1
|
Lu R, Akasaka H, Ruan KH. Design, synthesis and characterization of lead compounds as anti-inflammatory drugs targeting mPGES-1 via enzymelink screening. Future Med Chem 2023; 15:757-767. [PMID: 37248701 PMCID: PMC10318571 DOI: 10.4155/fmc-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Aim: The objective of this study was to synthesize and validate a set of compounds that selectively inhibit mPGES-1, with the potential to be developed into a novel anti-inflammatory drug. Methods: The synthesized compounds were characterized using 1H NMR spectroscopy and LC-MS to confirm their structure. Cellular and enzymatic assays were used to demonstrate their inhibitory activity on prostaglandin E2 production. Results: Docking studies revealed that compounds containing fluoro-, chloro- and methyl- groups displayed strong inhibitory activity against prostaglandin E2. The inhibitory activity of synthesized trimethyl and trifluoro was further validated using enzymatic and cell migration assays. Conclusion: The findings demonstrated that the synthesized compounds possess significant potential as a new generation of nonsteroidal anti-inflammatory drugs that selectively target mPGES-1 with fewer side effects.
Collapse
Affiliation(s)
- Renzhong Lu
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Hironori Akasaka
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Ke-He Ruan
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Kotsos D, Tziomalos K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24033049. [PMID: 36769370 PMCID: PMC9918023 DOI: 10.3390/ijms24033049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.
Collapse
|
3
|
Weaver LM, Loftin CD, Zhan CG. Development of pharmacotherapies for abdominal aortic aneurysms. Biomed Pharmacother 2022; 153:113340. [PMID: 35780618 PMCID: PMC9514980 DOI: 10.1016/j.biopha.2022.113340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The cardiovascular field is still searching for a treatment for abdominal aortic aneurysms (AAA). This inflammatory disease often goes undiagnosed until a late stage and associated rupture has a high mortality rate. No pharmacological treatment options are available. Three hallmark factors of AAA pathology include inflammation, extracellular matrix remodeling, and vascular smooth muscle dysfunction. Here we discuss drugs for AAA treatment that have been studied in clinical trials by examining the drug targets and data present for each drug's ability to regulate the aforementioned three hallmark pathways in AAA progression. Historically, drugs that were examined in interventional clinical trials for treatment of AAA were repurposed therapeutics. Novel treatments (biologics, small-molecule compounds etc.) have not been able to reach the clinic, stalling out in pre-clinical studies. Here we discuss the backgrounds of previous investigational drugs in hopes of better informing future development of potential therapeutics. Overall, the highlighted themes discussed here stress the importance of both centralized anti-inflammatory drug targets and rigor of translatability. Exceedingly few murine studies have examined an intervention-based drug treatment in halting further growth of an established AAA despite interventional treatment being the therapeutic approach taken to treat AAA in a clinical setting. Additionally, data suggest that a potentially successful drug target may be a central inflammatory biomarker. Specifically, one that can effectively modulate all three hallmark factors of AAA formation, not just inflammation. It is suggested that inhibiting PGE2 formation with an mPGES-1 inhibitor is a leading drug target for AAA treatment to this end.
Collapse
Affiliation(s)
- Lauren M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Charles D Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
Khan A, Khan SU, Khan A, Shal B, Rehman SU, Rehman SU, Htar TT, Khan S, Anwar S, Alafnan A, Rengasamy KRR. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022; 27:molecules27134319. [PMID: 35807562 PMCID: PMC9268648 DOI: 10.3390/molecules27134319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd., Hattar 22610, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Health Sciences, IQRA University, Islamabad Campus (Chak Shahzad), Park link Rd., Islamabad 44000, Pakistan
| | - Sabih Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Shaheed Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Correspondence: or (S.K.); (K.R.R.)
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Kannan RR Rengasamy
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, Chennai 600077, India
- Correspondence: or (S.K.); (K.R.R.)
