1
|
Lue KH, Chen YH, Chu SC, Lin CB, Wang TF, Liu SH. Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study. Ann Nucl Med 2024; 38:647-658. [PMID: 38704786 DOI: 10.1007/s12149-024-01936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To investigate the prognostic value of 18F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. METHODS We retrospectively analyzed the pre-treatment 18F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (n = 166) and digital (n = 51) PET cohorts. 18F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. RESULTS In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUVmax, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p < 0.001) and digital PET cohorts (HR = 1.284, p = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p < 0.001, c-index = 0.708 and HR = 1.256, p = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively). CONCLUSIONS Combining 18F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan
| | - Yu-Hung Chen
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan.
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.707, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan.
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan.
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Hematology and Oncology, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chih-Bin Lin
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Internal Medicine, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tso-Fu Wang
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Hematology and Oncology, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.707, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
| |
Collapse
|
2
|
Didier AJ, Nigro A, Noori Z, Omballi MA, Pappada SM, Hamouda DM. Application of machine learning for lung cancer survival prognostication-A systematic review and meta-analysis. Front Artif Intell 2024; 7:1365777. [PMID: 38646415 PMCID: PMC11026647 DOI: 10.3389/frai.2024.1365777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Machine learning (ML) techniques have gained increasing attention in the field of healthcare, including predicting outcomes in patients with lung cancer. ML has the potential to enhance prognostication in lung cancer patients and improve clinical decision-making. In this systematic review and meta-analysis, we aimed to evaluate the performance of ML models compared to logistic regression (LR) models in predicting overall survival in patients with lung cancer. Methods We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. A comprehensive search was conducted in Medline, Embase, and Cochrane databases using a predefined search query. Two independent reviewers screened abstracts and conflicts were resolved by a third reviewer. Inclusion and exclusion criteria were applied to select eligible studies. Risk of bias assessment was performed using predefined criteria. Data extraction was conducted using the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies (CHARMS) checklist. Meta-analytic analysis was performed to compare the discriminative ability of ML and LR models. Results The literature search resulted in 3,635 studies, and 12 studies with a total of 211,068 patients were included in the analysis. Six studies reported confidence intervals and were included in the meta-analysis. The performance of ML models varied across studies, with C-statistics ranging from 0.60 to 0.85. The pooled analysis showed that ML models had higher discriminative ability compared to LR models, with a weighted average C-statistic of 0.78 for ML models compared to 0.70 for LR models. Conclusion Machine learning models show promise in predicting overall survival in patients with lung cancer, with superior discriminative ability compared to logistic regression models. However, further validation and standardization of ML models are needed before their widespread implementation in clinical practice. Future research should focus on addressing the limitations of the current literature, such as potential bias and heterogeneity among studies, to improve the accuracy and generalizability of ML models for predicting outcomes in patients with lung cancer. Further research and development of ML models in this field may lead to improved patient outcomes and personalized treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Didier
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Anthony Nigro
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Zaid Noori
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Mohamed A. Omballi
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Scott M. Pappada
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Department of Anesthesiology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Danae M. Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Division of Hematology and Oncology, Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
3
|
Jeong S, Yu H, Park SH, Woo D, Lee SJ, Chong GO, Han HS, Kim JC. Comparing deep learning and handcrafted radiomics to predict chemoradiotherapy response for locally advanced cervical cancer using pretreatment MRI. Sci Rep 2024; 14:1180. [PMID: 38216687 PMCID: PMC10786874 DOI: 10.1038/s41598-024-51742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Concurrent chemoradiotherapy (CRT) is the standard treatment for locally advanced cervical cancer (LACC), but its responsiveness varies among patients. A reliable tool for predicting CRT responses is necessary for personalized cancer treatment. In this study, we constructed prediction models using handcrafted radiomics (HCR) and deep learning radiomics (DLR) based on pretreatment MRI data to predict CRT response in LACC. Furthermore, we investigated the potential improvement in prediction performance by incorporating clinical factors. A total of 252 LACC patients undergoing curative chemoradiotherapy are included. The patients are randomly divided into two independent groups for the training (167 patients) and test datasets (85 patients). Contrast-enhanced T1- and T2-weighted MR scans are obtained. For HCR analysis, 1890 imaging features are extracted and a support vector machine classifier with a five-fold cross-validation is trained on training dataset to predict CRT response and subsequently validated on test dataset. For DLR analysis, a 3-dimensional convolutional neural network was trained on training dataset and validated on test dataset. In conclusion, both HCR and DLR models could predict CRT responses in patients with LACC. The integration of clinical factors into radiomics prediction models tended to improve performance in HCR analysis. Our findings may contribute to the development of personalized treatment strategies for LACC patients.
