1
|
Oluwafemi KA, Jimoh RB, Omoboyowa DA, Olonisakin A, Adeforiti AF, Iqbal N. Investigating the effect of 1, 2-Dibenzoylhydrazine on Staphylococcus aureus using integrated computational approaches. In Silico Pharmacol 2024; 12:102. [PMID: 39524456 PMCID: PMC11549268 DOI: 10.1007/s40203-024-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Staphylococcus aureus, a notorious member of the ESKAPE pathogens, poses significant public health challenges due to its virulence and multidrug-resistant nature, particularly in methicillin-resistant S. aureus (MRSA) strains. With the increasing threat of antibiotic resistance, there is an urgent need to develop novel antibiotic agents. This study therefore aims to explore the antibacterial potential of 1,2-dibenzoylhydrazine (DBH) as a scaffold against S. aureus drug target enzymes, using integrated computational approaches. The study utilized molecular docking, lead optimization, and structure-based virtual screening techniques to evaluate the binding affinities of DBH and its derivatives against various S. aureus enzymes. Prime/MM-GBSA calculations were performed to validate the binding affinities obtained, and molecular dynamics (MD) simulations were conducted to assess the stability of the DBHs-enzyme complexes. Results indicated that, out of twenty enzymes from S. aureus examined against DBH, carotenoid dehydrosqualene synthase was predicted as a suitable target enzyme for DBH, showing a binding affinity of -8.027 kcal/mol. A lead optimization operation of the compound generated 27 DBH derivatives out of which four exhibited enhanced binding affinities compared to both DBH and a standard antibiotic, ofloxacin. The QSAR model predicted that, DBH and molecule_D_1 have higher PIC50 of 4.779 µM compared with the standard drug (ofloxacin = 4.678 µM). MD simulations confirmed the stability of the top-scoring derivatives within the enzyme's binding pocket, with RMSD and RMSF analyses supporting their potential as inhibitors of the enzyme. In conclusion, this study has predicted the effect of DBH derivatives on S. aureus based on their in silico inhibitory capacity against the carotenoid dehydrosqualene synthase from the organism. Future work will seek to experimentally validate these findings against the suggested enzyme. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00278-1.
Collapse
Affiliation(s)
- Kola A. Oluwafemi
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Rashidat B. Jimoh
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Damilola A. Omoboyowa
- Phyto-medicine and Computational Biology Laboratory, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Adebisi Olonisakin
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Anthony F. Adeforiti
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Naveed Iqbal
- Department of BioinformaticsInstitute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
2
|
Machingauta A, Mukanganyama S. Antibacterial Activity and Proposed Mode of Action of Extracts from Selected Zimbabwean Medicinal Plants against Acinetobacter baumannii. Adv Pharmacol Pharm Sci 2024; 2024:8858665. [PMID: 39220823 PMCID: PMC11364482 DOI: 10.1155/2024/8858665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii was identified by the WHO as a priority pathogen in which the research and development of new antibiotics is urgently needed. Plant phytochemicals have potential as sources of new antimicrobials. The objective of the study was to determine the antibacterial activity of extracts of selected Zimbabwean medicinal plants against A. baumannii and determine their possible mode of action. Extracts were prepared from the leaves of the eight plants including the bark of Erythrina abyssinica using solvents of different polarities. Antibacterial activity was evaluated using the microbroth dilution method coupled with the in vitro iodonitrotetrazolium colorimetric assay. The effect of the extracts on membrane integrity was determined by quantifying the amount of protein and nucleic acid leaked from the cells after exposure to the extracts. The effects of the extracts on biofilms were investigated. Toxicity studies were carried out using sheep erythrocytes and murine peritoneal cells. Seven out of eight evaluated plant extracts were found to have antibacterial activity. The Combretum apiculatum acetonie (CAA) extract showed the highest inhibitory activity against A. baumannii with a minimal inhibitory concentration of 125 µg/mL. The minimum inhibitory concentration (MIC) of the CAA extract caused a protein leakage of 32 µg/mL from A. baumannii. The Combretum apiculatum acetonie (CAA), C. apiculatum methanolic (CAM), Combretum zeyheri methanolic (CZM), and Erythrina abyssinica methanolic (EAM) extracts inhibited A. baumannii biofilm formation. The EAM extract was shown to disrupt mature biofilms. The potent extracts were nontoxic to sheep erythrocytes and mouse peritoneal cells. The activities shown by the extracts indicate that the plants have potential as sources of effective antibacterial and antibiofilm formation agents against A. baumannii.
Collapse
Affiliation(s)
- Auxillia Machingauta
- Bio-Molecular Interactions Analyses GroupDepartment of Biotechnology and BiochemistryUniversity of Zimbabwe, Mt Pleasant, P.O. Box 167, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of TherapeuticsNatural Products Research UnitAfrican Institute of Biomedical Science and TechnologyWilkins Hospital, Block C, Corner J. Tongogara and R. Tangwena, Harare, Zimbabwe
| |
Collapse
|
3
|
Ounjaijean S, Somsak V, Saki M, Mitsuwan W, Romyasamit C. Antibacterial, Antibiofilm, and Antioxidant Activities of Aqueous Crude Gymnema inodorum Leaf Extract against Vancomycin-Resistant Enterococcus faecium. Microorganisms 2024; 12:1399. [PMID: 39065167 PMCID: PMC11278954 DOI: 10.3390/microorganisms12071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREF) causes nosocomial infections with high mortality and morbidity rates. This study aimed to evaluate the antibacterial and antibiofilm activities of aqueous crude Gymnema inodorum leaf extract (GIE) against the VREF ATCC 700221 strain. The antimicrobial activity of GIE against VREF was performed using disk diffusion and broth microdilution. The antibiofilm activities were evaluated using the crystal violet staining assay. The antioxidant potential was evaluated. Preliminary screening of the antimicrobial activity of 50 and 100 µg/disk of GIE against VREF revealed inhibition zones of 8.33 ± 0.58 mm and 8.67 ± 0.29 mm, respectively. Additionally, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against VREF were 125 and ≥ 250 mg/mL, respectively. SEM analysis showed that treatment with GIE caused morphological changes, including incomplete cell division, damaged cell walls, and cell content leakage, suggesting a disruption of bacterial cells. GIE also inhibited and eradicated biofilms formed by VREF. The extract exhibited antioxidant activities in the DPPH and ABTS assays. While GIE shows potential as an antibacterial and antibiofilm agent, further studies are necessary to fully understand the underlying mechanisms and optimize its use for therapeutic applications.
