across the valve. We concluded that computational modeling allows sensor design to quantify vessel wall strain and pressure gradients across valve leaflets, with the ultimate goal of developing low-cost monitoring systems for detecting valve deterioration.
Collapse
Affiliation(s)
- Silvia Puleo
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.P.); (S.P.); (F.S.)
| | - Salvatore Pasta
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.P.); (S.P.); (F.S.)
- Department of Research, Scientific Institute of Hospitalization and Care-Mediterranean Institute for Transplantation and Highly Specialized Therapies (IRCCS-ISMETT), Via Tricomi, 5, 90127 Palermo, Italy
| | - Francesco Scardulla
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.P.); (S.P.); (F.S.)
| | - Leonardo D’Acquisto
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.P.); (S.P.); (F.S.)
| |
Collapse
|
4
|
Spanjaards M, Borowski F, Supp L, Ubachs R, Lavezzo V, van der Sluis O. A fast in silico model for preoperative risk assessment of paravalvular leakage. Biomech Model Mechanobiol 2024; 23:959-985. [PMID: 38341820 PMCID: PMC11101555 DOI: 10.1007/s10237-024-01816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/01/2024] [Indexed: 02/13/2024]
Abstract
In silico simulations can be used to evaluate and optimize the safety, quality, efficacy and applicability of medical devices. Furthermore, in silico modeling is a powerful tool in therapy planning to optimally tailor treatment for each patient. For this purpose, a workflow to perform fast preoperative risk assessment of paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is presented in this paper. To this end, a novel, efficient method is introduced to calculate the regurgitant volume in a simplified, but sufficiently accurate manner. A proof of concept of the method is obtained by comparison of the calculated results with results obtained from in vitro experiments. Furthermore, computational fluid dynamics (CFD) simulations are used to validate more complex stenosis scenarios. Comparing the simplified leakage model to CFD simulations reveals its potential for procedure planning and qualitative preoperative risk assessment of PVL. Finally, a 3D device deployment model and the efficient leakage model are combined to showcase the application of the presented leakage model, by studying the effect of stent size and the degree of stenosis on the regurgitant volume. The presented leakage model is also used to visualize the leakage path. To generalize the leakage model to a wide range of clinical applications, further validation on a large cohort of patients is needed to validate the accuracy of the model's prediction under various patient-specific conditions.
Collapse
Affiliation(s)
- Michelle Spanjaards
- Philips Innovation and Strategy, High Tech Campus 34, Eindhoven, The Netherlands
| | - Finja Borowski
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, Rostock-Warnemünde, Germany
| | - Laura Supp
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, Rostock-Warnemünde, Germany
| | - René Ubachs
- Philips Innovation and Strategy, High Tech Campus 34, Eindhoven, The Netherlands
| | - Valentina Lavezzo
- Philips Innovation and Strategy, High Tech Campus 34, Eindhoven, The Netherlands
| | - Olaf van der Sluis
- Philips Innovation and Strategy, High Tech Campus 34, Eindhoven, The Netherlands.
- Eindhoven University of Technology, Groene Loper 15, Eindhoven, The Netherlands.
| |
Collapse
|
5
|
Ramella A, Lissoni V, Bridio S, Rodriguez Matas JF, Trimarchi S, Grossi B, Stefanini GG, Migliavacca F, Luraghi G. On the necessity to include arterial pre-stress in patient-specific simulations of minimally invasive procedures. Biomech Model Mechanobiol 2024; 23:525-537. [PMID: 38063955 PMCID: PMC10963513 DOI: 10.1007/s10237-023-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/27/2023] [Indexed: 03/26/2024]
Abstract
Transcatheter aortic valve implantation (TAVI) and thoracic endovascular aortic repair (TEVAR) are minimally invasive procedures for treating aortic valves and diseases. Finite element simulations have proven to be valuable tools in predicting device-related complications. In the literature, the inclusion of aortic pre-stress has not been widely investigated. It plays a crucial role in determining the biomechanical response of the vessel and the device-tissue interaction. This study aims at demonstrating how and when to include the aortic pre-stress in patient-specific TAVI and TEVAR simulations. A percutaneous aortic valve and a stent-graft were implanted in aortic models reconstructed from patient-specific CT scans. Two scenarios for each patient were compared, i.e., including and neglecting the wall pre-stress. The neglection of pre-stress underestimates the contact pressure of 48% and 55%, the aorta stresses of 162% and 157%, the aorta strains of 77% and 21% for TAVI and TEVAR models, respectively. The stent stresses are higher than 48% with the pre-stressed aorta in TAVI simulations; while, similar results are obtained in TEVAR cases. The distance between the device and the aorta is similar with and without pre-stress. The inclusion of the aortic wall pre-stress has the capability to give a better representation of the biomechanical behavior of the arterial tissues and the implanted device. It is suggested to include this effect in patient-specific simulations replicating the procedures.
