1
|
Yamazaki S, Hishinuma E, Suzuki Y, Ueda A, Kijogi C, Nakayoshi T, Oda A, Saito S, Tadaka S, Kinoshita K, Maekawa M, Sato Y, Kumondai M, Mano N, Hirasawa N, Hiratsuka M. Functional significance of CYP2B6 gene rare allelic variants identified in Japanese individuals. Biochem Pharmacol 2024; 229:116515. [PMID: 39218044 DOI: 10.1016/j.bcp.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cytochrome P450 2B6 (CYP2B6) catalyzes the metabolism of many drugs, including efavirenz and propofol. Genetic polymorphisms in CYP2B6 alter its enzymatic activity and substantially affect its pharmacokinetics. High-frequency variants, such as CYP2B6*6, are associated with the risk of developing side effects due to reduced CYP2B6 activity. However, the impact of rare alterations on enzyme function remains unknown, and some of these variants may significantly decrease the CYP2B6 activity. Therefore, in this study, we evaluated in vitro the functional alterations in 29 missense variants of the CYP2B6 gene identified in 8,380 Japanese individuals. Wild-type CYP2B6 and 29 rare CYP2B6 variants were transiently expressed in mammalian cells. The expression levels of variant CYP2B6 proteins in the microsomal fractions extracted from 293FT cells were assessed using western blotting and reduced-carbon monoxide difference spectroscopy, and a specific peak at 450 nm was detected in the wild-type and 19 variants. Furthermore, kinetic parameters were determined by assaying the reactions with efavirenz and propofol and quantifying the metabolite concentrations. We found that 12 variants had significantly lower or abolished enzymatic activity with both the substrates. In silico three-dimensional docking and molecular-dynamics simulations suggested that these functional changes were due to conformational changes in essential regions, such as the heme-binding site and ligand channels involved in transporting substrates to the active site. These findings have implications for predicting the plasma concentrations of CYP2B6 substrates and controlling their side effects.
Collapse
Affiliation(s)
- Shuki Yamazaki
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Yuma Suzuki
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Akiko Ueda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Caroline Kijogi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomoki Nakayoshi
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan; Department of Pharmacy, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Akifumi Oda
- Department of Pharmacy, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Sakae Saito
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Shu Tadaka
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Kengo Kinoshita
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; Graduate School of Information Sciences, Tohoku University, Sendai 980-8575, Japan
| | - Masamitsu Maekawa
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan.
| |
Collapse
|
2
|
Popović L, Brankatschk B, Palladino G, Rossner MJ, Wehr MC. Polypharmacological profiling across protein target families and cellular pathways using the multiplexed cell-based assay platform safetyProfiler reveals efficacy, potency and side effects of drugs. Biomed Pharmacother 2024; 180:117523. [PMID: 39405910 DOI: 10.1016/j.biopha.2024.117523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Selectivity profiling is key for assessing the pharmacological properties of multi-target drugs. We have developed a cell-based and barcoded assay encompassing ten druggable targets, including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), nuclear receptors, a protease as well as their key downstream pathways and profiled 17 drugs in living cells for efficacy, potency, and side effects. Notably, this multiplex assay, termed safetyProfiler assay, enabled the simultaneous assessment of multiple target and pathway activities, shedding light on the polypharmacological profile of compounds. For example, the neuroleptics clozapine, paliperidone, and risperidone potently inhibited primary targets DRD2 and HTR2A as well as cAMP and calcium pathways. However, while paliperidone and risperidone also potently inhibited the secondary target ADRA1A and mitogen-activated protein kinase (MAPK) downstream pathways, clozapine only exhibited mild antagonistic effects on ADRA1A and lacked MAPK inhibition downstream of DRD2 and HTR2A. Furthermore, we present data on the selectivity for bazedoxifene, an estrogen receptor antagonist currently undergoing clinical phase 2 trials for breast cancer, on MAPK signaling. Additionally, precise potency data for LY2452473, an androgen receptor antagonist, that completed a phase 2 clinical trial for prostate cancer, are presented. The non-selective kinase inhibitor staurosporine was observed to potently inactivate the two RTKs EGFR and ERBB4 as well as MAPK signaling, while eliciting stress-related cAMP responses. Our findings underscore the value of comprehensive profiling in elucidating the pharmacological properties of established and novel therapeutics, thereby facilitating the development of novel multi-target drugs with enhanced efficacy and selectivity.