Collapse
Affiliation(s)
- Sungmoon Jeong
- Department of Medical Informatics, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hosang Yu
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin-Hyung Park
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Dongwon Woo
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Seoung-Jun Lee
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Gun Oh Chong
- Department of Gynecology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyung Soo Han
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Chul Kim
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
4
|
Nakajo M, Jinguji M, Ito S, Tani A, Hirahara M, Yoshiura T. Clinical application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology. Jpn J Radiol 2024; 42:28-55. [PMID: 37526865 PMCID: PMC10764437 DOI: 10.1007/s11604-023-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Machine learning (ML) analyses using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the current clinical articles about 18F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evaluated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous studies have commonly shown that 18F-FDG PET radiomics-based ML analysis has good performance in differentiating benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examining significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices (> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied for the same purpose. Thus, various procedures were used in 18F-FDG PET/CT radiomics-based ML analysis in oncology, and 18F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be expected to be established.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atushi Tani
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsuho Hirahara
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
5
|
Rogasch JMM, Shi K, Kersting D, Seifert R. Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET). Nuklearmedizin 2023; 62:361-369. [PMID: 37995708 PMCID: PMC10667066 DOI: 10.1055/a-2198-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
AIM Despite a vast number of articles on radiomics and machine learning in positron emission tomography (PET) imaging, clinical applicability remains limited, partly owing to poor methodological quality. We therefore systematically investigated the methodology described in publications on radiomics and machine learning for PET-based outcome prediction. METHODS A systematic search for original articles was run on PubMed. All articles were rated according to 17 criteria proposed by the authors. Criteria with >2 rating categories were binarized into "adequate" or "inadequate". The association between the number of "adequate" criteria per article and the date of publication was examined. RESULTS One hundred articles were identified (published between 07/2017 and 09/2023). The median proportion of articles per criterion that were rated "adequate" was 65% (range: 23-98%). Nineteen articles (19%) mentioned neither a test cohort nor cross-validation to separate training from testing. The median number of criteria with an "adequate" rating per article was 12.5 out of 17 (range, 4-17), and this did not increase with later dates of publication (Spearman's rho, 0.094; p = 0.35). In 22 articles (22%), less than half of the items were rated "adequate". Only 8% of articles published the source code, and 10% made the dataset openly available. CONCLUSION Among the articles investigated, methodological weaknesses have been identified, and the degree of compliance with recommendations on methodological quality and reporting shows potential for improvement. Better adherence to established guidelines could increase the clinical significance of radiomics and machine learning for PET-based outcome prediction and finally lead to the widespread use in routine clinical practice.
Collapse
Affiliation(s)
- Julian Manuel Michael Rogasch
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Theis M, Block W, Luetkens JA, Attenberger UI, Nowak S, Sprinkart AM. Direct deep learning-based survival prediction from pre-interventional CT prior to transcatheter aortic valve replacement. Eur J Radiol 2023; 168:111150. [PMID: 37844428 DOI: 10.1016/j.ejrad.2023.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE To investigate survival prediction in patients undergoing transcatheter aortic valve replacement (TAVR) using deep learning (DL) methods applied directly to pre-interventional CT images and to compare performance with survival models based on scalar markers of body composition. METHOD This retrospective single-center study included 760 patients undergoing TAVR (mean age 81 ± 6 years; 389 female). As a baseline, a Cox proportional hazards model (CPHM) was trained to predict survival on sex, age, and the CT body composition markers fatty muscle fraction (FMF), skeletal muscle radiodensity (SMRD), and skeletal muscle area (SMA) derived from paraspinal muscle segmentation of a single slice at L3/L4 level. The convolutional neural network (CNN) encoder of the DL model for survival prediction was pre-trained in an autoencoder setting with and without a focus on paraspinal muscles. Finally, a combination of DL and CPHM was evaluated. Performance was assessed by C-index and area under the receiver operating curve (AUC) for 1-year and 2-year survival. All methods were trained with five-fold cross-validation and were evaluated on 152 hold-out test cases. RESULTS The CNN for direct image-based survival prediction, pre-trained in a focussed autoencoder scenario, outperformed the baseline CPHM (CPHM: C-index = 0.608, 1Y-AUC = 0.606, 2Y-AUC = 0.594 vs. DL: C-index = 0.645, 1Y-AUC = 0.687, 2Y-AUC = 0.692). Combining DL and CPHM led to further improvement (C-index = 0.668, 1Y-AUC = 0.713, 2Y-AUC = 0.696). CONCLUSIONS Direct DL-based survival prediction shows potential to improve image feature extraction compared to segmentation-based scalar markers of body composition for risk assessment in TAVR patients.