Collapse
Affiliation(s)
- Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chonticha Romyasamit
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
4
|
Freymann E, Carvalho S, Garbe LA, Dwi Ghazhelia D, Hobaiter C, Huffman MA, Muhumuza G, Schulz L, Sempebwa D, Wald F, Yikii ER, Zuberbühler K, Schultz F. Pharmacological and behavioral investigation of putative self-medicative plants in Budongo chimpanzee diets. PLoS One 2024; 19:e0305219. [PMID: 38900778 PMCID: PMC11189245 DOI: 10.1371/journal.pone.0305219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/25/2024] [Indexed: 06/22/2024] Open
Abstract
Wild chimpanzees consume a variety of plants to meet their dietary needs and maintain wellbeing. While some plants have obvious value, others are nutritionally poor and/or contain bioactive toxins which make ingestion costly. In some cases, these nutrient-poor resources are speculated to be medicinal, thought to help individuals combat illness. In this study, we observed two habituated chimpanzee communities living in the Budongo Forest, Uganda, and collected 17 botanical samples associated with putative self-medication behaviors (e.g., bark feeding, dead wood eating, and pith-stripping) or events (e.g., when consumer had elevated parasite load, abnormal urinalysis, or injury). In total, we selected plant parts from 13 species (nine trees and four herbaceous plants). Three extracts of different polarities were produced from each sample using n-hexane, ethyl acetate, and methanol/water (9/1, v/v) and introduced to antibacterial and anti-inflammatory in vitro models. Extracts were evaluated for growth inhibition against a panel of multidrug-resistant clinical isolates of bacteria, including ESKAPE strains and cyclooxygenase-2 (COX-2) inhibition activity. Pharmacological results suggest that Budongo chimpanzees consume several species with potent medicinal properties. In the antibacterial library screen, 45 out of 53 extracts (88%) exhibited ≥40% inhibition at a concentration of 256 μg/mL. Of these active extracts, 41 (91%) showed activity at ≤256μg/mL in subsequent dose-response antibacterial experiments. The strongest antibacterial activity was achieved by the n-hexane extract of Alstonia boonei dead wood against Staphylococcus aureus (IC50: 16 μg/mL; MIC: 32 μg/mL) and Enterococcus faecium (IC50: 16 μg/mL; MIC: >256 μg/mL) and by the methanol-water extract of Khaya anthotheca bark and resin against E. faecium (IC50: 16 μg/mL; MIC: 32 μg/mL) and pathogenic Escherichia coli (IC50: 16 μg/mL; MIC: 256 μg/mL). We observed ingestion of both these species by highly parasitized individuals. K. anthotheca bark and resin were also targeted by individuals with indicators of infection and injuries. All plant species negatively affected growth of E. coli. In the anti-inflammatory COX-2 inhibition library screen, 17 out of 51 tested extracts (33%) showed ≥50% COX-2 inhibition at a concentration of 5 μg/mL. Several extracts also exhibited anti-inflammatory effects in COX-2 dose-response experiments. The K. anthotheca bark and resin methanol-water extract showed the most potent effects (IC50: 0.55 μg/mL), followed by the fern Christella parasitica methanol-water extract (IC50: 0.81 μg/mL). This fern species was consumed by an injured individual, a feeding behavior documented only once before in this population. These results, integrated with associated observations from eight months of behavioral data, provide further evidence for the presence of self-medicative resources in wild chimpanzee diets. This study addresses the challenge of distinguishing preventative medicinal food consumption from therapeutic self-medication by integrating pharmacological, observational, and health monitoring data-an essential interdisciplinary approach for advancing the field of zoopharmacognosy.
Collapse
Affiliation(s)
- Elodie Freymann
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, Department of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| | - Susana Carvalho
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, Department of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
- Gorongosa National Park, Sofala, Mozambique
- Interdisciplinary Centre for Archaeology and the Evolution of Human Behaviour, University of Algarve, Faro, Portugal
| | - Leif A. Garbe
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- ZELT–Center for Nutrition and Food Technology gGmbH
| | - Dinda Dwi Ghazhelia
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Catherine Hobaiter
- Wild Minds Lab, School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- Budongo Conservation Field Station, Masindi, Uganda
| | - Michael A. Huffman
- Wildlife Research Center, Inuyama Campus, Kyoto University, Inuyama, Japan
| | | | - Lena Schulz
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Daniel Sempebwa
- Budongo Conservation Field Station, Masindi, Uganda
- Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Florian Wald
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- ZELT–Center for Nutrition and Food Technology gGmbH
| | | | - Klaus Zuberbühler
- Budongo Conservation Field Station, Masindi, Uganda
- Department of Comparative Cognition, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Fabien Schultz
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- Pharmacognosy and Phytotherapy, School of Pharmacy, University College of London, London, United Kingdom
| |
Collapse
|
5
|
Patra S, Biswas P, Karmakar S, Biswas K. Repression of resistance mechanisms of Pseudomonas aeruginosa: implications of the combination of antibiotics and phytoconstituents. Arch Microbiol 2024; 206:294. [PMID: 38850339 DOI: 10.1007/s00203-024-04012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.
Collapse
Affiliation(s)
- Susmita Patra
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Poulomi Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Kaushik Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
6
|
Kimani CN, Reuter H, Kotzé SH, Venter P, Ramharack P, Muller CJF. Pancreatic beta cell regenerative potential of Zanthoxylum chalybeum Engl. Aqueous stem bark extract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117374. [PMID: 37944876 DOI: 10.1016/j.jep.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum chalybeum Engl. is endemic to Africa and has been used traditionally to treat diabetes mellitus. Moreover, its pharmacological efficacy has been confirmed experimentally using in vitro and in vivo models of diabetes. However, the effects of Z. chalybeum extracts and its major constituent compounds on beta cell and islet regeneration are not clear. Further, the mechanisms associated with observed antidiabetic effects at the beta cell level are not fully elucidated. AIM OF THE STUDY We determined the beta cell regenerative efficacy of Z. chalybeum aqueous stem bark extract, identified the chemical compounds in Z. chalybeum aqueous stem bark extracts and explored their putative mechanisms of action. MATERIALS AND METHODS Phytochemical profiling of the Z. chalybeum extract was achieved using ultra high-performance liquid chromatography hyphenated to high-resolution mass spectrometry. Thereafter, molecular interactions of the compounds with beta cell regeneration targets were evaluated via molecular docking. In vitro, effects of the extract on cell viability, proliferation, apoptosis and oxidative stress were investigated in RIN-5F beta cells exposed to palmitate or streptozotocin. In vivo, pancreas tissue sections from streptozotocin-induced diabetic male Wistar rats treated with Z. chalybeum extract were stained for insulin, glucagon, pancreatic duodenal homeobox protein 1 (Pdx-1) and Ki-67. RESULTS Based on ligand target and molecular docking interactions diosmin was identified as a dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitor. In vitro, Z. chalybeum augmented cell viability and cell proliferation while in palmitate-pre-treated cells, the extract significantly increased cell activity after 72 h. In vivo, although morphometric analysis showed decreased islet and beta cell size and density, observation of increased Pdx-1 and Ki-67 immunoreactivity in extract-treated islets suggests that Z. chalybeum extract has mild beta cell regenerative potential mediated by increased cell proliferation. CONCLUSIONS Overall, the mitogenic effects observed in vitro, were not robust enough to elicit sufficient recovery of functional beta cell mass in our in vivo model, in the context of a sustained diabetic milieu. However, the identification of diosmin as a potential Dyrk1A inhibitor merits further inquiry into the attendant molecular interactions.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Department of Non-communicable Diseases, Institute of Primate Research, PO Box 24481, Karen, Nairobi, Kenya.