Collapse
Affiliation(s)
- Lukša Popović
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany; Systasy Bioscience GmbH, Fraunhoferstr. 8, Planegg-Martinsried 82152, Germany
| | - Ben Brankatschk
- Systasy Bioscience GmbH, Fraunhoferstr. 8, Planegg-Martinsried 82152, Germany
| | - Giulia Palladino
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany; Systasy Bioscience GmbH, Fraunhoferstr. 8, Planegg-Martinsried 82152, Germany
| | - Moritz J Rossner
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany; Systasy Bioscience GmbH, Fraunhoferstr. 8, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
3
|
Shnayder NA, Grechkina VV, Trefilova VV, Kissin MY, Narodova EA, Petrova MM, Al-Zamil M, Garganeeva NP, Nasyrova RF. Ethnic Aspects of Valproic Acid P-Oxidation. Biomedicines 2024; 12:1036. [PMID: 38790997 PMCID: PMC11117587 DOI: 10.3390/biomedicines12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The safety of the use of psychotropic drugs, widely used in neurological and psychiatric practice, is an urgent problem in personalized medicine. This narrative review demonstrated the variability in allelic frequencies of low-functioning and non-functional single nucleotide variants in genes encoding key isoenzymes of valproic acid P-oxidation in the liver across different ethnic/racial groups. The sensitivity and specificity of pharmacogenetic testing panels for predicting the rate of metabolism of valproic acid by P-oxidation can be increased by prioritizing the inclusion of the most common risk allele characteristic of a particular population (country).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Mikhail Ya. Kissin
- Department of Psychiatry and Addiction, I.P. Pavlov First St. Petersburg State Medical University, 197022 Saint Petersburg, Russia;
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
4
|
Knauer JF, Schulz C, Zemella A, Wüstenhagen DA, Walter RM, Küpper JH, Kubick S. Synthesis of mono Cytochrome P450 in a modified CHO-CPR cell-free protein production platform. Sci Rep 2024; 14:1271. [PMID: 38218994 PMCID: PMC10787779 DOI: 10.1038/s41598-024-51781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Cytochromes P450 (CYPs) are a group of monooxygenases that can be found in almost all kinds of organisms. For CYPs to receive electrons from co-substrate NADPH, the activity of NADPH-Cytochrome-P450-oxidoreductase (CPR) is required as well. In humans, CYPs are an integral part of liver-based phase-1 biotransformation, which is essential for the metabolization of multiple xenobiotics and drugs. Consequently, CYPs are important players during drug development and therefore these enzymes are implemented in diverse screening applications. For these applications it is usually advantageous to use mono CYP microsomes containing only the CYP of interest. The generation of mono-CYP containing mammalian cells and vesicles is difficult since endogenous CYPs are present in many cell types that contain the necessary co-factors. By obtaining translationally active lysates from a modified CHO-CPR cell line, it is now possible to generate mono CYPs in a cell-free protein synthesis process in a straightforward manner. As a proof of principle, the synthesis of active human CYPs from three different CYP450 gene families (CYP1A2, CYP2B6 and CYP3A4), which are of outstanding interest in industry and academia was demonstrated. Luciferase based activity assays confirm the activity of the produced CYPs and enable the individual adaptation of the synthesis process for efficient cell-free enzyme production. Furthermore, they allow for substrate and inhibitor screenings not only for wild-type CYPs but also for mutants and further CYP isoforms and variants. As an example, the turnover of selected CYP substrates by cell-free synthesized CYPs was demonstrated via an indirect luciferase assay-based screening setup.