Collapse
Affiliation(s)
- Maike Theis
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Sebastian Nowak
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
7
|
Xing W, Gao W, Lv X, Zhao Z, Xu X, Wu Z, Mao G, Chen J. Artificial intelligence predicts lung cancer radiotherapy response: A meta-analysis. Artif Intell Med 2023; 142:102585. [PMID: 37316099 DOI: 10.1016/j.artmed.2023.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Artificial intelligence (AI) technology has clustered patients based on clinical features into sub-clusters to stratify high-risk and low-risk groups to predict outcomes in lung cancer after radiotherapy and has gained much more attention in recent years. Given that the conclusions vary considerably, this meta-analysis was conducted to investigate the combined predictive effect of AI models on lung cancer. METHODS This study was performed according to PRISMA guidelines. PubMed, ISI Web of Science, and Embase databases were searched for relevant literature. Outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and local control (LC), were predicted using AI models in patients with lung cancer after radiotherapy, and were used to calculate the pooled effect. Quality, heterogeneity, and publication bias of the included studies were also evaluated. RESULTS Eighteen articles with 4719 patients were eligible for this meta-analysis. The combined hazard ratios (HRs) of the included studies for OS, LC, PFS, and DFS of lung cancer patients were 2.55 (95 % confidence interval (CI) = 1.73-3.76), 2.45 (95 % CI = 0.78-7.64), 3.84 (95 % CI = 2.20-6.68), and 2.66 (95 % CI = 0.96-7.34), respectively. The combined area under the receiver operating characteristics curve (AUC) of the included articles on OS and LC in patients with lung cancer was 0.75 (95 % CI = 0.67-0.84), and 0.80 (95%CI = 0.0.68-0.95), respectively. CONCLUSION The clinical feasibility of predicting outcomes using AI models after radiotherapy in patients with lung cancer was demonstrated. Large-scale, prospective, multicenter studies should be conducted to more accurately predict the outcomes in patients with lung cancer.
Collapse
Affiliation(s)
- Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences&Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Xiaoling Lv
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhibing Wu
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| | - Jun Chen
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
8
|
Zhang J, Liu J, Liang Z, Xia L, Zhang W, Xing Y, Zhang X, Tang G. Differentiation of acute and chronic vertebral compression fractures using conventional CT based on deep transfer learning features and hand-crafted radiomics features. BMC Musculoskelet Disord 2023; 24:165. [PMID: 36879285 PMCID: PMC9987077 DOI: 10.1186/s12891-023-06281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND We evaluated the diagnostic efficacy of deep learning radiomics (DLR) and hand-crafted radiomics (HCR) features in differentiating acute and chronic vertebral compression fractures (VCFs). METHODS A total of 365 patients with VCFs were retrospectively analysed based on their computed tomography (CT) scan data. All patients completed MRI examination within 2 weeks. There were 315 acute VCFs and 205 chronic VCFs. Deep transfer learning (DTL) features and HCR features were extracted from CT images of patients with VCFs using DLR and traditional radiomics, respectively, and feature fusion was performed to establish the least absolute shrinkage and selection operator. The MRI display of vertebral bone marrow oedema was used as the gold standard for acute VCF, and the model performance was evaluated using the receiver operating characteristic (ROC).To separately evaluate the effectiveness of DLR, traditional radiomics and feature fusion in the differential diagnosis of acute and chronic VCFs, we constructed a nomogram based on the clinical baseline data to visualize the classification evaluation. The predictive power of each model was compared using the Delong test, and the clinical value of the nomogram was evaluated using decision curve analysis (DCA). RESULTS Fifty DTL features were obtained from DLR, 41 HCR features were obtained from traditional radiomics, and 77 features fusion were obtained after feature screening and fusion of the two. The area under the curve (AUC) of the DLR model in the training cohort and test cohort were 0.992 (95% confidence interval (CI), 0.983-0.999) and 0.871 (95% CI, 0.805-0.938), respectively. While the AUCs of the conventional radiomics model in the training cohort and test cohort were 0.973 (95% CI, 0.955-0.990) and 0.854 (95% CI, 0.773-0.934), respectively. The AUCs of the features fusion model in the training cohort and test cohort were 0.997 (95% CI, 0.994-0.999) and 0.915 (95% CI, 0.855-0.974), respectively. The AUCs of nomogram constructed by the features fusion in combination with clinical baseline data were 0.998 (95% CI, 0.996-0.999) and 0.946 (95% CI, 0.906-0.987) in the training cohort and test cohort, respectively. The Delong test showed that the differences between the features fusion model and the nomogram in the training cohort and the test cohort were not statistically significant (P values were 0.794 and 0.668, respectively), and the differences in the other prediction models in the training cohort and the test cohort were statistically significant (P < 0.05). DCA showed that the nomogram had high clinical value. CONCLUSION The features fusion model can be used for the differential diagnosis of acute and chronic VCFs, and its differential diagnosis ability is improved when compared with that when either radiomics is used alone. At the same time, the nomogram has a high predictive value for acute and chronic VCFs and can be a potential decision-making tool to assist clinicians, especially when a patient is unable to undergo spinal MRI examination.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China.,Department of Radiology, Sir RunRun Hospital affiliated to Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu, 211002, P.R. China
| | - Jiayi Liu
- Department of Radiology, Sir RunRun Hospital affiliated to Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu, 211002, P.R. China
| | - Zhipeng Liang
- Department of Radiology, Sir RunRun Hospital affiliated to Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu, 211002, P.R. China
| | - Liang Xia
- Department of Radiology, Sir RunRun Hospital affiliated to Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu, 211002, P.R. China
| | - Weixiao Zhang
- Department of Radiology, Sir RunRun Hospital affiliated to Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu, 211002, P.R. China
| | - Yanfen Xing
- Department of Radiology, Sir RunRun Hospital affiliated to Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu, 211002, P.R. China
| | - Xueli Zhang
- Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China
| | - Guangyu Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China. .,Department of Radiology, Shanghai TenthPeople's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China.