Collapse
Affiliation(s)
- Anna Ramella
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Vittorio Lissoni
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Sara Bridio
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Santi Trimarchi
- Section of Vascular Surgery, Cardio Thoracic Vascular Department, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Della Commenda 19, 20122, Milan, Italy
| | - Benedetta Grossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Giulio G Stefanini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Francesco Migliavacca
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Giulia Luraghi
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
6
|
Chrysostomidis G, Apostolos A, Papanikolaou A, Konstantinou K, Tsigkas G, Koliopoulou A, Chamogeorgakis T. The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future. J Pers Med 2024; 14:375. [PMID: 38673001 PMCID: PMC11051532 DOI: 10.3390/jpm14040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The personalized applications of 3D printing in interventional cardiology and cardiac surgery represent a transformative paradigm in the management of structural heart diseases. This review underscores the pivotal role of 3D printing in enhancing procedural precision, from preoperative planning to procedural simulation, particularly in valvular heart diseases, such as aortic stenosis and mitral regurgitation. The ability to create patient-specific models contributes significantly to predicting and preventing complications like paravalvular leakage, ensuring optimal device selection, and improving outcomes. Additionally, 3D printing extends its impact beyond valvular diseases to tricuspid regurgitation and non-valvular structural heart conditions. The comprehensive synthesis of the existing literature presented here emphasizes the promising trajectory of individualized approaches facilitated by 3D printing, promising a future where tailored interventions based on precise anatomical considerations become standard practice in cardiovascular care.
Collapse
Affiliation(s)
- Grigorios Chrysostomidis
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| | - Anastasios Apostolos
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippocration General Hospital, 115 27 Athens, Greece;
| | - Amalia Papanikolaou
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippocration General Hospital, 115 27 Athens, Greece;
| | - Konstantinos Konstantinou
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London 26504, UK;
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, 265 04 Patras, Greece;
| | - Antigoni Koliopoulou
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| | - Themistokles Chamogeorgakis
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| |
Collapse
|
7
|
Catalano C, Turgut T, Zahalka O, Götzen N, Cannata S, Gentile G, Agnese V, Gandolfo C, Pasta S. On the Material Constitutive Behavior of the Aortic Root in Patients with Transcatheter Aortic Valve Implantation. Cardiovasc Eng Technol 2024; 15:95-109. [PMID: 37985617 PMCID: PMC10884088 DOI: 10.1007/s13239-023-00699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure used to treat patients with severe aortic valve stenosis. However, there is limited knowledge on the material properties of the aortic root in TAVI patients, and this can impact the credibility of computer simulations. This study aimed to develop a non-invasive inverse approach for estimating reliable material constituents for the aortic root and calcified valve leaflets in patients undergoing TAVI. METHODS The identification of material parameters is based on the simultaneous minimization of two cost functions, which define the difference between model predictions and cardiac-gated CT measurements of the aortic wall and valve orifice area. Validation of the inverse analysis output was performed comparing the numerical predictions with actual CT shapes and post-TAVI measures of implanted device diameter. RESULTS A good agreement of the peak systolic shape of the aortic wall was found between simulations and imaging, with similarity index in the range in the range of 83.7% to 91.5% for n.20 patients. Not any statistical difference was observed between predictions and CT measures of orifice area for the stenotic aortic valve. After TAVI simulations, the measurements of SAPIEN 3 Ultra (S3) device diameter were in agreement with those from post-TAVI angio-CT imaging. A sensitivity analysis demonstrated a modest impact on the S3 diameters when altering the elastic material property of the aortic wall in the range of inverse analysis solution. CONCLUSIONS Overall, this study demonstrates the feasibility and potential benefits of using non-invasive imaging techniques and computational modeling to estimate material properties in patients undergoing TAVI.
Collapse
Affiliation(s)
- Chiara Catalano
- Department of Engineering, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
| | - Tahir Turgut
- 4RealSim Services BV, Groene Dijk 2B, 3401 NJ, IJsselstein, The Netherlands
| | - Omar Zahalka
- 4RealSim Services BV, Groene Dijk 2B, 3401 NJ, IJsselstein, The Netherlands
| | - Nils Götzen
- 4RealSim Services BV, Groene Dijk 2B, 3401 NJ, IJsselstein, The Netherlands
| | - Stefano Cannata
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Giovanni Gentile
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Valentina Agnese
- 3D printing and Virtual Reality Laboratory, Department of Research, IRCCS-ISMETT, IRCCS Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Via Tricomi, 5, Palermo, Italy
| | - Caterina Gandolfo
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy.
- 3D printing and Virtual Reality Laboratory, Department of Research, IRCCS-ISMETT, IRCCS Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Via Tricomi, 5, Palermo, Italy.