Collapse
Affiliation(s)
- Jan Felix Knauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Christian Schulz
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Ruben Magnus Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus -Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
5
|
Tadaka S, Kawashima J, Hishinuma E, Saito S, Okamura Y, Otsuki A, Kojima K, Komaki S, Aoki Y, Kanno T, Saigusa D, Inoue J, Shirota M, Takayama J, Katsuoka F, Shimizu A, Tamiya G, Shimizu R, Hiratsuka M, Motoike I, Koshiba S, Sasaki M, Yamamoto M, Kinoshita K. jMorp: Japanese Multi-Omics Reference Panel update report 2023. Nucleic Acids Res 2024; 52:D622-D632. [PMID: 37930845 PMCID: PMC10767895 DOI: 10.1093/nar/gkad978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Modern medicine is increasingly focused on personalized medicine, and multi-omics data is crucial in understanding biological phenomena and disease mechanisms. Each ethnic group has its unique genetic background with specific genomic variations influencing disease risk and drug response. Therefore, multi-omics data from specific ethnic populations are essential for the effective implementation of personalized medicine. Various prospective cohort studies, such as the UK Biobank, All of Us and Lifelines, have been conducted worldwide. The Tohoku Medical Megabank project was initiated after the Great East Japan Earthquake in 2011. It collects biological specimens and conducts genome and omics analyses to build a basis for personalized medicine. Summary statistical data from these analyses are available in the jMorp web database (https://jmorp.megabank.tohoku.ac.jp), which provides a multidimensional approach to the diversity of the Japanese population. jMorp was launched in 2015 as a public database for plasma metabolome and proteome analyses and has been continuously updated. The current update will significantly expand the scale of the data (metabolome, genome, transcriptome, and metagenome). In addition, the user interface and backend server implementations were rewritten to improve the connectivity between the items stored in jMorp. This paper provides an overview of the new version of the jMorp.
Collapse
Affiliation(s)
- Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Junko Kawashima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Eiji Hishinuma
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Sakae Saito
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Yasunobu Okamura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Shohei Komaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate 028-3609, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takanari Kanno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Jin Inoue
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Matsuyuki Shirota
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Jun Takayama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Atsushi Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate 028-3609, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Masahiro Hiratsuka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate 028-3609, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
6
|
Sato Y, Hishinuma E, Yamazaki S, Ueda A, Kumondai M, Saito S, Tadaka S, Kinoshita K, Nakayoshi T, Oda A, Maekawa M, Mano N, Hirasawa N, Hiratsuka M. Functional Characterization of 29 Cytochrome P450 4F2 Variants Identified in a Population of 8380 Japanese Subjects and Assessment of Arachidonic Acid ω-Hydroxylation. Drug Metab Dispos 2023; 51:1561-1568. [PMID: 37775333 DOI: 10.1124/dmd.123.001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Cytochrome P450 4F2 (CYP4F2) is an enzyme that is involved in the metabolism of arachidonic acid (AA), vitamin E and K, and xenobiotics including drugs. CYP4F2*3 polymorphism (rs2108622; c.1297G>A; p.Val433Met) has been associated with hypertension, ischemic stroke, and variation in the effectiveness of the anticoagulant drug warfarin. In this study, we characterized wild-type CYP4F2 and 28 CYP4F2 variants, including a Val433Met substitution, detected in 8380 Japanese subjects. The CYP4F2 variants were heterologously expressed in 293FT cells to measure the concentrations of CYP4F2 variant holoenzymes using carbon monoxide-reduced difference spectroscopy, where the wild type and 18 holoenzyme variants showed a peak at 450 nm. Kinetic parameters [Vmax , substrate concentration producing half of Vmax (S50 ), and intrinsic clearance (CL int ) as Vmax /S50 ] of AA ω-hydroxylation were determined for the wild type and 21 variants with enzyme activity. Compared with the wild type, two variants showed significantly decreased CL int values for AA ω-hydroxylation. The values for seven variants could not be determined because no enzymatic activity was detected at the highest substrate concentration used. Three-dimensional structural modeling was performed to determine the reason for reduced enzymatic activity of the CYP4F2 variants. Our findings contribute to a better understanding of CYP4F2 variant-associated diseases and possible future therapeutic strategies. SIGNIFICANCE STATEMENT: CYP4F2 is involved in the metabolism of arachidonic acid and vitamin K, and CYP4F2*3 polymorphisms have been associated with hypertension and variation in the effectiveness of the anticoagulant drug warfarin. This study presents a functional analysis of 28 CYP4F2 variants identified in Japanese subjects, demonstrating that seven gene polymorphisms cause loss of CYP4F2 function, and proposes structural changes that lead to altered function.