| |
Collapse
|
9
|
Deng G, Tan X, Li Y, Zhang Y, Wang Q, Li J, Li Z. Effect of EGFR-TKIs combined with craniocerebral radiotherapy on the prognosis of EGFR-mutant lung adenocarcinoma patients with brain metastasis: A propensity-score matched analysis. Front Oncol 2023; 13:1049855. [PMID: 36845694 PMCID: PMC9948088 DOI: 10.3389/fonc.2023.1049855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background and Purpose Epidermal growth factor receptor (EGFR)-mutant lung cancers are associated with a high risk of developing brain metastases (BM). Craniocerebral radiotherapy is a cornerstone for the treatment of BM, and EGFR-TKIs act on craniocerebral metastases". However, whether EGFR-TKIs combined with craniocerebral radiotherapy can further increase the efficacy and improve the prognosis of patients is unclear. This study aimed to evaluate the difference in efficacy between targeted-therapy alone and targeted-therapy combined with radiotherapy in EGFR-mutant lung adenocarcinoma patients with BM. Materials and Methods A total of 291 patients with advanced non-small cell lung cancer (NSCLC) and EGFR mutations were enrolled in this retrospective cohort study. Propensity score matching (PSM) was conducted using a nearest-neighbor algorithm (1:1) to adjust for demographic and clinical covariates. Patients were divided into two groups: EGFR-TKIs alone and EGFR-TKIs combined with craniocerebral radiotherapy. Intracranial progression-free survival (iPFS) and overall survival (OS) were calculated. Kaplan-Meier analysis was used to compare iPFS and OS between the two groups. Brain radiotherapy included WBRT, local radiotherapy, and WBRT+Boost. Results The median age at diagnosis was 54 years (range: 28-81 years). Most patients were female (55.9%) and non-smokers (75.5%). Fifty-one pairs of patients were matched using PSM. The median iPFS for EGFR-TKIs alone (n=37) and EGFR-TKIs+craniocerebral radiotherapy (n=24) was 8.9 and 14.7 months, respectively. The median OS for EGFR-TKIs alone (n=52) and EGFR-TKIs+craniocerebral radiotherapy (n=52) was 32.1 and 45.3 months, respectively. Conclusion In EGFR-mutant lung adenocarcinoma patients with BM, targeted therapy combined with craniocerebral radiotherapy is an optimal treatment.
Collapse
Affiliation(s)
- Guangchuan Deng
- School of Graduate Studies, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People’s Hospital, Dongying, China
| | - Yankang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingyun Zhang
- School of Graduate Studies, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qi Wang
- School of Graduate Studies, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Jianbin Li, ; Zhenxiang Li,
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Jianbin Li, ; Zhenxiang Li,
| |
Collapse
|
10
|
Bove S, Fanizzi A, Fadda F, Comes MC, Catino A, Cirillo A, Cristofaro C, Montrone M, Nardone A, Pizzutilo P, Tufaro A, Galetta D, Massafra R. A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region. PLoS One 2023; 18:e0285188. [PMID: 37130116 PMCID: PMC10153708 DOI: 10.1371/journal.pone.0285188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients at diagnosis could be essential to designate risk patients to more aggressive medical treatments. In this manuscript, we apply a transfer learning approach to predict recurrence in NSCLC patients, exploiting only data acquired during its screening phase. Particularly, we used a public radiogenomic dataset of NSCLC patients having a primary tumor CT image and clinical information. Starting from the CT slice containing the tumor with maximum area, we considered three different dilatation sizes to identify three Regions of Interest (ROIs): CROP (without dilation), CROP 10 and CROP 20. Then, from each ROI, we extracted radiomic features by means of different pre-trained CNNs. The latter have been combined with clinical information; thus, we trained a Support Vector Machine classifier to predict the NSCLC recurrence. The classification performances of the devised models were finally evaluated on both the hold-out training and hold-out test sets, in which the original sample has been previously divided. The experimental results showed that the model obtained analyzing CROP 20 images, which are the ROIs containing more peritumoral area, achieved the best performances on both the hold-out training set, with an AUC of 0.73, an Accuracy of 0.61, a Sensitivity of 0.63, and a Specificity of 0.60, and on the hold-out test set, with an AUC value of 0.83, an Accuracy value of 0.79, a Sensitivity value of 0.80, and a Specificity value of 0.78. The proposed model represents a promising procedure for early predicting recurrence risk in NSCLC patients.