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, PO Box 334, Basseterre, Saint Kitts and Nevis
| | - Pieter Venter
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Christo John Frederick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
7
|
Puyol McKenna P, Naughton PJ, Dooley JSG, Ternan NG, Lemoine P, Banat IM. Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits. Pharmaceuticals (Basel) 2024; 17:138. [PMID: 38276011 PMCID: PMC10818721 DOI: 10.3390/ph17010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The rapid emergence of multidrug-resistant pathogens worldwide has raised concerns regarding the effectiveness of conventional antibiotics. This can be observed in ESKAPE pathogens, among others, whose multiple resistance mechanisms have led to a reduction in effective treatment options. Innovative strategies aimed at mitigating the incidence of antibiotic-resistant pathogens encompass the potential use of biosurfactants. These surface-active agents comprise a group of unique amphiphilic molecules of microbial origin that are capable of interacting with the lipidic components of microorganisms. Biosurfactant interactions with different surfaces can affect their hydrophobic properties and as a result, their ability to alter microorganisms' adhesion abilities and consequent biofilm formation. Unlike synthetic surfactants, biosurfactants present low toxicity and high biodegradability and remain stable under temperature and pH extremes, making them potentially suitable for targeted use in medical and pharmaceutical applications. This review discusses the development of biosurfactants in biomedical and therapeutic uses as antimicrobial and antibiofilm agents, in addition to considering the potential synergistic effect of biosurfactants in combination with antibiotics. Furthermore, the anti-cancer and anti-viral potential of biosurfactants in relation to COVID-19 is also discussed.
Collapse
Affiliation(s)
- Patricia Puyol McKenna
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Patrick J. Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - James S. G. Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Nigel G. Ternan
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Patrick Lemoine
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast BT15 1ED, UK;
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
8
|
Barzkar N, Sukhikh S, Babich O. Study of marine microorganism metabolites: new resources for bioactive natural products. Front Microbiol 2024; 14:1285902. [PMID: 38260902 PMCID: PMC10800913 DOI: 10.3389/fmicb.2023.1285902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
The marine environment has remained a source of novel biological molecules with diversified applications. The ecological and biological diversity, along with a unique physical environment, have provided the evolutionary advantage to the plant, animals and microbial species thriving in the marine ecosystem. In light of the fact that marine microorganisms frequently interact symbiotically or mutualistically with higher species including corals, fish, sponges, and algae, this paper intends to examine the potential of marine microorganisms as a niche for marine bacteria. This review aims to analyze and summarize modern literature data on the biotechnological potential of marine fungi and bacteria as producers of a wide range of practically valuable products (surfactants, glyco-and lipopeptides, exopolysaccharides, enzymes, and metabolites with different biological activities: antimicrobial, antitumor, and cytotoxic). Hence, the study on bioactive secondary metabolites from marine microorganisms is the need of the hour. The scientific novelty of the study lies in the fact that for the first time, the data on new resources for obtaining biologically active natural products - metabolites of marine bacteria and fungi - were generalized. The review investigates the various kinds of natural products derived from marine microorganisms, specifically focusing on marine bacteria and fungi as a valuable source for new natural products. It provides a summary of the data regarding the antibacterial, antimalarial, anticarcinogenic, antibiofilm, and anti-inflammatory effects demonstrated by marine microorganisms. There is currently a great need for scientific and applied research on bioactive secondary metabolites of marine microorganisms from the standpoint of human and animal health.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
9
|
Cavallazzi Sebold B, Li J, Ni G, Fu Q, Li H, Liu X, Wang T. Going Beyond Host Defence Peptides: Horizons of Chemically Engineered Peptides for Multidrug-Resistant Bacteria. BioDrugs 2023; 37:607-623. [PMID: 37300748 PMCID: PMC10432368 DOI: 10.1007/s40259-023-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.
Collapse
Affiliation(s)
- Bernardo Cavallazzi Sebold
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Quanlan Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
10
|
Schultz F, Garbe LA. How to approach a study in ethnopharmacology? Providing an example of the different research stages for newcomers to the field today. Pharmacol Res Perspect 2023; 11:e01109. [PMID: 37497567 PMCID: PMC10375576 DOI: 10.1002/prp2.1109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/04/2023] [Indexed: 07/28/2023] Open
Abstract
Ethnopharmacology seeks to investigate humankind's use of natural materials, such as plants, fungi, microorganisms, animals, and minerals, for medicinal purposes. In this highly interdisciplinary field, which can be described as a bridge between the natural/medical and socio-cultural sciences, pharmacological, anthropological, and socio-cultural research methods are often applied, along with methods from other branches of science. When entering the field of ethnopharmacology as a newcomer, student, or early career researcher today, the tremendous amount of scientific publications, and even classical books from this field and related scientific disciplines, can be overwhelming. Ethnopharmacology has evolved over the past decades, and new key topics, such as the decolonization of the field, issues on intellectual property and benefit-sharing, species conservation, the preservation of traditional knowledge, the protection of indigenous communities, science outreach, and climate change, have become important and urgent aspects of the field that must not be disregarded by today's ethnopharmacologists. One of the questions of newcomers will be, "Where to begin?" This review article offers a brief (and certainly not comprehensive) introduction to the science of ethnopharmacology, highlighting some of its past most notable achievements and future prospects. In addition, this article provides an example for newcomers to the field of how to address different stages that may be involved in conducting ethnopharmacological field and lab studies, including early-stage drug discovery and community work. The example presented summarizes a series of studies conducted in the remote Greater Mpigi region of Uganda, located in East Africa. Stages of ethnopharmacological research described include ethnobotanical surveying and fieldwork, the pharmacological assessment of activity with diverse targets in the laboratory, and the transfer of results back to indigenous communities, that is, non-financial benefit sharing as a potential best practice example. As a result of this research example, a total of six original research articles have been published on the medicinal application and ethnopharmacology of 16 plant species from the Ugandan study site, offering a large quantity of results. These six publications reflect the multifaceted nature of the interdisciplinary science of ethnopharmacology, which may serve as a reference point and inspiration for newcomers to design and conduct their own independent ethnopharmacological research endeavors at other study sites. Major bottlenecks and solutions are provided, and the current social media channels with educational ethnopharmacological content are briefly introduced.
Collapse
Affiliation(s)
- Fabien Schultz
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, UK
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Leif-Alexander Garbe
- Ethnopharmacology & Zoopharmacognosy Research Group, Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- ZELT - Neubrandenburg Center for Nutrition and Food Technology gGmbH, Neubrandenburg, Germany
| |
Collapse
|
11
|
Rossetto V, Moore-Machacek A, Woods DF, Galvão HM, Shanahan RM, Hickey A, O'Leary N, O'Gara F, McGlacken GP, Reen FJ. Structural modification of the Pseudomonas aeruginosa alkylquinoline cell-cell communication signal, HHQ, leads to benzofuranoquinolines with anti-virulence behaviour in ESKAPE pathogens. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36862576 DOI: 10.1099/mic.0.001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Microbial populations have evolved intricate networks of negotiation and communication through which they can coexist in natural and host ecosystems. The nature of these systems can be complex and they are, for the most part, poorly understood at the polymicrobial level. The Pseudomonas Quinolone Signal (PQS) and its precursor 4-hydroxy-2-heptylquinoline (HHQ) are signal molecules produced by the important nosocomial pathogen
Pseudomonas aeruginosa
. They are known to modulate the behaviour of co-colonizing bacterial and fungal pathogens such as Bacillus atropheaus, Candida albicans and Aspergillus fumigatus. While the structural basis for alkyl-quinolone signalling within
P. aeruginosa
has been studied extensively, less is known about how structural derivatives of these molecules can influence multicellular behaviour and population-level decision-making in other co-colonizing organisms. In this study, we investigated a suite of small molecules derived initially from the HHQ framework, for anti-virulence activity against ESKAPE pathogens, at the species and strain levels. Somewhat surprisingly, with appropriate substitution, loss of the alkyl chain (present in HHQ and PQS) did not result in a loss of activity, presenting a more easily accessible synthetic framework for investigation. Virulence profiling uncovered significant levels of inter-strain variation among the responses of clinical and environmental isolates to small-molecule challenge. While several lead compounds were identified in this study, further work is needed to appreciate the extent of strain-level tolerance to small-molecule anti-infectives among pathogenic organisms.
