1
|
Krantz M, Eklund D, Särndahl E, Hedbrant A. A detailed molecular network map and model of the NLRP3 inflammasome. Front Immunol 2023; 14:1233680. [PMID: 38077364 PMCID: PMC10699087 DOI: 10.3389/fimmu.2023.1233680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
The NLRP3 inflammasome is a key regulator of inflammation that responds to a broad range of stimuli. The exact mechanism of activation has not been determined, but there is a consensus on cellular potassium efflux as a major common denominator. Once NLRP3 is activated, it forms high-order complexes together with NEK7 that trigger aggregation of ASC into specks. Typically, there is only one speck per cell, consistent with the proposal that specks form - or end up at - the centrosome. ASC polymerisation in turn triggers caspase-1 activation, leading to maturation and release of IL-1β and pyroptosis, i.e., highly inflammatory cell death. Several gain-of-function mutations in the NLRP3 inflammasome have been suggested to induce spontaneous activation of NLRP3 and hence contribute to development and disease severity in numerous autoinflammatory and autoimmune diseases. Consequently, the NLRP3 inflammasome is of significant clinical interest, and recent attention has drastically improved our insight in the range of involved triggers and mechanisms of signal transduction. However, despite recent progress in knowledge, a clear and comprehensive overview of how these mechanisms interplay to shape the system level function is missing from the literature. Here, we provide such an overview as a resource to researchers working in or entering the field, as well as a computational model that allows for evaluating and explaining the function of the NLRP3 inflammasome system from the current molecular knowledge. We present a detailed reconstruction of the molecular network surrounding the NLRP3 inflammasome, which account for each specific reaction and the known regulatory constraints on each event as well as the mechanisms of drug action and impact of genetics when known. Furthermore, an executable model from this network reconstruction is generated with the aim to be used to explain NLRP3 activation from priming and activation to the maturation and release of IL-1β and IL-18. Finally, we test this detailed mechanistic model against data on the effect of different modes of inhibition of NLRP3 assembly. While the exact mechanisms of NLRP3 activation remains elusive, the literature indicates that the different stimuli converge on a single activation mechanism that is additionally controlled by distinct (positive or negative) priming and licensing events through covalent modifications of the NLRP3 molecule. Taken together, we present a compilation of the literature knowledge on the molecular mechanisms on NLRP3 activation, a detailed mechanistic model of NLRP3 activation, and explore the convergence of diverse NLRP3 activation stimuli into a single input mechanism.
Collapse
Affiliation(s)
- Marcus Krantz
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
3
|
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 2023; 19:658-671. [PMID: 37479904 PMCID: PMC10913074 DOI: 10.1038/s41581-023-00737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Stonebrook
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
4
|
Chen M, Yu S, Gao Y, Li J, Wang X, Wei B, Meng G. TRAF6-TAK1-IKKβ pathway mediates TLR2 agonists activating "one-step" NLRP3 inflammasome in human monocytes. Cytokine 2023; 169:156302. [PMID: 37480791 DOI: 10.1016/j.cyto.2023.156302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Gram-positive bacterial infection causes high morbidity and mortality worldwide, while the underlying mechanism for host sensing bacterial components and initiating immune responses remains elusive. The NLRP3 inflammasome is a cytosolic multi-protein complex sensing a broad spectrum of endogenous danger signals and environmental irritants. In contrast to canonical NLRP3 inflammasome activation that needs both priming and activation signals, Lipopolysaccharide (LPS) from gram-negative bacteria activates the "one-step" NLRP3 inflammasome in human monocytes, which relies on the TLR4-TRIF-Caspase-8 signaling. Here, we show that in human monocytes, TLR2 agonists such as heat-killed gram-positive bacteria, peptidoglycan (PGN) or synthetic bacterial lipoprotein analog Pam3CysSerLys4 (Pam3CSK4) are able to induce the "one-step" NLRP3 inflammasome activation. Using genetic targeting and pharmacological inhibition approaches, it was found that TLR2 propagates signal through TRAF6, TAK1 and IKKβ, ultimately activated NLRP3 independent of RelA. In addition, IKKβ interacts with NLRP3 directly and affects NLRP3 inflammasome activation. These results reveal the signaling cascade downstream of TLR2 upon sensing gram-positive bacterial infection and activating the "one-step" NLRP3 inflammasome in human monocytes, which provides clue for controlling gram-positive bacterial infection-related inflammation.
