1
|
Roslan MNF, Naharudin I, Musa N, Anuar NK. Bioadhesive polymer in antifungal drug delivery for therapeutic treatment of candidiasis. J Adv Pharm Technol Res 2024; 15:139-143. [PMID: 39290549 PMCID: PMC11404442 DOI: 10.4103/japtr.japtr_538_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 09/19/2024] Open
Abstract
Candida species are the primary cause of candidiasis, a common yeast infection, with Candida albicans being the most prevalent pathogen. These infections often infiltrate the body through cutaneous and vaginal routes. Given the potential severity of some Candida infections, particularly invasive cases, there is a critical need for effective antifungal treatments. Controlled drug delivery strategies have been developed to achieve optimal release kinetics and precise targeting of active agents, especially in fungal infection therapeutics. Consequently, significant attention has been focused on exploring and utilizing bioadhesive polymers to enhance the performance of drug delivery systems for antifungal medications. Bioadhesive drug delivery systems aim to sustain the release of therapeutic agents, reducing the need for frequent dosing. This article provides a comprehensive review of scientific investigations into the use of antifungal drugs within bioadhesive drug delivery systems for treating candidiasis, locally and systemically. The evaluation covers the efficacy of these systems against candidiasis, factors affecting prolonged contact at the application site, and the underlying mechanisms of drug delivery.
Collapse
Affiliation(s)
- Muhamad Naquib Faisal Roslan
- Jabatan Farmasi Hospital Tengku Ampuan Rahimah, Klang, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Idanawati Naharudin
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Nafisah Musa
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nor Khaizan Anuar
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Food Process and Engineering Research Group (FOPERG), Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Prerna, Chadha J, Khullar L, Mudgil U, Harjai K. A comprehensive review on the pharmacological prospects of Terpinen-4-ol: From nature to medicine and beyond. Fitoterapia 2024; 176:106051. [PMID: 38838826 DOI: 10.1016/j.fitote.2024.106051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Owing to their extensive biological potential, essential oils (EOs) and their bioactive phytochemicals have gained attention from the scientific community. Within this domain, Terpinen-4-ol (T-4-ol), a bioactive monoterpene alcohol and the major constituent of tea tree oil (TTO), has made its way into translational research. Recent literature on T-4-ol strongly indicates its diverse pharmacological properties, including but not limited to antimicrobial, antivirulent, anti-oxidant, anti-inflammatory, anti-hypertensive, and anti-cancer effects. Hence, this review is the first to provide a comprehensive overview of the sources, bioavailability, safety, pharmaceutical delivery systems, and multifaceted biological properties of T-4-ol, emphasizing its medicinal potential for widescale application. The antibacterial and antifungal effectiveness of T-4-ol has been discussed, encompassing its role in combating a broad spectrum of bacterial and fungal pathogens. The review delves into the antivirulent prospects of T-4-ol, shedding light on its ability to attenuate virulence and mitigate bacterial pathogenesis. Scientific literature on the anti-oxidant and anti-inflammatory activity of T-4-ol highlighting its role in neutralizing reactive oxygen species and modulating inflammatory pathways has also been collated. Furthermore, the review elaborates on the cardioprotective and anti-hypertensive properties of T-4-ol and augments literature on its anti-cancer mechanism against various cancer cell lines. The review also provides in-depth knowledge of the pharmaceutical formulations of T-4-ol and recent knowledge about its application in clinical/field trials. The exploration of these diverse attributes positions T-4-ol as a promising candidate for further research and therapeutic repurposing in various biomedical applications.
Collapse
Affiliation(s)
- Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Ranđelović M, Dimitrijević M, Otašević S, Stanojević L, Išljamović M, Ignjatović A, Arsić-Arsenijević V, Stojanović-Radić Z. Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa. J Fungi (Basel) 2023; 9:1080. [PMID: 37998884 PMCID: PMC10672467 DOI: 10.3390/jof9111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Background: Vulvovaginal candidosis (VVC) is a major therapy issue due to its high resistance rate and virulence factors such as the ability to form biofilms. The possibility of combining commonly used antifungals with natural products might greatly improve therapeutic success. (2) Methods: A total of 49 vulvovaginal isolates, causative agents of recurrent VVC, were tested for their susceptibility to fluconazole, nystatin, and Melissa officinalis essential oil (MOEO). This examination included testing the antibiofilm potential of antifungals and MOEO and the determination of their types of interaction with mature biofilms. (3) Results: Antimicrobial testing showed that 94.4% of the Candida albicans isolates and all the Candida krusei isolates were resistant to fluconazole, while all strains showed resistance to nystatin. The same strains were susceptible to MOEO in 0.156-2.5 mg/mL concentrations. Additionally, the results revealed very limited action of fluconazole, while nystatin and MOEO reduced the amount of biofilm formed by as much as 17.7% and 4.6%, respectively. Testing of the combined effect showed strain-specific synergistic action. Furthermore, the lower concentrations exhibited antagonistic effects even in cases where synergism was detected. (4) Conclusions: This study showed that MOEO had a very good antibiofilm effect. However, combining MOEO with antimycotics demonstrated that the type of action depended on the choice of antifungal drugs as well as the applied concentration.