Collapse
Affiliation(s)
- Veronica Rossetto
- Faculty of Science and Technology, Universidade do Algarve, Algarve, Portugal.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - David F Woods
- School of Microbiology, University College Cork, Cork, Ireland
| | - Helena M Galvão
- Faculty of Science and Technology, Universidade do Algarve, Algarve, Portugal
| | - Rachel M Shanahan
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Aobha Hickey
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Niall O'Leary
- School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- School of Microbiology, University College Cork, Cork, Ireland.,Biomerit Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Gerard P McGlacken
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Fernandes S, Borges A, Gomes IB, Sousa SF, Simões M. Curcumin and 10-undecenoic acid as natural quorum sensing inhibitors of LuxS/AI-2 of Bacillus subtilis and LasI/LasR of Pseudomonas aeruginosa. Food Res Int 2023; 165:112519. [PMID: 36869520 DOI: 10.1016/j.foodres.2023.112519] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The quorum sensing (QS) system is related to cell-to-cell communication as a function of population density, which regulates several physiological functions including biofilm formation and virulence gene expression. QS inhibitors have emerged as a promising strategy to tackle virulence and biofilm development. Among a wide variety of phytochemicals, many of them have been described as QS inhibitors. Driven by their promising clues, this study aimed to identify active phytochemicals against LuxS/autoinducer-2 (AI-2) (as the universal QS system) from Bacillus subtilis and LasI/LasR (as a specific QS system) of Pseudomonas aeruginosa, through in silico analysis followed by in vitro validation. The optimized virtual screening protocols were applied to screen a phytochemical database containing 3479 drug-like compounds. The most promising phytochemicals were curcumin, pioglitazone hydrochloride, and 10-undecenoic acid. In vitro analysis corroborated the QS inhibitory activity of curcumin and 10-undecenoic acid, however, pioglitazone hydrochloride showed no relevant effect. Inhibitory effects on LuxS/AI-2 QS system triggered reduction of 33-77% by curcumin (at 1.25-5 µg/mL) and 36-64% by 10-undecenoic acid (at 12.5-50 µg/mL). Inhibition of LasI/LasR QS system was 21% by curcumin (at 200 µg/mL) and 10-54% by 10-undecenoic acid (at 15.625-250 µg/mL). In conclusion, in silico analysis allowed the identification of curcumin and, for the first time, 10-undecenoic acid (showing low cost, high availability, and low toxicity) as alternatives to counteract bacterial pathogenicity and virulence, avoiding the imposition of selective pressure usually related to classic industrial disinfection and antibiotics therapy.
Collapse
Affiliation(s)
- Susana Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
13
|
Dubale S, Kebebe D, Zeynudin A, Abdissa N, Suleman S. Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. J Exp Pharmacol 2023; 15:51-62. [PMID: 36789235 PMCID: PMC9922502 DOI: 10.2147/jep.s379805] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Background The emergence and spread of resistant microbes continue to be a major public health concern. Effective treatment alternatives, particularly from traditionally used medicinal plants, are needed. Objective The main objective of this study was to conduct phytochemical screening and antimicrobial activity evaluation of selected traditionally used medicinal plants in Ethiopia. Methods The ethnomedicinal use value frequency index (FI) was used to select twelve medicinal plants. Phytochemical classes of compounds were screened using different standard methods. Anti-microbial activities of plant extracts were evaluated against Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Candida albicans. Minimum inhibitory concentrations were measured using the broth micro-dilution method. The data were analyzed using Statistical Package for the Social Sciences (SPSS) version 21.0 and the findings were presented descriptively and using non parametric one-way ANOVA analysis (Kruskal-Wallis/Ddunn's test). Results The phytochemical constituents identified were flavonoids, alkaloids, glycosides, phenols, saponins, steroids, and terpenoids, with flavonoids, alkaloids, and phenols being the most abundant. The crude extracts and chloroform fractions of the extracts showed an activity against the tested strains. The crude extract of Thalictrum rhynchocarpum Quart.-Dill. and A.Rich root demonstrated superior activity against all the tested strains with the lowest minimum inhibitory concentrations of 0.48 μg/mL against Staphylococcus aureus and Escherichia coli; 0.98 μg/mL against Klebsiella pneumoniae, Pseudomonas aeruginosa; and 3.90 μg/mL against Candida albicans, which are even better than the reference drug, gentamicin and clotrimazole. Conclusion The majority of evaluated medicinal plants demonstrated remarkable activity against tested microbial strains, which can be attributed to the presence of secondary metabolites of different classes of compounds. The finding provided scientific evidence for the use of these traditionally used medicinal plants.
Collapse
Affiliation(s)
- Sileshi Dubale
- School of Pharmacy and Laboratory of Drug Quality (JuLaDQ), Jimma University, Jimma, Oromia, Ethiopia
- Department of Pharmacy, Mattu University, Mattu, Oromia, Ethiopia
| | - Dereje Kebebe
- School of Pharmacy and Laboratory of Drug Quality (JuLaDQ), Jimma University, Jimma, Oromia, Ethiopia
| | - Ahmed Zeynudin
- Medical Laboratory School, Jimma University, Jimma, Oromia, Ethiopia
| | - Negera Abdissa
- Department of Chemistry, Wallaga University, Nekemte, Oromia, Ethiopia
| | - Sultan Suleman
- School of Pharmacy and Laboratory of Drug Quality (JuLaDQ), Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
14
|
Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238210. [PMID: 36500303 PMCID: PMC9737474 DOI: 10.3390/molecules27238210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The COVID-19 pandemic exposed the lack of antiviral agents available for human use, while the complexity of the physiological changes caused by coronavirus (SARS-CoV-2) imposed the prescription of multidrug pharmacotherapy to treat infected patients. In a significant number of cases, it was necessary to add antibiotics to the prescription to decrease the risk of co-infections, preventing the worsening of the patient's condition. However, the precautionary use of antibiotics corroborated to increase bacterial resistance. Since the development of vaccines for COVID-19, the pandemic scenario has changed, but the development of new antiviral drugs is still a major challenge. Research for new drugs with synergistic activity against virus and resistant bacteria can produce drug leads to be used in the treatment of mild cases of COVID-19 and to fight other viruses and new viral diseases. Following the repurposing approach, plant spices have been searched for antiviral lead compounds, since the toxic effects of plants that are traditionally consumed are already known, speeding up the drug discovery process. The need for effective drugs in the context of viral diseases is discussed in this review, with special focus on plant-based spices with antiviral and antibiotic activity. The activity of plants against resistant bacteria, the diversity of the components present in plant extracts and the synergistic interaction of these metabolites and industrialized antibiotics are discussed, with the aim of contributing to the development of antiviral and antibiotic drugs. A literature search was performed in electronic databases such as Science Direct; SciELO (Scientific Electronic Library Online); LILACS (Latin American and Caribbean Literature on Health Sciences); Elsevier, SpringerLink; and Google Scholar, using the descriptors: antiviral plants, antibacterial plants, coronavirus treatment, morbidities and COVID-19, bacterial resistance, resistant antibiotics, hospital-acquired infections, spices of plant origin, coronaviruses and foods, spices with antiviral effect, drug prescriptions and COVID-19, and plant synergism. Articles published in English in the period from 2020 to 2022 and relevant to the topic were used as the main inclusion criteria.