Collapse
Affiliation(s)
- Mengdan Chen
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi Yu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhui Gao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiaxun Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xun Wang
- Shanghai Blood Center, Shanghai 200051, China
| | - Bin Wei
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China; Pasteurien College, Soochow University, Suzhou, Jiangsu 215006, China; Nanjing Advanced Academy of Life and Health, Nanjing, Jiangsu 211135, China.
| |
Collapse
|
5
|
Ramkrishna D, Braatz RD. Whither Chemical Engineering? AIChE J 2022. [DOI: 10.1002/aic.17829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Doraiswami Ramkrishna
- Purdue University, School of Chemical Engineering, 480 Stadium Mall, 480 Stadium Mall Drive United States of America
| | - Richard D. Braatz
- Massachusetts Institute of Technology, Chemical Engineering, 77 Massachusetts Avenue, Room E19 Cambridge Massachusetts United States of America
| |
Collapse
|
6
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
8
|
Chambers CA, Dadelahi AS, Moley CR, Olson RM, Logue CM, Skyberg JA. Nucleotide receptors mediate protection against neonatal sepsis and meningitis caused by alpha-hemolysin expressing Escherichia coli K1. FASEB J 2022; 36:e22197. [PMID: 35147989 DOI: 10.1096/fj.202101485r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023]
Abstract
Neonatal meningitis-associated Escherichia coli (NMEC) is among the leading causes of bacterial meningitis and sepsis in newborn infants. Several virulence factors have been identified as common among NMEC, and have been shown to play an important role in the development of bacteremia and/or meningitis. However, there is significant variability in virulence factor expression between NMEC isolates, and relatively little research has been done to assess the impact of variable virulence factor expression on immune cell activation and the outcome of infection. Here, we investigated the role of NMEC strain-dependent P2X receptor (P2XR) signaling on the outcome of infection in neonatal mice. We found that alpha-hemolysin (HlyA)-expressing NMEC (HlyA+ ) induced robust P2XR-dependent macrophage cell death in vitro, while HlyA- NMEC did not. P2XR-dependent cell death was inflammasome independent, suggesting an uncoupling of P2XR and inflammasome activation in the context of NMEC infection. In vivo inhibition of P2XRs was associated with increased mortality in neonatal mice infected with HlyA+ NMEC, but had no effect on the survival of neonatal mice infected with HlyA- NMEC. Furthermore, we found that P2XR-dependent protection against HlyA+ NMEC in vivo required macrophages, but not neutrophils or NLRP3. Taken together, these data suggest that HlyA+ NMEC activates P2XRs which in turn confers macrophage-dependent protection against infection in neonates. In addition, our findings indicate that strain-dependent virulence factor expression should be taken into account when studying the immune response to NMEC.