Collapse
Affiliation(s)
- Marina Ranđelović
- Department of Microbiology and Immunology, Medical Faculty, University of Nis, 18000 Nis, Serbia;
- Centre of Microbiology, Public Health Institute Nis, 18000 Nis, Serbia
| | - Marina Dimitrijević
- Department of Biology, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia; (M.D.); (Z.S.-R.)
| | - Suzana Otašević
- Department of Microbiology and Immunology, Medical Faculty, University of Nis, 18000 Nis, Serbia;
- Centre of Microbiology, Public Health Institute Nis, 18000 Nis, Serbia
| | - Ljiljana Stanojević
- Department of Chemistry and Chemical Technology, Faculty of Technology, University of Nis, 18000 Nis, Serbia;
| | - Milica Išljamović
- Department of Dental Health Care, Health Center Niš, 18000 Nis, Serbia;
| | - Aleksandra Ignjatović
- Department of Medical Statistics and Informatics, Medical Faculty, University of Nis, 18000 Nis, Serbia;
| | | | - Zorica Stojanović-Radić
- Department of Biology, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia; (M.D.); (Z.S.-R.)
| |
Collapse
|
4
|
Silva Pontes C, Garcia de Carvalho G, Rosa Perin Leite A, Chorilli M, Palomari Spolidorio DM. Improving Drug Delivery on Candida Albicans Using Geraniol Nanoemulsion. Pharmaceutics 2023; 15:2475. [PMID: 37896235 PMCID: PMC10609964 DOI: 10.3390/pharmaceutics15102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Geraniol (GE) is a monoterpene alcohol with excellent antifungal activity. However, its low solubility and high volatility impair its use. Nanoemulsions (NE) are excellent delivery systems for poorly soluble and volatile drugs, achieving controlled release of the active ingredient. The aim of this study was to improve the delivery of geraniol (GE) incorporated in NE against Candida albicans in order to evaluate the antibiofilm effect and cytotoxicity. Nanoemulsion containing 10% oil phase (cholesterol) (w/w), 10% surfactant (mixture of soy phosphatidylcholine and Brij 58; 1:2) (w/w), and 80% aqueous phase (phosphate buffer) (w/w) was synthesized. Incorporation of GE was carried out by sonication and the final compounds were characterized by hydrodynamic diameter, polydispersity index (PDI), and zeta potential (ZP), in addition to evaluation of physicochemical stability after 6 months and 1 year. The GE-NE effect was evaluated on Candida albicans biofilms and cytotoxic effect was evaluated on immortalized normal oral cell line NOK-Si. The diameter of GE-NE was 232.3 ± 2.7 nm and PDI 0.155 with exhibited homogeneity and stability in solution. GE-NE showed antibiofilm activity at a concentration of 75 μg/mL with reduction of >6.0 log10, and no cytotoxicity against NOK-Si cells at concentrations below 150 μg/mL was observed. GE-NE proved to be a promising candidate for prevention and treatment of fungal diseases.
Collapse
Affiliation(s)
- Cristiano Silva Pontes
- Department of Physiology and Pathology, School of Dentistry at Araraquara, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil; (C.S.P.); (D.M.P.S.)
| | - Gabriel Garcia de Carvalho
- Department of Physiology and Pathology, School of Dentistry at Araraquara, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil; (C.S.P.); (D.M.P.S.)
| | - Andressa Rosa Perin Leite
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara 14801-903, SP, Brazil;
| | - Marlus Chorilli
- Department of Drugs and Medicines, International School of Pharmaceuticals Sciences, São Paulo State University, Araraquara 14801-903, SP, Brazil;
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry at Araraquara, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil; (C.S.P.); (D.M.P.S.)