Collapse
|
15
|
Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM. Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines 2022; 10:2792. [PMID: 36359308 PMCID: PMC9687463 DOI: 10.3390/biomedicines10112792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.
Collapse
Affiliation(s)
- Sohail Simon
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Health Platform Diagnostic Unit, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jamie Josephs
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
16
|
Anywar GU, Kakudidi E, Oryem-Origa H, Schubert A, Jassoy C. Cytotoxicity of Medicinal Plant Species Used by Traditional Healers in Treating People Suffering From HIV/AIDS in Uganda. FRONTIERS IN TOXICOLOGY 2022; 4:832780. [PMID: 35586188 PMCID: PMC9108544 DOI: 10.3389/ftox.2022.832780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Many people living with HIV/AIDS (PLHIV) in Uganda widely use herbal medicines. However, their toxicity and safety have not been investigated. The use of these plants can potentially cause harmful effects to the health of patients. The purpose of this study was to determine the cytotoxicity of some commonly used medicinal plant species used by PLHIV. Methods: The cytotoxicity of the plant extracts was determined with the AlamarBlue cell viability assay using the human glioblastoma cell line U87.CD4.CXCR4. The cells were treated with varying concentrations of extracts of Warburgia ugandensis, Erythrina abyssinica, Cryptolepis sanguinolenta, Albizia coriaria, Psorospermum febrifugium, Gymnosporia senegalensis, Zanthoxylum chalybeum, Securidaca longipendunculata, Vachellia hockii, Gardenia ternifolia, and Bridelia micrantha reconstituted with ethanol and dimethyl sulfoxide (DMSO). Using regression analysis, the half maximal cytotoxic concentration (CC50) of the plant extracts were calculated from exponential curve fits, since they provided the highest coefficient of determination, R2. Results: The ethanol extracts of W. ugandensis (CC50 = 7.6 μg/ml) and A. coriaria (CC50 = 1.5 μg/ml) as well as the DMSO-reconstituted extracts of W. ugandensis (CC50 = 6.4 μg/ml) and A. coriria (CC50 = < 4 μg/ml) were highly cytotoxic. The cytotoxicity of W. ugandensis and A. coriaria compared well with the indigenous traditional knowledge of the toxic effects experienced when the plants were not used correctly. However, the cytotoxicity of most of the plant extracts (15/22) was low to moderate (CC50 = 21–200 μg/ml). Conclusion: Most of the plant species tested in this study had low to moderate cytotoxicity against U87.CD4.CXCR4 cells, except W. ugandensis and A. coriria which were highly cytotoxic.
Collapse
Affiliation(s)
- Godwin Upoki Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
- Fraunhofer Institute for Cell Therapy & Immunology (IZI), Leipzig, Germany
- Institute for Medical Microbiology & Virology, University Clinics & Faculty of Medicine, University of Leipzig, Leipzig, Germany
- *Correspondence: Godwin Upoki Anywar, , ,
| | - Esezah Kakudidi
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Hannington Oryem-Origa
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Andreas Schubert
- Fraunhofer Institute for Cell Therapy & Immunology (IZI), Leipzig, Germany
| | - Christian Jassoy
- Institute for Medical Microbiology & Virology, University Clinics & Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Safety and Efficacy of Medicinal Plants Used to Manufacture Herbal Products with Regulatory Approval in Uganda: A Cross-Sectional Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1304839. [PMID: 35463071 PMCID: PMC9020950 DOI: 10.1155/2022/1304839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/27/2022]
Abstract
Introduction The Uganda National Drug Authority requires phytochemical screening, freedom from microbial contamination, and evidence of safety and efficacy of the constituent plants to register herbal products. Since Uganda has no pharmacopeia, safety, efficacy, and plant processing information are not readily available. We documented the plant materials used to manufacture products in Uganda and established evidence of their safety and efficacy and availability of monographs. Methods The NDA register of herbal products was reviewed, and a product list was extracted. The herbal products were purchased from local pharmacies, and their labels were studied to identify plant ingredients and drug use. Literature was reviewed to document evidence of the safety and efficacy of the plant materials concerning manufacturer's claims. Also, the WHO and available African Pharmacopeia were searched to establish the availability of the plant monographs. Results Of the 84 NDA-registered local products, only 18 were obtained from the market; 82% were indicated for respiratory tract disorders. Thirty-three plant materials were listed with Eucalyptus globulus Labill, being the commonest. Several in vitro and in vivo studies demonstrate efficacy, thus supporting the use of the selected plant species for empirical treatment as stated on the product label. While most plants were safe, some species such as Albizia coriaria Oliv. had dose-dependent toxicities that cannot be predicted in combinations. The WHO, African Pharmacopoeia, and West African Herbal Pharmacopoeia had only 16 plant monographs of the 33 plants of interest. Nevertheless, Aloe vera (L.) Burm.f., Azadirachta indica A.Juss., Zingiber officinale Roscoe, and Allium sativum L. monographs were published by all three pharmacopoeias. Conclusions Preclinical evidence of safety and efficacy exists in the literature for most of the plants used to manufacture registered herbal products in Uganda. More specific bioassays and clinical trials are required for the products to provide conclusive evidence of safety and toxicity. Monographs are urgently needed for the Ugandan plants.
Collapse
|
18
|
Omara T, Kiprop A, Kosgei V. Two New Pentacyclic Triterpenoids, an Alkaloid and a Long-chain Fatty Acid from Albizia Coriaria (Welw ex. Oliver). FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2022. [DOI: 10.17721/fujcv10i1p128-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herein, we report the occurrence of four new compounds in ethanolic extract of Albizia coriaria Welw ex. Oliver leaves along with other compounds previously reported in this species. The compounds were isolated and characterized using column chromatography, Fourier Transform Infrared (FTIR) and gas chromatography/mass spectrometry. FTIR spectrum of the extract showed phenolic OH stretching (3362.30 cm-1), C=O (1660.08 cm-1), CO stretching (1369.46 cm-1 and 1319.00 cm-1) and CN stretch (1072.44 cm-1) which confirmed the presence of alcohols, carboxylic acids and nitrogen-containing compounds. Oleanolic acid (1), oleanolic acid acetate (2), pterin-6-carboxylic acid (3), undecanol (4), betulinic acid (5), betulin (6) and benzyl alcohol (7) were tentatively identified in the extract. Compounds 1-4 are being reported for the first time in Albizia coriaria.