Collapse
Affiliation(s)
- Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Eiji Hishinuma
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Shuki Yamazaki
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Akiko Ueda
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Sakae Saito
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Shu Tadaka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Kengo Kinoshita
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Tomoki Nakayoshi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Akifumi Oda
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Noriyasu Hirasawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masahiro Hiratsuka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| |
Collapse
|
7
|
Schulz C, Herzog N, Kubick S, Jung F, Küpper JH. Stable Chinese Hamster Ovary Suspension Cell Lines Harboring Recombinant Human Cytochrome P450 Oxidoreductase and Human Cytochrome P450 Monooxygenases as Platform for In Vitro Biotransformation Studies. Cells 2023; 12:2140. [PMID: 37681872 PMCID: PMC10486802 DOI: 10.3390/cells12172140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
In the liver, phase-1 biotransformation of drugs and other xenobiotics is largely facilitated by enzyme complexes consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs). Generated from human liver-derived cell lines, recombinant in vitro cell systems with overexpression of defined phase-1 enzymes are widely used for pharmacological and toxicological drug assessment and laboratory-scale production of drug-specific reference metabolites. Most, if not all, of these cell lines, however, display some background activity of several CYPs, making it difficult to attribute effects to defined CYPs. The aim of this study was to generate cell lines with stable overexpression of human phase-1 enzymes based on Chinese hamster ovary (CHO) suspension cells. Cells were sequentially modified with cDNAs for human CPR in combination with CYP1A2, CYP2B6, or CYP3A4, using lentiviral gene transfer. In parallel, CYP-overexpressing cell lines without recombinant CPR were generated. Successful recombinant expression was demonstrated by mRNA and protein analyses. Using prototypical CYP-substrates, generated cell lines proved to display specific enzyme activities of each overexpressed CYP while we did not find any endogenous activity of those CYPs in parental CHO cells. Interestingly, cell lines revealed some evidence that the dependence of CYP activity on CPR could vary between CYPs. This needs to be confirmed in further studies. Recombinant expression of CPR was also shown to enhance CYP3A4-independent metabolisation of testosterone to androstenedione in CHO cells. We propose the novel serum-free CHO suspension cell lines with enhanced CPR and/or defined CYP activity as a promising "humanised" in vitro model to study the specific effects of those human CYPs. This could be relevant for toxicology and/or pharmacology studies in the pharmaceutical industry or medicine.