| |
Collapse
|
8
|
Fumagalli I, Pagani S, Vergara C, Dede’ L, Adebo DA, Del Greco M, Frontera A, Luciani GB, Pontone G, Scrofani R, Quarteroni A. The role of computational methods in cardiovascular medicine: a narrative review. Transl Pediatr 2024; 13:146-163. [PMID: 38323181 PMCID: PMC10839285 DOI: 10.21037/tp-23-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Background and Objective Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data with physical knowledge of the processes underlying the heart function. These models have been increasingly employed in clinical practice to understand pathological mechanisms and their progression, design medical devices, support clinicians in improving therapies. Hinging upon a long-year experience in cardiovascular modeling, we have recently constructed a computational multi-physics and multi-scale integrated model of the heart for the investigation of its physiological function, the analysis of pathological conditions, and to support clinicians in both diagnosis and treatment planning. This narrative review aims to systematically discuss the role that such model had in addressing specific clinical questions, and how further impact of computational models on clinical practice are envisaged. Methods We developed computational models of the physical processes encompassed by the heart function (electrophysiology, electrical activation, force generation, mechanics, blood flow dynamics, valve dynamics, myocardial perfusion) and of their inherently strong coupling. To solve the equations of such models, we devised advanced numerical methods, implemented in a flexible and highly efficient software library. We also developed computational procedures for clinical data post-processing-like the reconstruction of the heart geometry and motion from diagnostic images-and for their integration into computational models. Key Content and Findings Our integrated computational model of the heart function provides non-invasive measures of indicators characterizing the heart function and dysfunctions, and sheds light on its underlying processes and their coupling. Moreover, thanks to the close collaboration with several clinical partners, we addressed specific clinical questions on pathological conditions, such as arrhythmias, ventricular dyssynchrony, hypertrophic cardiomyopathy, degeneration of prosthetic valves, and the way coronavirus disease 2019 (COVID-19) infection may affect the cardiac function. In multiple cases, we were also able to provide quantitative indications for treatment. Conclusions Computational models provide a quantitative and detailed tool to support clinicians in patient care, which can enhance the assessment of cardiac diseases, the prediction of the development of pathological conditions, and the planning of treatments and follow-up tests.
Collapse
Affiliation(s)
- Ivan Fumagalli
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Stefano Pagani
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Christian Vergara
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Luca Dede’
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Dilachew A. Adebo
- Children’s Heart Institute, Hermann Children’s Hospital, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Maurizio Del Greco
- Department of Cardiology, S. Maria del Carmine Hospital, Rovereto, Italy
| | - Antonio Frontera
- Electrophysiology Department, De Gasperis Cardio Center, ASST Great Metropolitan Hospital Niguarda, Milan, Italy
| | | | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCSS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Roberto Scrofani
- Cardiovascular Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfio Quarteroni
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
9
|
Zhang X, Wu H, Pan Z, Elkoumy A, Ruan Z, Wu T, Wu D, Soliman O, Wu L, Wu X. Mechanism of balloon burst during transcatheter aortic valve replacement pre-dilatation: Image observation and validation by finite element analysis. Comput Biol Med 2024; 168:107714. [PMID: 38035862 DOI: 10.1016/j.compbiomed.2023.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Balloon burst during transcatheter aortic valve replacement (TAVR) is serious complication. This study pioneers a novel approach by combining image observation and computer simulation validation to unravel the mechanism of balloon burst in a patient with bicuspid aortic valve (BAV) stenosis. METHOD A new computational model for balloon pre-dilatation was developed by incorporating the element failure criteria according to the Law of Laplace. The effects of calcification and aortic tissue material parameters, friction coefficients, balloon types and aortic anatomy classification were performed to validate and compare the expansion behavior and rupture mode of actual balloon. RESULTS Balloon burst was dissected into three distinct stages based on observable morphological changes. The mechanism leading to the complete transverse burst of the non-compliant balloon initiated at the folding edges, where contacted with heavily calcified masses at the right coronary sinus, resulting in high maximum principal stress. Local sharp spiked calcifications facilitated rapid crack propagation. The elastic moduli of calcification significantly influenced balloon expansion behavior and crack morphology. The simulation case of the calcific elastic modulus was set at 12.6 MPa could closely mirror clinical appearance of expansion behavior and crack pattern. Furthermore, the case of semi-compliant balloons introduced an alternative rupture mechanism as pinhole rupture, driven by local sharp spiked calcifications. CONCLUSIONS The computational model of virtual balloons could effectively simulate balloon dilation behavior and burst mode during TAVR pre-dilation. Further research with a larger cohort is needed to investigate the balloon morphology during pre-dilation by using this method to guide prosthesis sizing for potential favorable outcomes.