Collapse
|
19
|
Srinivasan R, Kannappan A, Shi C, Lin X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar Drugs 2021; 19:md19100530. [PMID: 34677431 PMCID: PMC8539464 DOI: 10.3390/md19100530] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in preventing and treating infectious diseases caused by pathogenic organisms, such as bacteria, fungi, and viruses. Because of the burgeoning growth of microbes with antimicrobial-resistant traits, there is a dire need to identify and develop novel and effective antimicrobial agents to treat infections from antimicrobial-resistant strains. The marine environment is rich in ecological biodiversity and can be regarded as an untapped resource for prospecting novel bioactive compounds. Therefore, exploring the marine environment for antimicrobial agents plays a significant role in drug development and biomedical research. Several earlier scientific investigations have proven that bacterial diversity in the marine environment represents an emerging source of structurally unique and novel antimicrobial agents. There are several reports on marine bacterial secondary metabolites, and many are pharmacologically significant and have enormous promise for developing effective antimicrobial drugs to combat microbial infections in drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (1996–2020) on antimicrobial secondary metabolites from marine bacteria evolved in marine environments, such as marine sediment, water, fauna, and flora.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| | - Arunachalam Kannappan
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Chunlei Shi
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| |
Collapse
|
20
|
Omara T, Kiprop AK, Kosgei VJ. Albizia coriaria Welw ex Oliver: a review of its ethnobotany, phytochemistry and ethnopharmacology. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00600-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Intraspecific Variation of Phytochemicals, Antioxidant, and Antibacterial Activities of Different Solvent Extracts of Albizia coriaria Leaves from Some Agroecological Zones of Uganda. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2335454. [PMID: 34221068 PMCID: PMC8221850 DOI: 10.1155/2021/2335454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Albizia coriaria Welw ex. Oliver is a customary African medicinal plant, which has a long history of utilization in the management of oxidative stress-induced and bacterial diseases. However, there is no report on the phytochemicals, antioxidant, and antibacterial activities of its leaves. The aim of this study was therefore to compare the phytochemicals, antioxidant, and antibacterial potential of A. coriaria leaves from Jinja, Kole, and Mbarara districts of Uganda. Shade-dried leaf samples were ground into powder and successively extracted with ethyl acetate, ethanol, and distilled water. Phytochemical screening indicated the presence of alkaloids, phenols, saponins, flavonoids, cardiac glycosides, tannins, and terpenes as the major secondary metabolites in the extracts. Total phenolic and flavonoid contents and total in vitro antioxidant activity were found to be the highest for ethanolic extracts, with the highest contents (101.72 ± 0.22 mg GAE/g DW; 13.23 ± 0.03 mg QE/g DW) and antioxidant potential (IC50 = 18.65 ± 0.06 mg/mL) being for leaves from Mbarara district. Antibacterial activity of the extracts determined by agar disc diffusion method revealed that ethanolic extracts had higher antibacterial activities with mean zones of inhibition of 6.00 ± 1.73 to 10.00 ± 1.73 mm, 5.00 ± 1.00 to 12.30 ± 1.53 mm, 17.00 ± 0.00 to 25.00 ± 2.65 mm, and 9.00 ± 1.73 to 16.00 ± 1.73 mm for Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi, respectively. Ethyl acetate extracts of A. coriaria leaves from Kole and Mbarara had lower antibacterial activities, while aqueous extracts and ethyl acetate extract of leaves from Jinja showed no antibacterial activity. The current study for the first time established that A. coriaria leaves possess therapeutic phytochemicals with significant in vitro antioxidant and antibacterial activities, which lend credence to their use in traditional management of oxidative stress-induced conditions and bacterial diseases in Uganda. Structural elucidation of the responsible pure compounds for the observed bioactivities as well as toxicity studies of the extracts is recommended.
Collapse
|
22
|
Schultz F, Osuji OF, Nguyen A, Anywar G, Scheel JR, Caljon G, Pieters L, Garbe LA. Pharmacological Assessment of the Antiprotozoal Activity, Cytotoxicity and Genotoxicity of Medicinal Plants Used in the Treatment of Malaria in the Greater Mpigi Region in Uganda. Front Pharmacol 2021; 12:678535. [PMID: 34276369 PMCID: PMC8278201 DOI: 10.3389/fphar.2021.678535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
We investigated the potential antimalarial and toxicological effects of 16 medicinal plants frequently used by traditional healers to treat malaria, fever, and related disorders in the Greater Mpigi region in Uganda. Species studied were Albizia coriaria, Cassine buchananii, Combretum molle, Erythrina abyssinica, Ficus saussureana, Harungana madagascariensis, Leucas calostachys, Microgramma lycopodioides, Morella kandtiana, Plectranthus hadiensis, Securidaca longipedunculata, Sesamum calycinum subsp. angustifolium, Solanum aculeastrum, Toddalia asiatica, Warburgia ugandensis, and Zanthoxylum chalybeum. In addition, the traditional healers indicated that P. hadiensis is used as a ritual plant to boost fertility and prepare young women and teenagers for motherhood in some Ugandan communities where a high incidence of rapidly growing large breast masses in young female patients was observed (not necessarily breast cancer). We present results from various in vitro experiments performed with 56 different plant extracts, namely, 1) an initial assessment of the 16 species regarding their traditional use in the treatment of malaria by identifying promising plant extract candidates using a heme biocrystallization inhibition library screen; 2) follow-up investigations of antiprotozoal effects of the most bioactive crude extracts against chloroquine-resistant P. falciparum K1; 3) a cytotoxicity counterscreen against human MRC-5SV2 lung fibroblasts; 4) a genotoxicity evaluation of the extract library without and with metabolic bioactivation with human S9 liver fraction; and 5) an assessment of the mutagenicity of the ritual plant P. hadiensis. A total of seven extracts from five plant species were selected for antiplasmodial follow-up investigations based on their hemozoin formation inhibition activity in the heme biocrystallization assay. Among other extracts, an ethyl acetate extract of L. calostachys leaves exhibited antiplasmodial activity against P. falciparum K1 (IC50 value: 5.7 µg/ml), which was further characterized with a selectivity index of 2.6 (CC50 value: 14.7 µg/ml). The experiments for assessment of potential procarcinogenic properties of plant extracts via evaluation of in vitro mutagenicity and genotoxicity indicated that few extracts cause mutations. The species T. asiatica showed the most significant genotoxic effects on both bacterial test strains (without metabolic bioactivation at a concentration of 500 µg/plate). However, none of the mutagenic extracts from the experiments without metabolic bioactivation retained their genotoxic activity after metabolic bioactivation of the plant extract library through pre-incubation with human S9 liver fraction. While this study did not show that P. hadiensis has genotoxic properties, it did provide early stage support for the therapeutic use of the medicinal plants from the Greater Mpigi region.