Collapse
Affiliation(s)
- Christian Schulz
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany;
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany;
| | - Natalie Herzog
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany;
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| | - Jan-Heiner Küpper
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany;
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| |
Collapse
|
8
|
Li X, Lin L, Li Z, Hadiatullah H, Sharma S, Du H, Yang X, Chen W, You S, Bureik M, Yuchi Z. Development of an efficient insecticide substrate and inhibitor screening system of insect P450s using fission yeast. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103958. [PMID: 37182814 DOI: 10.1016/j.ibmb.2023.103958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Metabolic resistance is one of the most frequent mechanisms of insecticide resistance, characterized by an increased expression of several important enzymes and transporters, especially cytochrome P450s (CYPs). Due to the large number of P450s in pests, determining the precise relationship between these enzymes and the insecticide substrates is a challenge. Herein, we developed a luminescence-based screening system for efficient identification of insecticide substrates and insect P450 inhibitors. We recombinantly expressed Bemisia tabaci CYP6CM1vQ (Bt CYP6CM1vQ) in the fission yeast Schizosaccharomyces pombe and subsequently permeabilized the yeast cells to convert them into "enzyme bags". We exploited these enzyme bags to screen the activity of twelve luciferin substrates and identified Luciferin-FEE as the optimal competing probe that was further used to characterize the metabolism of eight candidate commercial insecticides. Among them, Bt CYP6CM1vQ exhibited notable activity against pymetrozine and imidacloprid. Their binding modes were predicted by homology modeling and molecular docking, revealing the mechanisms of the metabolism. We also tested the inhibitory effect of eight known P450 inhibitors using our system and identified letrozole and 1-benzylimidazole as showing significant activity against Bt CYP6CM1vQ, with IC50 values of 23.74 μM and 1.30 μM, respectively. Their potential to be developed as an insecticide synergist was further proven by an in vitro toxicity assay using imidacloprid-resistant Bemisia tabaci. Overall, our luciferin-based enzyme bag method is capable of providing a robust and efficient screening of insect P450 substrates and, more importantly, inhibitors to overcome the resistance.
Collapse
Affiliation(s)
- Xiang Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhi Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shishir Sharma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - He Du
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Matthias Bureik
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; College of Life Sciences, Gannan Normal University, Ganzhou, China; Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
9
|
Watanabe K, Negoro R, Fujita T. 5-ALA treatment increases intracellular heme levels and enhances CYP3A4 activity in genome-edited Caco-2 cells. Biochem Biophys Res Commun 2023; 664:94-99. [PMID: 37141642 DOI: 10.1016/j.bbrc.2023.04.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
In nonclinical studies, models that can predict the metabolism of drug candidates by cytochrome P450 (CYP), including Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) are helpful. CYP3A4-overexpressing human cells have been used universally to evaluate whether CYP3A4 metabolizes drug-candidate compounds. However, CYP3A4-overexpressing human cell lines are problematic because their activity levels are lower than that of in vivo human CYP3A4. Heme plays a paramount role in CYP activity. The rate-limiting step in heme biosynthesis is the generation of 5-aminolevulinic acid (5-ALA). In this study, we examined whether treatment with 5-ALA to CYP3A4-POR-UGT1A1-CES2 knockin and CES1 knockout (genome-edited) Caco-2 cells enhances CYP3A4 activity. A 7-day 5-ALA treatment increased intracellular heme levels in genome-edited Caco-2 cells without cytotoxicity. Moreover, consistent with the increase in intracellular heme content, 5-ALA treatment increased CYP3A4 activity in genome-edited Caco-2 cells. The results of this research are expected to be applied to pharmacokinetic studies using CYP-overexpressing human cells containing CYP3A4.
Collapse
Affiliation(s)
- Keita Watanabe
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan.