Collapse
Affiliation(s)
- Xinmin Zhang
- International Joint Laboratory for Precise Diagnosis and Treatment of Heart Valve Disease of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haozhe Wu
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhifang Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ahmed Elkoumy
- Islamic Center of Cardiology, Al-Azhar University, Cairo, Egypt; Discipline of Cardiology, Saolta Group, Galway University Hospital, Health Service Executive and CORRIB Core Lab, University of Galway, Ireland
| | - Zhisheng Ruan
- International Joint Laboratory for Precise Diagnosis and Treatment of Heart Valve Disease of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tianbo Wu
- International Joint Laboratory for Precise Diagnosis and Treatment of Heart Valve Disease of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daozhu Wu
- International Joint Laboratory for Precise Diagnosis and Treatment of Heart Valve Disease of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Osama Soliman
- Islamic Center of Cardiology, Al-Azhar University, Cairo, Egypt
| | - Lianpin Wu
- International Joint Laboratory for Precise Diagnosis and Treatment of Heart Valve Disease of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinlei Wu
- International Joint Laboratory for Precise Diagnosis and Treatment of Heart Valve Disease of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Scuoppo R, Cannata S, Gentile G, Gandolfo C, Pasta S. Parametric analysis of transcatheter aortic valve replacement in transcatheter aortic valve replacement: evaluation of coronary flow obstruction. Front Bioeng Biotechnol 2023; 11:1267986. [PMID: 37885451 PMCID: PMC10598678 DOI: 10.3389/fbioe.2023.1267986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Transcatheter aortic valve replacement (TAVR) is increasingly being considered for use in younger patients having longer life expectancy than those who were initially treated. The TAVR-in-TAVR procedure represents an appealing strategy to treat failed transcatheter heart valves (THV) likely occurring in young patients. However, the permanent displacement of first THV can potentially compromise the coronary access and ultimately inhibit the blood flow circulation. The objective of this study was to use finite-element analysis (FEA) to quantify coronary flow in a patient who underwent TAVR-in-TAVR. A parametric investigation was carried out to determine the impact of both the implantation depth and device size on coronary flow for several deployment configurations. The FEAs consisted of first delivering the SAPIEN 3 Ultra THV and then positioning the Evolut PRO device. Findings indicates that high implantation depth and device undersize of the second THV could significantly reduce coronary flow to 20% of its estimated level before TAVR. Additionally, a positive correlation was observed between coronary flow and the valve-to-coronary distance (R = 0.86 and p = 0.032 for the left coronary artery, and R = 0.93 and p = 0.014 for the right coronary artery). This study demonstrated that computational modeling can provide valuable insights to improve the pre-procedural planning of TAVR-in-TAVR.
Collapse
Affiliation(s)
- Roberta Scuoppo
- Department of Engineering, Università Degli Studi di Palermo, Palermo, Italy
| | - Stefano Cannata
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT), Palermo, Italy
| | - Giovanni Gentile
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Caterina Gandolfo
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT), Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, Università Degli Studi di Palermo, Palermo, Italy
- Department of Research, IRCCS-ISMETT, Palermo, Italy
| |
Collapse
|
11
|
Geers J, Bing R. Computed tomographic imaging of patients with native and prosthetic aortic valve stenosis. Heart 2023; 109:1327-1337. [PMID: 36948573 DOI: 10.1136/heartjnl-2022-321660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Affiliation(s)
- Jolien Geers
- Department of Cardiology, CHVZ (Centrum voor Hart- en Vaatziekten), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rong Bing
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Fumagalli I, Polidori R, Renzi F, Fusini L, Quarteroni A, Pontone G, Vergara C. Fluid-structure interaction analysis of transcatheter aortic valve implantation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3704. [PMID: 36971047 DOI: 10.1002/cnm.3704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/19/2023] [Indexed: 06/07/2023]
Abstract
Transcatheter aortic valve implantation (TAVI) is a minimally invasive intervention for the treatment of severe aortic valve stenosis. The main cause of failure is the structural deterioration of the implanted prosthetic leaflets, possibly inducing a valvular re-stenosis 5-10 years after the implantation. Based solely on pre-implantation data, the aim of this work is to identify fluid-dynamics and structural indices that may predict the possible valvular deterioration, in order to assist the clinicians in the decision-making phase and in the intervention design. Patient-specific, pre-implantation geometries of the aortic root, the ascending aorta, and the native valvular calcifications were reconstructed from computed tomography images. The stent of the prosthesis was modeled as a hollow cylinder and virtually implanted in the reconstructed domain. The fluid-structure interaction between the blood flow, the stent, and the residual native tissue surrounding the prosthesis was simulated by a computational solver with suitable boundary conditions. Hemodynamical and structural indicators were analyzed for five different patients that underwent TAVI - three with prosthetic valve degeneration and two without degeneration - and the comparison of the results showed a correlation between the leaflets' structural degeneration and the wall shear stress distribution on the proximal aortic wall. This investigation represents a first step towards computational predictive analysis of TAVI degeneration, based on pre-implantation data and without requiring additional peri-operative or follow-up information. Indeed, being able to identify patients more likely to experience degeneration after TAVI may help to schedule a patient-specific timing of follow-up.