Collapse
Affiliation(s)
- Fabien Schultz
- Institute of Biotechnology, Faculty III—Process Sciences, Technical University of Berlin, Berlin, Germany
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Ogechi Favour Osuji
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Anh Nguyen
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, Kampala, Uganda
| | - John R. Scheel
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Leif-Alexander Garbe
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- ZELT—Neubrandenburg Center for Nutrition and Food Technology gGmbH, Neubrandenburg, Germany
| |
Collapse
|
23
|
Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H, Jassoy C. A Review of the Toxicity and Phytochemistry of Medicinal Plant Species Used by Herbalists in Treating People Living With HIV/AIDS in Uganda. Front Pharmacol 2021; 12:615147. [PMID: 33935707 PMCID: PMC8082237 DOI: 10.3389/fphar.2021.615147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/18/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction: Despite concerns about toxicity, potentially harmful effects and herb-drug interactions, the use of herbal medicines remains widely practiced by people living with HIV/AIDS (PLHIV) in Uganda. Objective: The objective of the paper was to comprehensively review the literature on the toxicity and chemical composition of commonly used medicinal plant species in treating PLHIV in Uganda. Methods: We reviewed relevant articles and books published over the last sixty years on ethnobotany, antiviral/anti-HIV activity, toxicity, phytochemistry of Vachellia hockii, Albizia coriaria, Bridelia micrantha, Cryptolepis sanguinolenta, Erythrina abyssinica, Gardenia ternifolia, Gymnosporia senegalensis, Psorospermum febrifugium, Securidaca longipendunculata, Warburgia ugandensis and Zanthoxylum chalybeum and their synonyms. We searched PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Discussion: Most of the plant species reviewed apart from P. febrifugium, S. longipedunculata and C. sanguinolenta lacked detailed phytochemical analyses as well as the quantification and characterization of their constituents. Crude plant extracts were the most commonly used. However, purified/single component extracts from different plant parts were also used in some studies. The U87 human glioblastoma was the most commonly used cell line. Water, ethanol, methanol and DMSO were the commonest solvents used. In some instances, isolated purified compounds/extracts such as Cryptolepine and Psorospermin were used. Conclusion: Cytotoxicity varied with cell type, solvent and extract type used making it difficult for direct comparison of the plant species. Five of the eleven plant species namely, A. coriaria, C. sanguinolenta, G. ternifolia, P. febrifugium and Z. chalybeum had no cytotoxicity studies in animal models. For the remaining six plant species, the crude aqueous and ethanol extracts were mainly used in acute oral toxicity studies in mice. Herbalists reported only A. coriaria and W. ugandensis to cause toxic side effects in humans. However, selective cytotoxic plant extracts can potentially be beneficial as anticancer or anti-tumour drugs.
Collapse
Affiliation(s)
- G. Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Virology, University Clinics and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - E. Kakudidi
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - R. Byamukama
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - J. Mukonzo
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - A. Schubert
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - H. Oryem-Origa
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - C. Jassoy
- Institute for Virology, University Clinics and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Obakiro SB, Kiprop A, Kigondu E, K'Owino I, Odero MP, Manyim S, Omara T, Namukobe J, Owor RO, Gavamukulya Y, Bunalema L. Traditional Medicinal Uses, Phytoconstituents, Bioactivities, and Toxicities of Erythrina abyssinica Lam. ex DC. (Fabaceae): A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5513484. [PMID: 33763144 PMCID: PMC7952165 DOI: 10.1155/2021/5513484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Many studies have been undertaken on the medicinal values of Erythrina abyssinica Lam. ex DC. (Fabaceae). The details, however, are highly fragmented in different journals, libraries, and other publication media. This study was therefore conducted to provide a comprehensive report on its ethnobotany, ethnomedicinal uses, phytochemicals, and the available pharmacological evidence supporting its efficacy and safety in traditional medicine. METHOD We collected data using a PROSPERO registered systematic review protocol on the ethnobotany, phytochemistry, and ethnopharmacology of Erythrina abyssinica from 132 reports that were retrieved from electronic databases. Documented local names, morphology, growth habit and habitat, ethnomedicinal and nonmedicinal uses, diseases treated, parts used, method of preparation and administration, extraction and chemical identity of isolated compounds, and efficacy and toxicity of extracts and isolated compounds were captured. Numerical data were summarized into means, percentages, and frequencies and presented as graphs and tables. RESULTS Erythrina abyssinica is harvested by traditional herbal medicine practitioners in East, Central, and South African communities to prepare herbal remedies for various human and livestock ailments. These include bacterial and fungal infections, tuberculosis, malaria, HIV/AIDS, diarrhea, cancer, meningitis, inflammatory diseases, urinary tract infections, wounds, diabetes mellitus, and skin and soft tissue injuries. Different extracts and phytochemicals from parts of E. abyssinica have been scientifically proven to possess anti-inflammatory, antibacterial, antioxidant, antiplasmodial, antiproliferative, antifungal, antimycobacterial, antidiarrheal, anti-HIV 1, antidiabetic, and antiobesity activities. This versatile pharmacological activity is due to the abundant flavonoids, alkaloids, and terpenoids present in its different parts. CONCLUSION Erythrina abyssinica is an important ethnomedicinal plant in Africa harboring useful pharmacologically active phytochemicals against various diseases with significant efficacies and minimal toxicity to mammalian cells. Therefore, this plant should be conserved and its potential to provide novel molecules against diseases be explored further. Clinical trials that evaluate the efficacy and safety of extracts and isolated compounds from E. abyssinica are recommended.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Elizabeth Kigondu
- Centre of Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Isaac K'Owino
- Department of Pure and Applied Chemistry, Faculty of Science, Masinde-Muliro University, P.O. Box 190-50100, Kakamega, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Mark Peter Odero
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Scolastica Manyim
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Timothy Omara
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Department of Quality Control and Quality Assurance, Product Development Directory, AgroWays Uganda Limited, Plot 34-60, Kyabazinga Way, P.O. Box 1924, Jinja, Uganda
| | - Jane Namukobe
- Department of Chemistry, School of Physical Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Richard Oriko Owor
- Department of Chemistry, Faculty of Science Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Yahaya Gavamukulya
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Lydia Bunalema
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Makerere University College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
25
|
Borrelli L, Varriale L, Dipineto L, Pace A, Menna LF, Fioretti A. Insect Derived Lauric Acid as Promising Alternative Strategy to Antibiotics in the Antimicrobial Resistance Scenario. Front Microbiol 2021; 12:620798. [PMID: 33717009 PMCID: PMC7952302 DOI: 10.3389/fmicb.2021.620798] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic misuse is greatly contributing to an increase in antimicrobial resistance (AMR) in humans and animals. Natural and synthetic alternative strategies are being investigated in human and veterinary medicine, but little attention is paid to the antimicrobial effects of edible lipids, such as medium-chain fatty acids (MCFAs) and monoglycerides. Among MCFAs, lauric acid (LA) and its monoglyceride derivative, glycerol monolaurate (GML), exhibit the strongest antimicrobial activity. Coconut and palm kernel oils are considered the main sources of LA. On the other hand, some edible insects (e.g., Hermetia illucens) are gaining interest as novel feed ingredients, due to the high amount of LA they contain as well as their numerous bioactive components, which provide many additional benefits to animal health. Although the beneficial effect of both MCFAs and LA is gradually being recognized, their high content within insects and, consequently, their possible role as antimicrobials, has not been well-reported. This mini review focuses on the anti-infective effects of the insect-derived MCFAs LA and its derivatives. We emphasize the potential of insect lipids, compared to the other vegetable sources, in the current global scenario where a sustainable and circular economy is required. Finally, we critically discuss the use and the benefits of edible insects such as favorable options as feed and food from the perspective of animal and human nutrition.