Collapse
Affiliation(s)
- Catherine A Chambers
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Alexis S Dadelahi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Charles R Moley
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Rachel M Olson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Catherine M Logue
- Department of Population Heath, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Wei Z, Zhan X, Ding K, Xu G, Shi W, Ren L, Fang Z, Liu T, Hou X, Zhao J, Li H, Li J, Li Z, Li Q, Lin L, Yang Y, Xiao X, Bai Z, Cao J. Dihydrotanshinone I Specifically Inhibits NLRP3 Inflammasome Activation and Protects Against Septic Shock In Vivo. Front Pharmacol 2021; 12:750815. [PMID: 34721038 PMCID: PMC8552015 DOI: 10.3389/fphar.2021.750815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
The abnormal activation of the NLRP3 inflammasome is closely related to the occurrence and development of many inflammatory diseases. Targeting the NLRP3 inflammasome has been considered an efficient therapy to treat infections. We found that dihydrotanshinone I (DHT) specifically blocked the canonical and non-canonical activation of the NLRP3 inflammasome. Nevertheless, DHT had no relation with the activation of AIM2 or the NLRC4 inflammasome. Further study demonstrated that DHT had no influences on potassium efflux, calcium flux, or the production of mitochondrial ROS. We also discovered that DHT suppressed ASC oligomerization induced by NLRP3 agonists, suggesting that DHT inhibited the assembly of the NLRP3 inflammasome. Importantly, DHT possessed a significant therapeutic effect on NLRP3 inflammasome–mediated sepsis in mice. Therefore, our results aimed to clarify DHT as a specific small-molecule inhibitor for the NLRP3 inflammasome and suggested that DHT can be used as a potential drug against NLRP3-mediated diseases.
Collapse
Affiliation(s)
- Ziying Wei
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaoyan Zhan
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kaixin Ding
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Wei Shi
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Lutong Ren
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Zhie Fang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Tingting Liu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaorong Hou
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Jia Zhao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Hui Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Jiayi Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Zhiyong Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Qiang Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Li Lin
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Yan Yang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junling Cao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Pharmacy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Verma V, Kumar P, Gupta S, Yadav S, Dhanda RS, Yadav M. NLRP3‐mediated dysfunction of mitochondria leads to cell death in CFT073‐stimulated macrophages. Scand J Immunol 2021. [DOI: 10.1111/sji.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | - Parveen Kumar
- Department of Urology University of Alabama at Birmingham Birmingham Alabama USA
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | - Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| |
Collapse
|
11
|
Isaacson B, Baron M, Yamin R, Bachrach G, Levi-Schaffer F, Granot Z, Mandelboim O. The inhibitory receptor CD300a is essential for neutrophil-mediated clearance of urinary tract infection in mice. Eur J Immunol 2021; 51:2218-2224. [PMID: 34268737 DOI: 10.1002/eji.202049006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
Neutrophils play a crucial role in immune defense against and clearance of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection, the most common bacterial infection in healthy humans. CD300a is an inhibitory receptor that binds phosphatidylserine and phosphatidylethanolamine, presented on the membranes of apoptotic cells. CD300a binding to phosphatidylserine and phosphatidylethanolamine, also known as the "eat me" signal, mediates immune tolerance to dying cells. Here, we demonstrate for the first time that CD300a plays an important role in the neutrophil-mediated immune response to UPEC-induced urinary tract infection. We show that CD300a-deficient neutrophils have impaired phagocytic abilities and despite their increased accumulation at the site of infection, they are unable to reduce bacterial burden in the bladder, which results in significant exacerbation of infection and worse host outcome. Finally, we demonstrate that UPEC's pore forming toxin α-hemolysin induces upregulation of the CD300a ligand on infected bladder epithelial cells, signaling to neutrophils to be cleared.