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan; Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan; Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| |
Collapse
|
10
|
Li Y, Zhang C, Kong K, Yan X. Characterization and Biological Activities of Four Biotransformation Products of Diosgenin from Rhodococcus erythropolis. Molecules 2023; 28:molecules28073093. [PMID: 37049855 PMCID: PMC10096415 DOI: 10.3390/molecules28073093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Diosgenin (DSG), a steroidal sapogenin derived from the tuberous roots of yam, possesses multiple biological properties. DSG has been widely used as a starting material for the industrial production of steroid drugs. Despite its significant pharmacological activities, moderate potency and low solubility hinder the medicinal application of DSG. Biotransformation is an efficient method to produce valuable derivatives of natural products. In this work, we performed the biotransformation of DSG using five Rhodococcus strains. Compounds 1–4 were isolated and identified from Rhodococcus erythropolis. Compounds 1 and 2 showed potent cytotoxicity against the A549, MCF-7, and HepG2 cell lines. Compounds 3 and 4 are novel entities, and each possesses a terminal carboxyl group attached to the spiroacetal ring. Remarkably, 4 exhibited significant cell protective effects for kidney, liver, and vascular endothelial cells, suggesting the therapeutic potential of this compound in chronic renal diseases, atherosclerosis, and hypertension. We further optimized the fermentation conditions aiming to increase the titer of compound 4. Finally, the yield of compound 4 was improved by 2.9-fold and reached 32.4 mg/L in the optimized conditions. Our study lays the foundation for further developing compound 4 as a cell protective agent.
Collapse
Affiliation(s)
- Yanjie Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Chengyu Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Kexin Kong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence:
| |
Collapse
|
11
|
Heterologous Expression of Recombinant Human Cytochrome P450 (CYP) in Escherichia coli: N-Terminal Modification, Expression, Isolation, Purification, and Reconstitution. BIOTECH 2023; 12:biotech12010017. [PMID: 36810444 PMCID: PMC9944785 DOI: 10.3390/biotech12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes play important roles in metabolising endogenous and xenobiotic substances. Characterisations of human CYP proteins have been advanced with the rapid development of molecular technology that allows heterologous expression of human CYPs. Among several hosts, bacteria systems such as Escherichia coli (E. coli) have been widely used thanks to their ease of use, high level of protein yields, and affordable maintenance costs. However, the levels of expression in E. coli reported in the literature sometimes differ significantly. This paper aims to review several contributing factors, including N-terminal modifications, co-expression with a chaperon, selections of vectors and E. coli strains, bacteria culture and protein expression conditions, bacteria membrane preparations, CYP protein solubilizations, CYP protein purifications, and reconstitution of CYP catalytic systems. The common factors that would most likely lead to high expression of CYPs were identified and summarised. Nevertheless, each factor may still require careful evaluation for individual CYP isoforms to achieve a maximal expression level and catalytic activity. Recombinant E. coli systems have been evidenced as a useful tool in obtaining the ideal level of human CYP proteins, which ultimately allows for subsequent characterisations of structures and functions.
Collapse
|
12
|
Miyauchi Y, Kimura A, Sawai M, Fujimoto K, Hirota Y, Tanaka Y, Takechi S, Mackenzie PI, Ishii Y. Use of a Baculovirus-Mammalian Cell Expression-System for Expression of Drug-Metabolizing Enzymes: Optimization of Infection With a Focus on Cytochrome P450 3A4. Front Pharmacol 2022; 13:832931. [PMID: 35295333 PMCID: PMC8919721 DOI: 10.3389/fphar.2022.832931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Heterologous expression systems are important for analyzing the effects of genetic factors including single nucleotide polymorphisms on the functions of drug-metabolizing enzymes. In this study, we focused on a baculovirus-mammalian cell (Bac-Mam) expression system as a safer and more efficient approach for this purpose. The baculovirus-insect cell expression system is widely utilized in large-scale protein expression. Baculovirus has been shown to also infect certain mammalian cells, although the virus only replicates in insect cells. With this knowledge, baculovirus is now being applied in a mammalian expression system called the Bac-Mam system wherein a gene-modified baculovirus is used whose promotor is replaced with one that can function in mammalian cells. We subcloned open-reading frames of cytochrome P450 3A4 (CYP3A4), UDP-glucuronosyltransferase (UGT) 