Collapse
Affiliation(s)
- Samantha Bove
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Federico Fadda
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | | | - Angelo Cirillo
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | | | | | | | - Antonio Tufaro
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | | |
Collapse
|
11
|
Faghani A, Guo L, Wright ME, Hughes MC, Vaezi M. Construction and case study of a novel lung cancer risk index. BMC Cancer 2022; 22:1275. [PMID: 36474178 PMCID: PMC9724373 DOI: 10.1186/s12885-022-10370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study constructs a lung cancer risk index (LCRI) that incorporates many modifiable risk factors using an easily reproducible and adaptable method that relies on publicly available data. METHODS We used meta-analysis followed by Analytic Hierarchy Process (AHP) to generate a lung cancer risk index (LCRI) that incorporates seven modifiable risk factors (active smoking, indoor air pollution, occupational exposure, alcohol consumption, secondhand smoke exposure, outdoor air pollution, and radon exposure) for lung cancer. Using county-level population data, we then performed a case study in which we tailored the LCRI for use in the state of Illinois (LCRIIL). RESULTS For both the LCRI and the LCRIIL, active smoking had the highest weights (46.1% and 70%, respectively), whereas radon had the lowest weights (3.0% and 5.7%, respectively). The weights for alcohol consumption were 7.8% and 14.7% for the LCRI and the LCRIIL, respectively, and were 3.8% and 0.95% for outdoor air pollution. Three variables were only included in the LCRI: indoor air pollution (18.5%), occupational exposure (13.2%), and secondhand smoke exposure (7.6%). The Consistency Ratio (CR) was well below the 0.1 cut point. The LCRIIL was moderate though significantly correlated with age-adjusted lung cancer incidence (r = 0.449, P < 0.05) and mortality rates (r = 0.495, P < 0.05). CONCLUSION This study presents an index that incorporates multiple modifiable risk factors for lung cancer into one composite score. Since the LCRI allows data comprising the composite score to vary based on the location of interest, this measurement tool can be used for any geographic location where population-based data for individual risk factors exist. Researchers, policymakers, and public health professionals may utilize this framework to determine areas that are most in need of lung cancer-related interventions and resources.
Collapse
Affiliation(s)
- Ali Faghani
- grid.261128.e0000 0000 9003 8934College of Engineering and Engineering Technology, Northern Illinois University, DeKalb, IL USA
| | - Lei Guo
- grid.261128.e0000 0000 9003 8934School of Interdisciplinary Health Professions, Northern Illinois University, DeKalb, IL USA
| | - Margaret E. Wright
- grid.185648.60000 0001 2175 0319University of Illinois Cancer Center, Chicago, IL USA
| | - M. Courtney Hughes
- grid.261128.e0000 0000 9003 8934School of Health Studies, Northern Illinois University, DeKalb, IL USA
| | - Mahdi Vaezi
- grid.261128.e0000 0000 9003 8934College of Engineering and Engineering Technology, Northern Illinois University, DeKalb, IL USA
| |
Collapse
|
12
|
Christie JR, Daher O, Abdelrazek M, Romine PE, Malthaner RA, Qiabi M, Nayak R, Napel S, Nair VS, Mattonen SA. Predicting recurrence risks in lung cancer patients using multimodal radiomics and random survival forests. J Med Imaging (Bellingham) 2022; 9:066001. [PMID: 36388142 PMCID: PMC9641263 DOI: 10.1117/1.jmi.9.6.066001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Purpose We developed a model integrating multimodal quantitative imaging features from tumor and nontumor regions, qualitative features, and clinical data to improve the risk stratification of patients with resectable non-small cell lung cancer (NSCLC). Approach We retrospectively analyzed 135 patients [mean age, 69 years (43 to 87, range); 100 male patients and 35 female patients] with NSCLC who underwent upfront surgical resection between 2008 and 2012. The tumor and peritumoral regions on both preoperative CT and FDG PET-CT and the vertebral bodies L3 to L5 on FDG PET were segmented to assess the tumor and bone marrow uptake, respectively. Radiomic features were extracted and combined with clinical and CT qualitative features. A random survival forest model was developed using the top-performing features to predict the time to recurrence/progression in the training cohort ( n = 101 ), validated in the testing cohort ( n = 34 ) using the concordance, and compared with a stage-only model. Patients were stratified into high- and low-risks of recurrence/progression using Kaplan-Meier analysis. Results The model, consisting of stage, three wavelet texture features, and three wavelet first-order features, achieved a concordance of 0.78 and 0.76 in the training and testing cohorts, respectively, significantly outperforming the baseline stage-only model results of 0.67 ( p < 0.005 ) and 0.60 ( p = 0.008 ), respectively. Patients at high- and low-risks of recurrence/progression were significantly stratified in both the training ( p < 0.005 ) and the testing ( p = 0.03 ) cohorts. Conclusions Our radiomic model, consisting of stage and tumor, peritumoral, and bone marrow features from CT and FDG PET-CT significantly stratified patients into low- and high-risk of recurrence/progression.