Collapse
Affiliation(s)
- Ivan Fumagalli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Rebecca Polidori
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Milan, Italy
| | - Francesca Renzi
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Milan, Italy
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCSS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Alfio Quarteroni
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCSS, Milan, Italy
| | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Milan, Italy
| |
Collapse
|
13
|
Huang X, Zhang G, Zhou X, Yang X. A review of numerical simulation in transcatheter aortic valve replacement decision optimization. Clin Biomech (Bristol, Avon) 2023; 106:106003. [PMID: 37245279 DOI: 10.1016/j.clinbiomech.2023.106003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Recent trials indicated a further expansion of clinical indication of transcatheter aortic valve replacement to younger and low-risk patients. Factors related to longer-term complications are becoming more important for use in these patients. Accumulating evidence indicates that numerical simulation plays a significant role in improving the outcome of transcatheter aortic valve replacement. Understanding mechanical features' magnitude, pattern, and duration is a topic of ongoing relevance. METHODS We searched the PubMed database using keywords such as "transcatheter aortic valve replacement" and "numerical simulation" and reviewed and summarized relevant literature. FINDINGS This review integrated recently published evidence into three subtopics: 1) prediction of transcatheter aortic valve replacement outcomes through numerical simulation, 2) implications for surgeons, and 3) trends in transcatheter aortic valve replacement numerical simulation. INTERPRETATIONS Our study offers a comprehensive overview of the utilization of numerical simulation in the context of transcatheter aortic valve replacement, and highlights the advantages, potential challenges from a clinical standpoint. The convergence of medicine and engineering plays a pivotal role in enhancing the outcomes of transcatheter aortic valve replacement. Numerical simulation has provided evidence of potential utility for tailored treatments.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Cardiovascular Surgery, West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
| | - Guangming Zhang
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyan Yang
- Department of Cardiovascular Surgery, West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Carbonaro D, Zambon S, Corti A, Gallo D, Morbiducci U, Audenino AL, Chiastra C. Impact of nickel-titanium super-elastic material properties on the mechanical performance of self-expandable transcatheter aortic valves. J Mech Behav Biomed Mater 2023; 138:105623. [PMID: 36535095 DOI: 10.1016/j.jmbbm.2022.105623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Self-expandable transcatheter aortic valves (TAVs) elastically resume their initial shape when implanted without the need for balloon inflation by virtue of the nickel-titanium (NiTi) frame super-elastic properties. Experimental findings suggest that NiTi mechanical properties can vary markedly because of a strong dependence on the chemical composition and processing operations. In this context, this study presents a computational framework to investigate the impact of the NiTi super-elastic material properties on the TAV mechanical performance. Finite element (FE) analyses of TAV implantation were performed considering two different TAV frames and three idealized aortic root anatomies, evaluating the device mechanical response in terms of pullout force magnitude exerted by the TAV frame and peak maximum principal stress within the aortic root. The widely adopted NiTi constitute model by Auricchio and Taylor (1997) was used. A multi-parametric sensitivity analysis and a multi-objective optimization of the TAV mechanical performance were conducted in relation to the parameters of the NiTi constitutive model. The results highlighted that: five NiTi material model parameters (EA, σtLS, σtUS, σtUE and σcLS) are significantly correlated with the FE outputs; the TAV frame geometry and aortic root anatomy have a marginal effect on the level of influence of each NiTi material parameter; NiTi alloy candidates with pareto-optimal characteristics in terms of TAV mechanical performance can be successfully identified. In conclusion, the proposed computational framework supports the TAV design phase, providing information on the relationship between the super-elastic behavior of the supplied NiTi alloys and the device mechanical response.
Collapse
Affiliation(s)
- Dario Carbonaro
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Sara Zambon
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Diego Gallo
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alberto L Audenino
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Chiastra
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
15
|
Anam SB, Kovarovic BJ, Ghosh RP, Bianchi M, Hamdan A, Haj-Ali R, Bluestein D. Validating In Silico and In Vitro Patient-Specific Structural and Flow Models with Transcatheter Bicuspid Aortic Valve Replacement Procedure. Cardiovasc Eng Technol 2022; 13:840-856. [PMID: 35391657 DOI: 10.1007/s13239-022-00620-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/28/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, which had been treated off-label by transcatheter aortic valve replacement (TAVR) procedure for several years, until its recent approval by the Food and Drug Administration (FDA) and Conformité Européenne (CE) to treat BAVs. Post-TAVR complications tend to get exacerbated in BAV patients due to their inherent aortic root pathologies. Globally, due to the paucity of randomized clinical trials, clinicians still favor surgical AVR as the primary treatment option for BAV patients. While this warrants longer term studies of TAVR outcomes in BAV patient cohorts, in vitro experiments and in silico computational modeling can be used to guide the surgical community in assessing the feasibility of TAVR in BAV patients. Our goal is to combine these techniques in order to create a modeling framework for optimizing pre-procedural planning and minimize post-procedural complications. MATERIALS AND METHODS Patient-specific in silico models and 3D printed replicas of 3 BAV patients with different degrees of post-TAVR paravalvular leakage (PVL) were created. Patient-specific TAVR device deployment was modeled in silico and in vitro-following the clinical procedures performed in these patients. Computational fluid dynamics simulations and in vitro flow studies were performed in order to obtain the degrees of PVL in these models. RESULTS PVL degree and locations were consistent with the clinical data. Cross-validation comparing the stent deformation and the flow parameters between the in silico and the in vitro models demonstrated good agreement. CONCLUSION The current framework illustrates the potential of using simulations and 3D printed models for pre-TAVR planning and assessing post-TAVR complications in BAV patients.