Collapse
Affiliation(s)
- Batya Isaacson
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Maya Baron
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Rachel Yamin
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
12
|
Sun Z, Liu W, Zhang J, Wang S, Yang F, Fang Y, Jiang W, Ding L, Zhao H, Zhang Y. The Direct Semi-Quantitative Detection of 18 Pathogens and Simultaneous Screening for Nine Resistance Genes in Clinical Urine Samples by a High-Throughput Multiplex Genetic Detection System. Front Cell Infect Microbiol 2021; 11:660461. [PMID: 33912478 PMCID: PMC8072482 DOI: 10.3389/fcimb.2021.660461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 01/26/2023] Open
Abstract
Background Urinary tract infections (UTIs) are one the most common infections. The rapid and accurate identification of uropathogens, and the determination of antimicrobial susceptibility, are essential aspects of the management of UTIs. However, existing detection methods are associated with certain limitations. In this study, a new urinary tract infection high-throughput multiplex genetic detection system (UTI-HMGS) was developed for the semi-quantitative detection of 18 pathogens and the simultaneously screening of nine resistance genes directly from the clinical urine sample within 4 hours. Methods We designed and optimized a multiplex polymerase chain reaction (PCR) involving fluorescent dye-labeled specific primers to detect 18 pathogens and nine resistance genes. The specificity of the UTI-HMGS was tested using standard strains or plasmids for each gene target. The sensitivity of the UTI-HMGS assay was tested by the detection of serial tenfold dilutions of plasmids or simulated positive urine samples. We also collected clinical urine samples and used these to perform urine culture and antimicrobial susceptibility testing (AST). Finally, all urine samples were detected by UTI-HMGS and the results were compared with both urine culture and Sanger sequencing. Results UTI-HMGS showed high levels of sensitivity and specificity for the detection of uropathogens when compared with culture and sequencing. In addition, ten species of bacteria and three species of fungi were detected semi-quantitatively to allow accurate discrimination of significant bacteriuria and candiduria. The sensitivity of the UTI-HMGS for the all the target genes could reach 50 copies per reaction. In total, 531 urine samples were collected and analyzed by UTI-HMGS, which exhibited high levels of sensitivity and specificity for the detection of uropathogens and resistance genes when compared with Sanger sequencing. The results from UTI-HMGS showed that the detection rates of 15 pathogens were significantly higher (P<0.05) than that of the culture method. In addition, there were 41(7.72%, 41/531) urine samples were positive for difficult-to-culture pathogens, which were missed detected by routine culture method. Conclusions UTI-HMGS proved to be an efficient method for the direct semi-quantitative detection of 18 uropathogens and the simultaneously screening of nine antibiotic resistance genes in urine samples. The UTI-HMGS could represent an alternative method for the clinical detection and monitoring of antibiotic resistance.
Collapse
Affiliation(s)
- Zhaoyang Sun
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Wenjian Liu
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Jinghao Zhang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Su Wang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Yi Fang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Wenrong Jiang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Li Ding
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated With Fudan University, Shanghai, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Ghosh A, Bandyopadhyay D, Koley S, Mukherjee M. Uropathogenic Escherichia coli in India-an Overview on Recent Research Advancements and Trends. Appl Biochem Biotechnol 2021; 193:2267-2296. [PMID: 33595784 DOI: 10.1007/s12010-021-03521-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
Urinary tract infection (UTI), a prevalent disease in India, also ranks among the most common infections in developing countries. The rapid emergence of antibiotic-resistant uropathogenic Escherichia coli (UPECs), the leading etiologic agent of UTI, in the last few years, led to an upsurge in the health care cost. This caused a considerable economic burden, especially in low-middle income country, India. This review aimed to provide an explicit overview of the recent advancements in E. coli-mediated UTI in India by incorporation of valuable information from the works published in PubMed and Google Scholar in the last six years (2015 to August, 2020). The literature survey demonstrated UPECs as the most predominant uropathogen in India, especially among females, causing both asymptomatic bacteriuria (ABU) and symptomatic UTI. An overall increasing national trend in resistance to penicillins, cephalosporins, aminoglycosides, fluoroquinolones, and sulfonamides was perceived irrespective of ABU and symptomatic UPECs during the aforementioned study period. High incidences of multidrug resistance, extended-spectrum β-lactamases, metallo β-lactamases, and AmpCs in UPECs were reported. Notable information on the pathogenic profiles, phylogroups, pathogenicity islands, and evidence of pathoadaptive FimH mutations was described. Alternative therapeutics and potential drug targets against UPECs were also reconnoitered. Therefore, the nationwide widespread occurrences of highly virulent MDR UPEC together with the limited availability of therapeutics highlighted the urgent need for promotion and invention of alternative therapeutics, search for which had already been started. Moreover, investigation of several mechanisms of UPEC infection and the search for potential drug targets might help to design newer therapeutics.
Collapse
Affiliation(s)
- Arunita Ghosh
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Debojyoty Bandyopadhyay
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Snehashis Koley
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India.
| |
Collapse
|