| |
Collapse
|
5
|
Sousa F, Nascimento C, Ferreira D, Reis S, Costa P. Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv Drug Deliv Rev 2023; 199:114969. [PMID: 37348678 DOI: 10.1016/j.addr.2023.114969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Nystatin is an antifungal molecule with a remarkable yet squandered versatility. In this review, its mechanism of action is explored, along with its extensive action spectrum and toxicity. A multitude of methodologies to tackle the drug's physical and chemical hurdles are outlined along with some proven-effective strategies to increase its activity and/or decrease its toxicity. A separate detailed section focused on micro and nanotechnology solutions addresses new drug delivery systems made of polymeric, metallic or lipid materials. Although the topical route depicts greater representativeness amongst these formulations, the intravenous, dental, oral, vaginal and inhalation routes are also mentioned. The unsuccessful previous attempts at developing parenteral formulations of nystatin or even the withdrawal of a nystatin-loaded multilamellar liposome should not divert research away from this drug. In fact, the interest in nystatin ought to be reawakened with the ongoing clinical trials on the promising nystatin-like genetically engineered derivate BSG005.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Cecília Nascimento
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
de Araujo GRS, Azevedo Lima OV, Barreto Neujahr JP, Matos SS, de Souza TA, Dos Santos AM, Chorilli M, de Souza Araujo AA, Duarte MC, da Cunha Gonsalves JKM, de Souza Nunes R, Dos Santos MRV, Vitorino Sarmento VH, Moreira Lira AA. Lyotropic liquid crystal mesophases as transdermal delivery systems for lipophilic drugs: A comparative study. Int J Pharm 2023; 636:122853. [PMID: 36931537 DOI: 10.1016/j.ijpharm.2023.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
The present work aimed to evaluate different Liquid Crystal Mesophases (LCM) as transdermal drug delivery systems (TDDS) for nifedipine (NFD), a lipophilic drug model. The formulations composed of water, Citrus sinensis essential oil (CSEO), PPG-5-CETETH-20, and Olive oil ester PEG-7 were obtained and characterized by polarized light microscopy (PLM), rheology, small-angle x-ray scattering (SAXS), Fourier transform infrared coupled with an attenuated total reflection accessory (FTIR-ATR) and in vitro assays: bioadhesion, drug release, skin permeation, and retention tests. As a result, changes in component proportions led to several transparent viscous systems with an anisotropic profile. PLM and SAXS proved the presence of lamellar (S1), hexagonal (S3), and lamellar + hexagonal (S2) LCM, and rheology showed a high viscoelasticity profile. LCMs were able to adhere to the skin, and S2 achieved higher adhesion strength. NFD (5 mg/mL) has not modified the organization of LCMs. Results also showed that S3 promoted higher permeation and retention and higher disorganization of stratum corneum lipids, which is the main permeation-enhancing mechanism. Thus, the formulations obtained can carry and improve drug delivery through the skin and are promising TDDS for lipophilic drug administration, such as NFD.
Collapse
Affiliation(s)
| | | | | | - Saulo Santos Matos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Thalisson Amorim de Souza
- Institute for Research in Pharmaceutical and Medications, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Paulista State University, Araraquara, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Front Pharmacol 2022; 13:917787. [PMID: 35899117 PMCID: PMC9309813 DOI: 10.3389/fphar.2022.917787] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biofilm communities of Candida are resistant to various antifungal treatments. The ability of Candida to form biofilms on abiotic and biotic surfaces is considered one of the most important virulence factors of these fungi. Extracellular DNA and exopolysaccharides can lower the antifungal penetration to the deeper layers of the biofilms, which is a serious concern supported by the emergence of azole-resistant isolates and Candida strains with decreased antifungal susceptibility. Since the biofilms' resistance to common antifungal drugs has become more widespread in recent years, more investigations should be performed to develop novel, inexpensive, non-toxic, and effective treatment approaches for controlling biofilm-associated infections. Scientists have used various natural compounds for inhibiting and degrading Candida biofilms. Curcumin, cinnamaldehyde, eugenol, carvacrol, thymol, terpinen-4-ol, linalool, geraniol, cineole, saponin, camphor, borneol, camphene, carnosol, citronellol, coumarin, epigallocatechin gallate, eucalyptol, limonene, menthol, piperine, saponin, α-terpineol, β-pinene, and citral are the major natural compounds that have been used widely for the inhibition and destruction of Candida biofilms. These compounds suppress not only fungal adhesion and biofilm formation but also destroy mature biofilm communities of Candida. Additionally, these natural compounds interact with various cellular processes of Candida, such as ABC-transported mediated drug transport, cell cycle progression, mitochondrial activity, and ergosterol, chitin, and glucan biosynthesis. The use of various drug delivery platforms can enhance the antibiofilm efficacy of natural compounds. Therefore, these drug delivery platforms should be considered as potential candidates for coating catheters and other medical material surfaces. A future goal will be to develop natural compounds as antibiofilm agents that can be used to treat infections by multi-drug-resistant Candida biofilms. Since exact interactions of natural compounds and biofilm structures have not been elucidated, further in vitro toxicology and animal experiments are required. In this article, we have discussed various aspects of natural compound usage for inhibition and destruction of Candida biofilms, along with the methods and procedures that have been used for improving the efficacy of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Soroush