Collapse
Affiliation(s)
- Jaryd R. Christie
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- London Regional Cancer Program, Baines Imaging Research Laboratory, London, Ontario, Canada
| | - Omar Daher
- Western University, Department of Medical Imaging, London, Ontario, Canada
| | - Mohamed Abdelrazek
- Western University, Department of Medical Imaging, London, Ontario, Canada
| | - Perrin E. Romine
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, Washington, United States
- University of Washington School of Medicine, Division of Medical Oncology, Seattle, Washington, United States
| | - Richard A. Malthaner
- Western University, Division of Thoracic Surgery, Department of Surgery, London, Ontario, Canada
| | - Mehdi Qiabi
- Western University, Division of Thoracic Surgery, Department of Surgery, London, Ontario, Canada
| | - Rahul Nayak
- Western University, Division of Thoracic Surgery, Department of Surgery, London, Ontario, Canada
| | - Sandy Napel
- Stanford University, Department of Radiology, Stanford, California, United States
| | - Viswam S. Nair
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, Washington, United States
- University of Washington School of Medicine, Division of Pulmonary and Critical Care Medicine, Seattle, Washington, United States
| | - Sarah A. Mattonen
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- London Regional Cancer Program, Baines Imaging Research Laboratory, London, Ontario, Canada
- Western University, Department of Oncology, London, Ontario, Canada
| |
Collapse
|
13
|
Currie G, Hawk KE, Rohren E. The transformational potential of molecular radiomics. J Med Radiat Sci 2022; 70 Suppl 2:77-88. [PMID: 36238997 PMCID: PMC10122929 DOI: 10.1002/jmrs.626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Conventional radiomics in nuclear medicine involve hand-crafted and computer-assisted regions of interest. Recent developments in artificial intelligence (AI) have seen the emergence of AI-augmented segmentation and extraction of lower order traditional radiomic features. Deep learning (DL) affords the opportunity to extract abstract radiomic features directly from input tensors (images) without the need for segmentation. These fourth-order, high dimensional radiomics produce deep radiomics and are well suited to the data density associated with the molecular nature of hybrid imaging. Molecular radiomics and deep molecular radiomics provide insights beyond images and quantitation typical of semantic reporting. While the application of molecular radiomics using hand-crafted and computer-generated features is integrated into decision-making in nuclear medicine, the acceptance of deep molecular radiomics is less universal. This manuscript aims to provide an understanding of the language and principles associated with radiomics and deep radiomics in nuclear medicine.
Collapse
Affiliation(s)
- Geoffrey Currie
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - K Elizabeth Hawk
- School of Medicine, Stanford University, Stanford, California, USA.,Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Eric Rohren
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
14
|
Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT. EBioMedicine 2022; 82:104127. [PMID: 35810561 PMCID: PMC9278031 DOI: 10.1016/j.ebiom.2022.104127] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pre-treatment FDG-PET/CT scans were analyzed with machine learning to predict progression of lung malignancies and overall survival (OS). Methods A retrospective review across three institutions identified patients with a pre-procedure FDG-PET/CT and an associated malignancy diagnosis. Lesions were manually and automatically segmented, and convolutional neural networks (CNNs) were trained using FDG-PET/CT inputs to predict malignancy progression. Performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Image features were extracted from CNNs and by radiomics feature extraction, and random survival forests (RSF) were constructed to predict OS. Concordance index (C-index) and integrated brier score (IBS) were used to evaluate OS prediction. Findings 1168 nodules (n=965 patients) were identified. 792 nodules had progression and 376 were progression-free. The most common malignancies were adenocarcinoma (n=740) and squamous cell carcinoma (n=179). For progression risk, the PET+CT ensemble model with manual segmentation (accuracy=0.790, AUC=0.876) performed similarly to the CT only (accuracy=0.723, AUC=0.888) and better compared to the PET only (accuracy=0.664, AUC=0.669) models. For OS prediction with deep learning features, the PET+CT+clinical RSF ensemble model (C-index=0.737) performed similarly to the CT only (C-index=0.730) and better than the PET only (C-index=0.595), and clinical only (C-index=0.595) models. RSF models constructed with radiomics features had comparable performance to those with CNN features. Interpretation CNNs trained using pre-treatment FDG-PET/CT and extracted performed well in predicting lung malignancy progression and OS. OS prediction performance with CNN features was comparable to a radiomics approach. The prognostic models could inform treatment options and improve patient care. Funding NIH NHLBI training grant (5T35HL094308-12, John Sollee).