Collapse
Affiliation(s)
- Salwa B Anam
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Brandon J Kovarovic
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ram P Ghosh
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Matteo Bianchi
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, 4941492, Petah Tikva, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Danny Bluestein
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA. .,Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
16
|
Luraghi G, Bridio S, Migliavacca F, Rodriguez Matas JF. Self-expandable stent for thrombus removal modeling: Solid or beam finite elements? Med Eng Phys 2022; 106:103836. [PMID: 35926960 DOI: 10.1016/j.medengphy.2022.103836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The performance of self-expandable stents is being increasingly studied by means of finite-element analysis. As for peripheral stents, transcatheter valves and stent-grafts, there are numerous computational studies for setting up a proper model, this information is missing for stent-retrievers used in the procedure of thrombus removal in cerebral arteries. It is well known that the selection of the appropriate finite-element dimensions (topology) and formulations (typology) is a fundamental step to set up accurate and reliable computational simulations. In this context, a thorough verification analysis is here proposed, aimed at investigating how the different element typologies and topologies - available to model a stent-retriever - affect simulation results. METHOD Hexahedral and beam element formulations were analyzed first individually by virtually replicating a crimping test on the device, and then by replicating the thrombectomy procedure aiming at removing a thrombus from a cerebral vessel. In particular, three discretization refinements for each element type and different element formulations including both full and reduced integration were investigated and compared in terms of the resultant radial force of the stent and the stress field generated in the thrombus. RESULTS The sensitivity analysis on the element formulation performed with the crimping simulations allowed the identification of the optimal setting for each element family. Both setting lead to similar results in terms of stent performance in the virtual thrombectomy and should be used in future studies simulating the mechanical thrombectomy with stent-retrievers. CONCLUSIONS The carried out virtual thrombectomy procedures confirmed that the beam element formulation results were sufficiently accurate to model the radial force and the performance of the stent-retriever during the procedure. For different self-expandable stents, hexahedral formulation could be essential in stress analysis.
Collapse
Affiliation(s)
- Giulia Luraghi
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.
| | - Sara Bridio
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Francesco Migliavacca
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Jose Felix Rodriguez Matas
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
17
|
Dowling C, Gooley R, McCormick L, Rashid HN, Dargan J, Khan F, Firoozi S, Brecker SJ. Patient-Specific Computer Simulation to Predict Conduction Disturbance With Current-Generation Self-Expanding Transcatheter Heart Valves. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2022; 6:100010. [PMID: 37274548 PMCID: PMC10236875 DOI: 10.1016/j.shj.2022.100010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
Abstract
Background Patient-specific computer simulation may predict the development of conduction disturbance following transcatheter aortic valve replacement (TAVR). Validation of the computer simulations with current-generation devices has not been undertaken. Methods A retrospective study was performed on patients who had undergone TAVR with a current-generation self-expanding transcatheter heart valve (THV). Preprocedural computed tomography imaging was used to create finite element models of the aortic root. Procedural contrast angiography was reviewed, and finite element analysis performed using a matching THV device size and implantation depth. A region of interest corresponding to the atrioventricular bundle and proximal left bundle branch was identified. The percentage of this area (contact pressure index [CPI]) and maximum contact pressure (CPMax) exerted by THV were recorded. Postprocedural electrocardiograms were reviewed, and major conduction disturbance was defined as the development of persistent left bundle branch block or high-degree atrioventricular block. Results A total of 80 patients were included in the study. THVs were 23- to 29-mm Evolut PRO (n = 53) and 34-mm Evolut R (n = 27). Major conduction disturbance occurred in 27 patients (33.8%). CPI (28.3 ± 15.8 vs. 15.6 ± 11.2%; p < 0.001) and CPMax (0.51 ± 0.20 vs. 0.36 ± 0.24 MPa; p = 0.008) were higher in patients who developed major conduction disturbance. CPI (area under the receiver operating characteristic curve [AUC], 0.74; 95% CI, 0.63-0.86; p < 0.001) and CPMax (AUC, 0.69; 95% CI, 0.57-0.81; p = 0.006) demonstrated a discriminatory power to predict the development of major conduction disturbance. Conclusions Patient-specific computer simulation may identify patients at risk for conduction disturbance after TAVR with current-generation self-expanding THVs.