Collapse
Affiliation(s)
- Luca Borrelli
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Lorena Varriale
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonino Pace
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Lucia F Menna
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
26
|
Schultz F, Osuji OF, Wack B, Anywar G, Garbe LA. Antiinflammatory Medicinal Plants from the Ugandan Greater Mpigi Region Act as Potent Inhibitors in the COX-2/PGH 2 Pathway. PLANTS 2021; 10:plants10020351. [PMID: 33673238 PMCID: PMC7918315 DOI: 10.3390/plants10020351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Our study investigates 16 medicinal plants via assessment of inhibition of proinflammatory enzymes such as cyclooxygenases (COX). The plants are used by traditional healers in the Greater Mpigi region in Uganda to treat inflammation and related disorders. We present results of diverse in vitro experiments performed with 76 different plant extracts, namely, (1) selective COX-2 and COX-1 inhibitor screening; (2) 15-LOX inhibition screening; (3) antibacterial resazurin assay against multidrug-resistant Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, and Escherichia coli K12; (4) DPPH assay for antioxidant activity; and (5) determination of the total phenolic content (TPC). Results showed a high correlation between traditional use and pharmacological activity, e.g., extracts of 15 out of the 16 plant species displayed significant selective COX-2 inhibition activity in the PGH2 pathway. The most active COX-2 inhibitors (IC50 < 20 µg/mL) were nine extracts from Leucas calostachys, Solanum aculeastrum, Sesamum calycinum subsp. angustifolium, Plectranthus hadiensis, Morella kandtiana, Zanthoxylum chalybeum, and Warburgia ugandensis. There was no counteractivity between COX-2 and 15-LOX inhibition in these nine extracts. The ethyl acetate extract of Leucas calostachys showed the lowest IC50 value with 0.66 µg/mL (COX-2), as well as the most promising selectivity ratio with 0.1 (COX-2/COX-1). The TPCs and the EC50 values for DPPH radical scavenging activity showed no correlation with COX-2 inhibitory activity. This led to the assumption that the mechanisms of action are most likely not based on scavenging of reactive oxygen species and antioxidant activities. The diethyl ether extract of Harungana madagascariensis stem bark displayed the highest growth inhibition activity against S. aureus (MIC value: 13 µg/mL), L. innocua (MIC value: 40 µg/mL), and L. monocytogenes (MIC value: 150 µg/mL). This study provides further evidence for the therapeutic use of the previously identified plants used medicinally in the Greater Mpigi region.
Collapse
Affiliation(s)
- Fabien Schultz
- Institute of Biotechnology, Faculty III—Process Sciences, Technical University of Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
- Correspondence: ; Tel.: +49-395-5693-2704
| | - Ogechi Favour Osuji
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
| | - Barbara Wack
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, P.O. Box 7062 Kampala, Uganda;
| | - Leif-Alexander Garbe
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
- ZELT—Neubrandenburg Center for Nutrition and Food Technology gGmbH, Seestraße 7A, 17033 Neubrandenburg, Germany
| |
Collapse
|
27
|
A Bibliographic Assessment Using the Degrees of Publication Method: Medicinal Plants from the Rural Greater Mpigi Region (Uganda). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6661565. [PMID: 33510807 PMCID: PMC7822678 DOI: 10.1155/2021/6661565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
In ethnopharmacological research, many field assessment tools exist. Yet, these miss that critical point of how to really determine which species merit the costly lab studies, e.g., evaluation of traditional use via pharmacological assays and isolation of bioactive secondary metabolites. This gap can be filled with the introduction of a new tool for literature assessment: the Degrees of Publication (DoPs). In this study, its application is illustrated through an extensive bibliographic assessment of 16 medicinal plant species that were recently identified in the Greater Mpigi region of Uganda as being frequently used by local traditional healers in the treatment of medical disorders (namely, Albizia coriaria, Cassine buchananii, Combretum molle, Erythrina abyssinica, Ficus saussureana, Harungana madagascariensis, Leucas calostachys, Microgramma lycopodioides, Morella kandtiana, Plectranthus hadiensis, Securidaca longipedunculata, Sesamum calycinum subsp. angustifolium, Solanum aculeastrum, Toddalia asiatica, Warburgia ugandensis, and Zanthoxylum chalybeum). These species are suspected to be understudied, and a thorough bibliographic assessment has not been previously performed. Thus, the objectives of our study were to undertake a comparative assessment of the degree to which each of these plant species has been studied in the past, including evaluation of the quality of the journals where results were published in. The determination of the DoPs enabled successful assessment of the degrees to which each individual plant species has been studied so far, while also taking into account the methodological “research chain of ethnopharmacology” from ethnobotanical studies (“traditional use”) to pharmacological assays (“bioactivity”) and finally to pharmacognostic research (“structure elucidation”). The significance of a research paper was assessed by determining whether its journal and publishing house were members of the Committee on Publication Ethics (COPE). In total, 634 peer-reviewed publications were reviewed covering the period of 1960–2019, 53.3% of which were published in journals and by publishing houses affiliated with COPE (338 publications). The literature assessment resulted in the identification of understudied plants among the selected species. The majority of plants reviewed have not been sufficiently studied; six species were classified as being highly understudied and three more as being understudied: C. buchananii, F. saussureana, L. calostachys, M. lycopodioides, M. kandtiana, and S. calycinum subsp. angustifolium and A. coriaria, P. hadiensis, and S. aculeastrum, respectively. The newly introduced DoPs are a useful tool for the selection of traditionally used species for future laboratory studies, especially for pharmacological bioassays, isolation procedures, and drug discovery strategies.
Collapse
|
28
|
Assessment of the anti-virulence potential of extracts from four plants used in traditional Chinese medicine against multidrug-resistant pathogens. BMC Complement Med Ther 2020; 20:318. [PMID: 33076882 PMCID: PMC7574281 DOI: 10.1186/s12906-020-03114-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multidrug-resistant pathogens are resistant to many antibiotics and associated with serious infections. Amomum tsaoko Crevost et Lemaire, Sanguisorba officinalis, Terminalia chebula Retz and Salvia miltiorrhiza Bge, are all used in Traditional Chinese Medicine (TCM) against multidrug-resistant pathogens, and the purpose of this study was to evaluate the antibacterial and anti-virulence activity of extracts derived from them. METHODS The antibacterial activity of ethanol and aqueous extracts from these four plants was examined against several multi-drug resistant bacterial strains, and their anti-virulence potential (including quorum quenching activity, biofilm inhibition, and blocking production of virulence factor δ-toxin) was assessed against different S. aureus strains. The chemical composition of the most effective extract was determined by LC-FTMS. RESULTS Only extracts from S. officinalis and A. tsaoko were shown to exhibit limited growth inhibition activity at a dose of 256 μg·mL-1. The S. officinalis ethanol extract, the ethanol and aqueous extract of A. tsaoko, and the aqueous extract of S. miltiorrhiza all demonstrated quorum quenching activity, but didn't significantly inhibit bacterial growth. The ethanol extract of S. officinalis inhibited bacterial toxin production and biofilm formation at low concentrations. Chemical composition analysis of the most effective extract of S. officinalis showed that it mainly contained saponins. CONCLUSIONS The most active extract tested in this study was the ethanol root extract of S. officinalis. It inhibited δ-toxin production and biofilm formation at low concentrations and saponins may be its key active components. While the four plants showed no direct antibacterial effects, their anti-virulence properties may be key to fighting bacterial infections.
Collapse
|