Collapse
|
15
|
Ghosh D, Mastej E, Jain R, Choi YS. Causal Inference in Radiomics: Framework, Mechanisms, and Algorithms. Front Neurosci 2022; 16:884708. [PMID: 35812228 PMCID: PMC9261933 DOI: 10.3389/fnins.2022.884708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/20/2022] [Indexed: 12/30/2022] Open
Abstract
The widespread use of machine learning algorithms in radiomics has led to a proliferation of flexible prognostic models for clinical outcomes. However, a limitation of these techniques is their black-box nature, which prevents the ability for increased mechanistic phenomenological understanding. In this article, we develop an inferential framework for estimating causal effects with radiomics data. A new challenge is that the exposure of interest is latent so that new estimation procedures are needed. We leverage a multivariate version of partial least squares for causal effect estimation. The methodology is illustrated with applications to two radiomics datasets, one in osteosarcoma and one in glioblastoma.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
- *Correspondence: Debashis Ghosh
| | - Emily Mastej
- Computational Biosciences Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rajan Jain
- Department of Radiology and Neurosurgery, New York University Langone Medical Center, New York, NY, United States
| | - Yoon Seong Choi
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
17
|
Choudhury S, Chohan A, Dadhwal R, Vakil AP, Franco R, Taweesedt PT. Applications of artificial intelligence in common pulmonary diseases. Artif Intell Med Imaging 2022; 3:1-7. [DOI: 10.35711/aimi.v3.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a branch of computer science where machines are trained to imitate human-level intelligence and perform well-defined tasks. AI can provide accurate results as well as analyze vast amounts of data that cannot be analyzed via conventional statistical methods. AI has been utilized in pulmonary medicine for almost two decades and its utilization continues to expand. AI can help in making diagnoses and predicting outcomes in pulmonary diseases based on clinical data, chest imaging, lung pathology, and pulmonary function testing. AI-based applications enable physicians to use enormous amounts of data and improve their precision in the treatment of pulmonary diseases. Given the growing role of AI in pulmonary medicine, it is important for practitioners caring for patients with pulmonary diseases to understand how AI can work in order to implement it into clinical practices and improve patient care. The goal of this mini-review is to discuss the use of AI in pulmonary medicine and imaging in cases of obstructive lung disease, interstitial lung disease, infections, nodules, and lung cancer.
Collapse
Affiliation(s)
- Saiara Choudhury
- Department of Pulmonary Medicine, Corpus Christi Medical Center, Corpus Christi, TX 78411, United States
| | - Asad Chohan
- Department of Pulmonary Medicine, Corpus Christi Medical Center, Corpus Christi, TX 78411, United States
| | - Rahul Dadhwal
- Department of Pulmonary Medicine, Corpus Christi Medical Center, Corpus Christi, TX 78411, United States
| | - Abhay P Vakil
- Department of Pulmonary Medicine, Corpus Christi Medical Center, Corpus Christi, TX 78411, United States
| | - Rene Franco
- Department of Pulmonary Medicine, Corpus Christi Medical Center, Corpus Christi, TX 78411, United States
| | - Pahnwat Tonya Taweesedt
- Department of Pulmonary Medicine, Corpus Christi Medical Center, Corpus Christi, TX 78411, United States
| |
Collapse
|
18
|
Torres FS, Akbar S, Raman S, Yasufuku K, Schmidt C, Hosny A, Baldauf-Lenschen F, Leighl NB. End-to-End Non-Small-Cell Lung Cancer Prognostication Using Deep Learning Applied to Pretreatment Computed Tomography. JCO Clin Cancer Inform 2021; 5:1141-1150. [PMID: 34797702 DOI: 10.1200/cci.21.00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Clinical TNM staging is a key prognostic factor for patients with lung cancer and is used to inform treatment and monitoring. Computed tomography (CT) plays a central role in defining the stage of disease. Deep learning applied to pretreatment CTs may offer additional, individualized prognostic information to facilitate more precise mortality risk prediction and stratification. METHODS We developed a fully automated imaging-based prognostication technique (IPRO) using deep learning to predict 1-year, 2-year, and 5-year mortality from pretreatment CTs of patients with stage I-IV lung cancer. Using six publicly available data sets from The Cancer Imaging Archive, we performed a retrospective five-fold cross-validation using pretreatment CTs of 1,689 patients, of whom 1,110 were diagnosed with non-small-cell lung cancer and had available TNM staging information. We compared the association of IPRO and TNM staging with patients' survival status and assessed an Ensemble risk score that combines IPRO and TNM staging. Finally, we evaluated IPRO's ability to stratify patients within TNM stages using hazard ratios (HRs) and Kaplan-Meier curves. RESULTS IPRO showed similar prognostic power (concordance index [C-index] 1-year: 0.72, 2-year: 0.70, 5-year: 0.68) compared with that of TNM staging (C-index 1-year: 0.71, 2-year: 0.71, 5-year: 0.70) in predicting 1-year, 2-year, and 5-year mortality. The Ensemble risk score yielded superior performance across all time points (C-index 1-year: 0.77, 2-year: 0.77, 5-year: 0.76). IPRO stratified patients within TNM stages, discriminating between highest- and lowest-risk quintiles in stages I (HR: 8.60), II (HR: 5.03), III (HR: 3.18), and IV (HR: 1.91). CONCLUSION Deep learning applied to pretreatment CT combined with TNM staging enhances prognostication and risk stratification in patients with lung cancer.