Collapse
Affiliation(s)
- Cameron Dowling
- MonashHeart, Monash Health and Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Robert Gooley
- MonashHeart, Monash Health and Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Liam McCormick
- MonashHeart, Monash Health and Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Hashrul N. Rashid
- MonashHeart, Monash Health and Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - James Dargan
- Cardiovascular Clinical Academic Group, St. George’s, University of London and St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Faisal Khan
- Cardiovascular Clinical Academic Group, St. George’s, University of London and St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Sami Firoozi
- Cardiovascular Clinical Academic Group, St. George’s, University of London and St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Stephen J. Brecker
- Cardiovascular Clinical Academic Group, St. George’s, University of London and St. George’s University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Russo JJ, Yuen T, Tan J, Willson AB, Gurvitch R. Assessment of Coronary Artery Obstruction Risk During Transcatheter Aortic Valve Replacement Utilising 3D-Printing. Heart Lung Circ 2022; 31:1134-1143. [PMID: 35365428 DOI: 10.1016/j.hlc.2022.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Current imaging techniques may inadequately rule out coronary artery obstruction (CAO), a potentially fatal complication during transcatheter aortic valve replacement (TAVR). Advancements in three-dimensional (3D)-printing allow the development of models capable of replicating cardiac anatomy and predicting CAO. We sought to simulate TAVR utilising 3D-printed cardiac models to improve CAO risk assessment and procedural safety. METHODS Thirteen (13) patients with aortic stenosis at high-risk of CAO during TAVR were selected for 3D-printed modelling. The relevant anatomy for TAVR was precisely reconstructed with Materialise Heart Print-Flex (Materialse, Leuven, Belgium) technology. An appropriately sized valve prosthesis was deployed in each 3D-model and coronary ostia assessed for obstruction. RESULTS Model-derived results were compared to clinical outcomes in 13 cases. One high-risk case underwent TAVR resulting in left main obstruction and subsequent stenting. This outcome was accurately predicted by the 3D-model simulation. Two (2) high-risk TAVR cases were abandoned following transient CAO during balloon aortic valvuloplasty (BAV). The 3D-model simulations correlated with these findings, demonstrating CAO either by a calcium nodule or the native valve leaflet. In another two cases, BAV was uncertain, however the 3D-simulation demonstrated patency and successful TAVR was undertaken. In remaining cases, no obstruction was demonstrated in-vitro, and all underwent uncomplicated TAVR. CONCLUSIONS In this proof-of-concept study, 3D-model TAVR simulation correlates well to clinical outcomes. 3D-models of patients at high-risk of CAO may be utilised in pre-procedural planning to accurately predict this complication. As lower-risk surgical cohorts are considered for TAVR, 3D-models may minimise complications leading to safer patient outcomes.
Collapse
Affiliation(s)
- Jeremy J Russo
- Royal Melbourne Hospital, Cardiology Department, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia
| | - Tamara Yuen
- Royal Melbourne Hospital, Cardiology Department, Melbourne, Vic, Australia
| | - John Tan
- Cardiology Department, Mount Hospital, Perth, WA, Australia
| | | | - Ronen Gurvitch
- Royal Melbourne Hospital, Cardiology Department, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia.
| |
Collapse
|
19
|
On the Modeling of Transcatheter Therapies for the Aortic and Mitral Valves: A Review. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) has become a milestone for the management of aortic stenosis in a growing number of patients who are unfavorable candidates for surgery. With the new generation of transcatheter heart valves (THV), the feasibility of transcatheter mitral valve replacement (TMVR) for degenerated mitral bioprostheses and failed annuloplasty rings has been demonstrated. In this setting, computational simulations are modernizing the preoperative planning of transcatheter heart valve interventions by predicting the outcome of the bioprosthesis interaction with the human host in a patient-specific fashion. However, computational modeling needs to carry out increasingly challenging levels including the verification and validation to obtain accurate and realistic predictions. This review aims to provide an overall assessment of the recent advances in computational modeling for TAVR and TMVR as well as gaps in the knowledge limiting model credibility and reliability.
Collapse
|
20
|
Magnetic retrieval of prosthetic heart valves for redo-TAVI. Med Eng Phys 2022; 101:103761. [DOI: 10.1016/j.medengphy.2022.103761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
21
|
Reza S, Bianchi M, Kovarovic B, Anam S, Slepian MJ, Hamdan A, Haj-Ali R, Bluestein D. A computational framework for post-TAVR cardiac conduction abnormality (CCA) risk assessment in patient-specific anatomy. Artif Organs 2022; 46:1305-1317. [PMID: 35083748 DOI: 10.1111/aor.14189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cardiac conduction abnormality (CCA)- one of the major persistent complications associated with transcatheter aortic valve replacement (TAVR) may lead to permanent pacemaker implantation. Localized stresses exerted by the device frame on the membranous septum (MS) which lies between the aortic annulus and the bundle of His, may disturb the cardiac conduction and cause the resultant CCA. We hypothesize that the area-weighted average maximum principal logarithmic strain (AMPLS) in the MS region can predict the risk of CCA following TAVR. METHODS Rigorous finite element-based modeling analysis was conducted in two patients (Balloon expandable TAVR recipients) to assess post-TAVR CCA risk. Following the procedure one of the patients required permanent pacemaker (PPM) implantation while the other did not (control case). Patient-specific aortic root was modeled, MS was identified from the CT image, and the TAVR deployment was simulated. Mechanical factors in the MS region such as logarithmic strain, contact force, contact pressure, contact pressure index (CPI) and their time history during the TAVR deployment; and anatomical factors such as MS length, implantation depth, were analyzed. RESULTS Maximum AMPLS (0.47 and 0.37, respectively), contact force (0.92 N and 0.72 N, respectively), and CPI (3.99 and 2.86, respectively) in the MS region were significantly elevated in the PPM patient as compared to control patient. CONCLUSION Elevated stresses generated by TAVR devices during deployment appear to correlate with CCA risk, with AMPLS in the MS region emerging as a strong predictor that could be used for preprocedural planning in order to minimize CCA risk.