| |
Collapse
|
5
|
Santos Nascimento IJD, de Aquino TM, da Silva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr Med Chem 2022; 29:5397-5419. [PMID: 35301943 DOI: 10.2174/0929867329666220317122948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation is a natural process in response to external stimuli associated with organism protection. However, this reaction could be exaggerated, leading to severe damages related to physiopathological processes, such as rheumatoid arthritis, cancer, diabetes, allergies, infections, among others. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy to develop anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. To decrease production costs and increase the probability of discovering active substances, computer-aided drug design (CADD) approaches have been increasingly used for designing new inhibitors. Thus, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
6
|
Latest progress in the development of cyclooxygenase-2 pathway inhibitors targeting microsomal prostaglandin E 2 synthase-1. Future Med Chem 2022; 14:385-388. [PMID: 34985304 PMCID: PMC8905551 DOI: 10.4155/fmc-2021-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Genetic variations and epigenetic modulations in CYP genes: Implications in NSAID-treatment of arthritis patients. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00373-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Engineering 'Enzymelink' for screening lead compounds to inhibit mPGES-1 while maintaining prostacyclin synthase activity. Future Med Chem 2021; 13:1091-1103. [PMID: 34080888 DOI: 10.4155/fmc-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: This study investigated our Enzymelinks, COX-2-10aa-mPGES-1 and COX-2-10aa-PGIS, as cellular cross-screening targets for quick identification of lead compounds to inhibit inflammatory PGE2 biosynthesis while maintaining prostacyclin synthesis. Methods: We integrated virtual and wet cross-screening using Enzymelinks to rapidly identify lead compounds from a large compound library. Results: From 380,000 compounds virtually cross-screened with the Enzymelinks, 1576 compounds were identified and used for wet cross-screening using HEK293 cells that overexpressed individual Enzymelinks as targets. The top 15 lead compounds that inhibited mPGES-1 activity were identified. The top compound that specifically inhibited inflammatory PGE2 biosynthesis alone without affecting COX-2 coupled to PGI2 synthase (PGIS) for PGI2 biosynthesis was obtained. Conclusion: Enzymelink technology could advance cyclooxygenase pathway-targeted drug discovery to a significant degree.
Collapse
|
9
|
Zhou S, Zheng F, Zhan CG. Clinical data mining reveals analgesic effects of lapatinib in cancer patients. Sci Rep 2021; 11:3528. [PMID: 33574423 PMCID: PMC7878815 DOI: 10.1038/s41598-021-82318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
Microsomal prostaglandin E2 synthase 1 (mPGES-1) is recognized as a promising target for a next generation of anti-inflammatory drugs that are not expected to have the side effects of currently available anti-inflammatory drugs. Lapatinib, an FDA-approved drug for cancer treatment, has recently been identified as an mPGES-1 inhibitor. But the efficacy of lapatinib as an analgesic remains to be evaluated. In the present clinical data mining (CDM) study, we have collected and analyzed all lapatinib-related clinical data retrieved from clinicaltrials.gov. Our CDM utilized a meta-analysis protocol, but the clinical data analyzed were not limited to the primary and secondary outcomes of clinical trials, unlike conventional meta-analyses. All the pain-related data were used to determine the numbers and odd ratios (ORs) of various forms of pain in cancer patients with lapatinib treatment. The ORs, 95% confidence intervals, and P values for the differences in pain were calculated and the heterogeneous data across the trials were evaluated. For all forms of pain analyzed, the patients received lapatinib treatment have a reduced occurrence (OR 0.79; CI 0.70–0.89; P = 0.0002 for the overall effect). According to our CDM results, available clinical data for 12,765 patients enrolled in 20 randomized clinical trials indicate that lapatinib therapy is associated with a significant reduction in various forms of pain, including musculoskeletal pain, bone pain, headache, arthralgia, and pain in extremity, in cancer patients. Our CDM results have demonstrated the significant analgesic effects of lapatinib, suggesting that lapatinib may be repurposed as a novel type of analgesic.
Collapse
Affiliation(s)
- Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
10
|
Vahabi N, Salehi M, Duarte JD, Mollalo A, Michailidis G. County-level longitudinal clustering of COVID-19 mortality to incidence ratio in the United States. Sci Rep 2021; 11:3088. [PMID: 33542313 PMCID: PMC7862666 DOI: 10.1038/s41598-021-82384-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
As of November 12, 2020, the mortality to incidence ratio (MIR) of COVID-19 was 5.8% in the US. A longitudinal model-based clustering system on the disease trajectories over time was used to identify "vulnerable" clusters of counties that would benefit from allocating additional resources by federal, state and county policymakers. County-level COVID-19 cases and deaths, together with a set of potential risk factors were collected for 3050 U.S. counties during the 1st wave of COVID-19 (Mar25-Jun3, 2020), followed by similar data for 1344 counties (in the "sunbelt" region of the country) during the 2nd wave (Jun4-Sep2, 2020), and finally for 1055 counties located broadly in the great plains region of the country during the 3rd wave (Sep3-Nov12, 2020). We used growth mixture models to identify clusters of counties exhibiting similar COVID-19 MIR growth trajectories and risk-factors over time. The analysis identifies "more vulnerable" clusters during the 1st, 2nd and 3rd waves of COVID-19. Further, tuberculosis (OR 1.3-2.1-3.2), drug use disorder (OR 1.1), hepatitis (OR 13.1), HIV/AIDS (OR 2.3), cardiomyopathy and myocarditis (OR 1.3), diabetes (OR 1.2), mesothelioma (OR 9.3) were significantly associated with increased odds of being in a more vulnerable cluster. Heart complications and cancer were the main risk factors increasing the COVID-19 MIR (range 0.08-0.52% MIR↑). We identified "more vulnerable" county-clusters exhibiting the highest COVID-19 MIR trajectories, indicating that enhancing the capacity and access to healthcare resources would be key to successfully manage COVID-19 in these clusters. These findings provide insights for public health policymakers on the groups of people and locations they need to pay particular attention while managing the COVID-19 epidemic.