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
de Araújo Andrade T, Heimfarth L, Dos Santos DM, Dos Santos MRV, de Albuquerque-Júnior RLC, Dos Santos-Neto AG, de Araujo GRS, Lira AAM, Matos SS, Frank LA, Rabelo TK, Quintans-Júnior LJ, de Souza Siqueira Quintans J, de Souza Araujo AA, Serafini MR. Hesperetin-Based Hydrogels Protect the Skin against UV Radiation-Induced Damage. AAPS PharmSciTech 2022; 23:170. [PMID: 35729366 DOI: 10.1208/s12249-022-02323-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
UV radiation can cause damages, such as erythema, skin photoaging, and carcinogenesis. The adoption of protective measures against sun exposure is essential to prevent these damages, and the interest in using natural substances as an alternative for photoprotection is growing. Thus, hesperetin with antioxidant, anti-inflammatory, and anticancer properties is a promising substance to be used with photochemopreventive action and to protect the skin from damage induced by UV radiation. Therefore, the present study aimed to develop a topical formulation based on AAMVPC gel containing hesperetin and evaluate its photoprotective effect on the skin of rats exposed to UVA-UVB radiation. The animals were submitted to the irradiation protocol UVA-UVB, and at the end, erythema, lipid peroxidation, and activity of the antioxidant enzyme catalase and superoxide dismutase were evaluated. Additionally, it evaluated the activity of myeloperoxidase and histological changes. The formulation presented a rheological and spreadability profile suitable for cutaneous application. In vivo results demonstrated that the topical formulation of AAMVPC gel containing hesperetin at a concentration of 10% protected the skin from damage induced by UVA-UVB radiation, with the absence of erythema, lipid lipoperoxidation, and inflammation (low myeloperoxidase activity), and increased catalase and superoxide dismutase activities. The morphology and architecture of the dermo-epidermal tissue of these animals were like those observed under normal conditions (non-irradiated animals). Thus, the results showed that hesperetin was able to protect the animals' skin against UV radiation-induced skin damage and the protection mechanisms may be related to the antioxidant and anti-inflammatory properties of this natural product.
Collapse
Affiliation(s)
| | - Luana Heimfarth
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Danillo Menezes Dos Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Márcio Roberto Viana Dos Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | | | | | | | | | - Saulo Santos Matos
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Luiza Abrahão Frank
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brasil.
| | - Thallita Kelly Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Lucindo José Quintans-Júnior
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Jullyana de Souza Siqueira Quintans
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Adriano Antunes de Souza Araujo
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil. .,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil.
| |
Collapse
|
9
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
10
|
Man A, Mare AD, Mares M, Ruta F, Pribac M, Maier AC, Cighir A, Ciurea CN. Antifungal and anti-virulence activity of six essential oils against important Candida species - a preliminary study. Future Microbiol 2022; 17:737-753. [PMID: 35531749 DOI: 10.2217/fmb-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opportunistic infections with Candida species are becoming more problematic, considering their increasing virulence and resistance to antifungal drugs. AIM To assess the antifungal and anti-virulence activity of basil, cinnamon, clove, melaleuca, oregano and thyme essential oils (EOs) on five Candida species (C. albicans, C. auris, C. krusei C. parapsilosis and C. guillermondii). METHODS The MIC, growth rate, antibiofilm activity, regulation of gene expression (ALS3, SAP2, HSP70) and germ-tube formation were evaluated by specific methods. RESULTS Most EOs inhibited Candida species growth and reduced the expression of some virulence factors. Cinnamon and clove EO showed the most significant inhibitory effects. CONCLUSIONS The tested EOs are promising agents for facilitating the management of some Candida infections.
Collapse
Affiliation(s)
- Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Anca-Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Ion Ionescu de la Brad University of Life Sciences of Iași, Iași, 700490, Romania
| | - Florina Ruta
- Department of Community Nutrition & Food Safety, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Mirela Pribac
- Nutrition & Holistic Health, Holomed, Târgu Mureș, 540272, Romania
| | - Adrian-Cornel Maier
- Department of Urology, "Dunarea de Jos" University of Galați, Galați, 800008, Romania
| | - Anca Cighir
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania.,Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Cristina-Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania.,Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| |
Collapse
|