Collapse
Affiliation(s)
- Symon Reza
- Department of Biomedical Engineering, Stony Brook University, NY, USA
| | - Matteo Bianchi
- Department of Biomedical Engineering, Stony Brook University, NY, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, NY, USA
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, NY, USA
| | - Marvin J Slepian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rami Haj-Ali
- The Fleischman Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, NY, USA
| |
Collapse
|
22
|
Assessment of Paravalvular Leak Severity and Thrombogenic Potential in Transcatheter Bicuspid Aortic Valve Replacements Using Patient-Specific Computational Modeling. J Cardiovasc Transl Res 2021; 15:834-844. [PMID: 34859367 PMCID: PMC9160219 DOI: 10.1007/s12265-021-10191-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Bicuspid aortic valve (BAV), the most common congenital valvular abnormality, generates asymmetric flow patterns and increased stresses on the leaflets that expedite valvular calcification and structural degeneration. Recently adapted for use in BAV patients, TAVR demonstrates promising performance, but post-TAVR complications tend to get exacerbated due to BAV anatomical complexities. Utilizing patient-specific computational modeling, we address some of these complications. The degree and location of post-TAVR PVL was assessed, and the risk of flow-induced thrombogenicity was analyzed in 3 BAV patients - using older generation TAVR devices that were implanted in these patients, and compared them to the performance of the newest generation TAVR devices using in silico patient models. Significant decrease in PVL and thrombogenic potential was observed after implantation of the newest generation device. The current work demonstrates the potential of using simulations in pre-procedural planning to assess post-TAVR complications, and compare the performance of different devices to achieve better clinical outcomes. Patient-specific computational framework to assess post-transcatheter bicuspid aortic valve replacement paravalvular leakage and flow-induced thrombogenic complications and compare device performances.
Collapse
|
23
|
Finotello A, Romarowski RM, Gorla R, Bianchi G, Bedogni F, Auricchio F, Morganti S. Performance of high conformability vs. high radial force devices in the virtual treatment of TAVI patients with bicuspid aortic valve. Med Eng Phys 2021; 89:42-50. [PMID: 33608124 DOI: 10.1016/j.medengphy.2021.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Transcatheter Aortic Valve Implantation (TAVI) is a consolidated procedure showing a low operative risk and excellent long-term outcomes in patients with aortic stenosis. Patients presenting a bicuspid aortic valve (BAV) often require valve replacement due to the highly calcific nature of the aortic leaflets. However, BAV patients have usually been contraindicated for TAVI due to their complex valve anatomy. The aim of this work was to compare the performance of devices featuring high conformability (HC) against those with high radial force (HRF). METHODS Four BAV patients undergoing TAVI were retrospectively selected. The aortic roots including the native leaflets and calcifications were reconstructed from pre-operative Computed Tomography scans. In each patient, both HC and HRF devices were virtually implanted using Finite Element Analysis simulations. After implantation, paravalvular orifice area, von Mises stress distribution, root contact area, and device eccentricity were calculated. RESULTS Simulations showed good agreement with intraoperative imaging. In 3 out of 4 patients, the HRF device resulted in a lower paravalvular area than the HC. Stress distribution was also more homogeneously distributed in the HRF group as compared with the HC group. Despite their lower adaptability, HRF devices showed consistently higher stent-root contact area. CONCLUSION HRF devices showed improved results with respect to HC valves after being deployed in BAV anatomies. We hypothesize that the ability to reshape the annulus is the major determinant of success in this subgroup of patients featuring highly calcified leaflets.
Collapse
Affiliation(s)
- Alice Finotello
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Rodrigo M Romarowski
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, Via Fellini, 4 20097 San Donato Milanese, Italy.
| | - Riccardo Gorla
- Department of Clinical and Interventional Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Bianchi
- Department of Clinical and Interventional Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Bedogni
- Department of Clinical and Interventional Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Simone Morganti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Luraghi G, Rodriguez Matas JF, Migliavacca F. In silico approaches for transcatheter aortic valve replacement inspection. Expert Rev Cardiovasc Ther 2020; 19:61-70. [PMID: 33201738 DOI: 10.1080/14779072.2021.1850265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Increasing applications of transcatheter aortic valve replacement (TAVR) to treat high- or medium-risk patients with aortic diseases have been proposed in recent years. Despite its increasing use, many influential factors are still to be understood. Furthermore, innovative applications of TAVR such as in bicuspid aortic valves or in low-risk patients are emerging in clinical use. Numerical analyses are increasingly used to reproduce clinical treatments. The future trends in this area are foreseen for in silico trials and personalized medicine. Areas covered: This review paper analyzes the recent years (Jan 2018 - Aug 2020) of in silico studies simulating the behavior of transcatheter aortic valves with emphasis on the addressed clinical question and the used modeling strategies. The manuscripts are firstly classified based on their clinical hypothesis. A second classification is based on the adopted modeling approach in terms of patient domain, device modeling, and inclusion or exclusion of the fluid domain. Expert opinion: The TAVR can be virtually performed in numerous vessel geometries and with different devices. This versatility allows a rapid evaluation of the feasibility of different implantation approaches for specific patients, and patient populations, resulting in faster and safer introduction or optimization of new treatments or devices.
Collapse
Affiliation(s)
- Giulia Luraghi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta, Politecnico di Milano , Milan, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta, Politecnico di Milano , Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta, Politecnico di Milano , Milan, Italy
| |
Collapse
|