Collapse
Affiliation(s)
- Felipe Soares Torres
- Joint Department of Medical Imaging, Toronto General Hospital, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Srinivas Raman
- Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | | | - Ahmed Hosny
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA.,Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA
| | | | - Natasha B Leighl
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Le VH, Kha QH, Hung TNK, Le NQK. Risk Score Generated from CT-Based Radiomics Signatures for Overall Survival Prediction in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13143616. [PMID: 34298828 PMCID: PMC8304936 DOI: 10.3390/cancers13143616] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Despite recent advancements in lung cancer treatment, individuals with lung cancer have a dismal 5-year survival rate of only 15%. In patients with non-small cell lung cancer (NSCLC), medical images have lately been employed as a valuable marker for predicting overall survival. The primary goal of this study was to develop a risk score based on computed tomography (CT) based radiomics feature signatures that may be used to predict survival in NSCLC patients. After analyzing 577 NSCLC patients from two data sets, we discovered that the risk score model’s prediction ability as a prognostic indicator was superior to other clinical indicators (age, stage, and gender), and the possibility of patient risk stratification with survival was evaluated using a risk score representation of 10 radiomics signatures. According to this study, the risk score generated using CT-based radiomics signatures promises to predict overall survival in NSCLC patients. Abstract This study aimed to create a risk score generated from CT-based radiomics signatures that could be used to predict overall survival in patients with non-small cell lung cancer (NSCLC). We retrospectively enrolled three sets of NSCLC patients (including 336, 84, and 157 patients for training, testing, and validation set, respectively). A total of 851 radiomics features for each patient from CT images were extracted for further analyses. The most important features (strongly linked with overall survival) were chosen by pairwise correlation analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression model, and univariate Cox proportional hazard regression. Multivariate Cox proportional hazard model survival analysis was used to create risk scores for each patient, and Kaplan–Meier was used to separate patients into two groups: high-risk and low-risk, respectively. ROC curve assessed the prediction ability of the risk score model for overall survival compared to clinical parameters. The risk score, which developed from ten radiomics signatures model, was found to be independent of age, gender, and stage for predicting overall survival in NSCLC patients (HR, 2.99; 95% CI, 2.27–3.93; p < 0.001) and overall survival prediction ability was 0.696 (95% CI, 0.635–0.758), 0.705 (95% CI, 0.649–0.762), 0.657 (95% CI, 0.589–0.726) (AUC) for 1, 3, and 5 years, respectively, in the training set. The risk score is more likely to have a better accuracy in predicting survival at 1, 3, and 5 years than clinical parameters, such as age 0.57 (95% CI, 0.499–0.64), 0.552 (95% CI, 0.489–0.616), 0.621 (95% CI, 0.544–0.689) (AUC); gender 0.554, 0.546, 0.566 (AUC); stage 0.527, 0.501, 0.459 (AUC), respectively, in 1, 3 and 5 years in the training set. In the training set, the Kaplan–Meier curve revealed that NSCLC patients in the high-risk group had a lower overall survival time than the low-risk group (p < 0.001). We also had similar results that were statistically significant in the testing and validation set. In conclusion, risk scores developed from ten radiomics signatures models have great potential to predict overall survival in NSCLC patients compared to the clinical parameters. This model was able to stratify NSCLC patients into high-risk and low-risk groups regarding the overall survival prediction.
Collapse
Affiliation(s)
- Viet-Huan Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.-H.L.); (Q.-H.K.); (T.N.K.H.)
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang City 65000, Vietnam
| | - Quang-Hien Kha
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.-H.L.); (Q.-H.K.); (T.N.K.H.)
| | - Truong Nguyen Khanh Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.-H.L.); (Q.-H.K.); (T.N.K.H.)
- Department of Orthopedic and Trauma, Cho Ray Hospital, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Quoc Khanh Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.-H.L.); (Q.-H.K.); (T.N.K.H.)
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-66382736 (ext. 1992); Fax: +886-02-27321956
| |
Collapse
|
20
|
Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, Woodruff HC, Lambin P. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging 2021; 48:3961-3974. [PMID: 33693966 PMCID: PMC8484174 DOI: 10.1007/s00259-021-05242-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Lung cancer ranks second in new cancer cases and first in cancer-related deaths worldwide. Precision medicine is working on altering treatment approaches and improving outcomes in this patient population. Radiological images are a powerful non-invasive tool in the screening and diagnosis of early-stage lung cancer, treatment strategy support, prognosis assessment, and follow-up for advanced-stage lung cancer. Recently, radiological features have evolved from solely semantic to include (handcrafted and deep) radiomic features. Radiomics entails the extraction and analysis of quantitative features from medical images using mathematical and machine learning methods to explore possible ties with biology and clinical outcomes. METHODS Here, we outline the latest applications of both structural and functional radiomics in detection, diagnosis, and prediction of pathology, gene mutation, treatment strategy, follow-up, treatment response evaluation, and prognosis in the field of lung cancer. CONCLUSION The major drawbacks of radiomics are the lack of large datasets with high-quality data, standardization of methodology, the black-box nature of deep learning, and reproducibility. The prerequisite for the clinical implementation of radiomics is that these limitations are addressed. Future directions include a safer and more efficient model-training mode, merge multi-modality images, and combined multi-discipline or multi-omics to form "Medomics."
Collapse
Affiliation(s)
- Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands. .,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Arthur Jochems
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, Liege, Belgium.,Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Chenggong Yan
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
21
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|