Collapse
Affiliation(s)
- Nasim Vahabi
- Informatics Institute, University of Florida, Gainesville, FL, USA
| | - Masoud Salehi
- Department of Biostatistics, College of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Julio D Duarte
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abolfazl Mollalo
- Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA
| | | |
Collapse
|
11
|
Mahesh G, Anil Kumar K, Reddanna P. Overview on the Discovery and Development of Anti-Inflammatory Drugs: Should the Focus Be on Synthesis or Degradation of PGE 2? J Inflamm Res 2021; 14:253-263. [PMID: 33568930 PMCID: PMC7868279 DOI: 10.2147/jir.s278514] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a protective response that develops against tissue injury and infection. Chronic inflammation, on the other hand, is the key player in the pathogenesis of many inflammatory disorders including cancer. The cytokine storm, an inflammatory response flaring out of control, is mostly responsible for the mortality in COVID-19 patients. Anti-inflammatory drugs inhibit cyclooxygenases (COX), which are involved in the biosynthesis of prostaglandins that promote inflammation. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) are associated with gastric and renal side-effects, as they inhibit both the constitutive COX-1 and the inducible COX-2. The majority of selective COX-2 inhibitors (COXIBs) are without gastric side-effects but are associated with cardiac side-effects on long-term use. The search for anti-inflammatory drugs without side-effects, therefore, has become a dream and ongoing effort of the Pharma companies. As PGE2 is the key mediator of inflammatory disorders, coming up with a strategy to reduce the levels of PGE2 alone without affecting other metabolites may form a better choice for the development of next generation anti-inflammatory drugs. In this direction the options being explored are on synthesis of PGE2-mPGES-1; PGE2 degradation through a specific PG dehydrogenase, 15-PGDH, and by blocking its activity mediated through a specific PGE receptor, EP4. As leukotrienes formed via the 5-lipoxygenase (5-LOX) pathway also play an important role in the mediation of inflammation, efforts are also being made to target both COX and LOX pathways. This review focuses on addressing the following three points: 1) How NSAIDs and COXIBs are associated with gastric, renal and cardiac side-effects; 2) Should the focus be on the targets upstream or downstream of PGE2; and 3) the status of alternative targets being explored for the discovery and development of anti-inflammatory drugs without side-effects. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/8Uufep6ipBQ
Collapse
Affiliation(s)
- Gopa Mahesh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kotha Anil Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
12
|
Li Z, Li X, Huang YY, Wu Y, Liu R, Zhou L, Lin Y, Wu D, Zhang L, Liu H, Xu X, Yu K, Zhang Y, Cui J, Zhan CG, Wang X, Luo HB. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc Natl Acad Sci U S A 2020; 117:27381-27387. [PMID: 33051297 PMCID: PMC7959488 DOI: 10.1073/pnas.2010470117] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and thus repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a restraint energy distribution (RED) function, making the practical FEP-ABFE-based virtual screening of the existing drug library possible. As a result, out of 25 drugs predicted, 15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro The most potent one is dipyridamole (inhibitory constant Ki = 0.04 µM) which has shown promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts.
Collapse
Affiliation(s)
- Zhe Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Xin Li
- Center for Innovative Marine Drug Screening & Evaluation, School of Medicine and Pharmacy, Ocean University of China, 266100 Qingdao, China
- School of Life Sciences, Lanzhou University, 734000 Lanzhou, China
| | - Yi-You Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Yaoxing Wu
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Runduo Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Lingli Zhou
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Yuxi Lin
- Center for Innovative Marine Drug Screening & Evaluation, School of Medicine and Pharmacy, Ocean University of China, 266100 Qingdao, China
- School of Life Sciences, Lanzhou University, 734000 Lanzhou, China
| | - Deyan Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Lei Zhang
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Hao Liu
- High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology, 266237 Qingdao, China
| | - Ximing Xu
- Center for Innovative Marine Drug Screening & Evaluation, School of Medicine and Pharmacy, Ocean University of China, 266100 Qingdao, China
- Marine Biomedical Research Institute of Qingdao, 266100 Qingdao, China
| | - Kunqian Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuxia Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 510623 Guangzhou, China
| | - Jun Cui
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, China;
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40536;
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Xin Wang
- Center for Innovative Marine Drug Screening & Evaluation, School of Medicine and Pharmacy, Ocean University of China, 266100 Qingdao, China;
- Marine Biomedical Research Institute of Qingdao, 266100 Qingdao, China
| | - Hai-Bin Luo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China;
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228 Haikou, China
| |
Collapse
|