1A1, and UGT2B7 into a transfer plasmid for the Bac-Mam system, and prepared recombinant Bac-Mam virus. The obtained virus was amplified in insect Sf9 cells and used to infect mammalian COS-1 cells. Expression of CYP3A4, UGT1A1, and UGT2B7 in COS-1 cell homogenates were confirmed by immunoblotting. Optimum infection conditions including the amount of Bac-Mam virus, culture days before collection, and concentration of sodium butyrate, an enhancer of viral-transduction were determined by monitoring CYP3A4 expression. Expressed CYP3A4 showed appropriate activity without supplying hemin/5-aminolevulinic acid or co-expressing with NADPH-cytochrome P450 reductase. Further, we compared gene transfer efficiency between the Bac-Mam system and an established method using recombinant plasmid and transfection reagent. Our results indicate that the Bac-Mam system can be applied to introduce drug-metabolizing enzyme genes into mammalian cells that are widely used in drug metabolism research. The expressed enzymes are expected to undergo appropriate post-translational modification as they are in mammalian bodies. The Bac-Mam system may thus accelerate pharmacogenetics and pharmacogenomics research.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akane Kimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Madoka Sawai
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Takechi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Peter I Mackenzie
- Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre and Flinders University, Adelaide, SA, Australia
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Nolden M, Paine MJI, Nauen R. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b 5 and its role in pyrethroid and coumarin substrate metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105051. [PMID: 35249659 DOI: 10.1016/j.pestbp.2022.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well studied enzymes catalyzing the oxidative metabolism of xenobiotics in insects including mosquitoes. Their duplication and upregulation in agricultural and public health pests such as anopheline mosquitoes often leads to an enhanced metabolism of insecticides which confers resistance. In the laboratory strain Anopheles funestus FUMOZ-R the duplicated P450s CYP6P9a and CYP6P9b are highly upregulated and proven to confer pyrethroid resistance. Microsomal P450 activity is regulated by NADPH cytochrome P450 oxidoreductase (CPR) required for electron transfer, whereas the modulatory role of cytochrome b5 (CYB5) on insect P450 activity is less clear. In previous studies CYP6P9a and CYP6P9b were recombinantly expressed in tandem with An. gambiae CPR using E. coli-expression systems and CYB5 added to the reaction mix to enhance activity. However, the precise role of CYB5 on substrate turn-over when combined with CYP6P9a and CYP6P9b remains poorly investigated, thus one objective of our study was to address this knowledge gap. In contrast to the CYP6P9 variants, the expression levels of both CYB5 and CPR were not upregulated in the pyrethroid resistant FUMOZ-R strain when compared to the susceptible FANG strain, suggesting no immediate regulatory role of these genes in pyrethroid resistance in FUMOZ-R. Here, for the first time we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus in a baculovirus expression system using High-5 insect cells. Co-expression of each enzyme with CPR from either An. gambiae or An. funestus did not reveal noteworthy differences in catalytic capacity. Whereas the co-expression of An. funestus CYB5 - tested at different multiplicity of infection (MOI) ratios - resulted in a significantly higher metabolization of coumarin substrates as measured by fluorescence assays. This was confirmed by Michaelis-Menten kinetics using the most active substrate, 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC). We observed a similar increase in coumarin substrate turnover by adding human CYB5 to the reaction mix. Finally, we compared by UPLC-MS/MS analysis the depletion rate of deltamethrin and the formation of 4'OH-deltamethrin by recombinantly expressed CYP6P9a and CYP6P9b with and without CYB5 and detected no difference in the extent of deltamethrin metabolism. Our results suggest that co-expression (or addition) of CYB5 with CYP6P9 variants, recombinantly expressed in insect cells, can significantly enhance their metabolic capacity to oxidize coumarins, but not deltamethrin.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
14
|
Durairaj P, Li S. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. ENGINEERING MICROBIOLOGY 2022; 2:100011. [PMID: 39628612 PMCID: PMC11610987 DOI: 10.1016/j.engmic.2022.100011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 (CYP) enzymes play crucial roles during the evolution and diversification of ancestral monocellular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including catalysis of housekeeping biochemical reactions, synthesis of diverse metabolites, detoxification of xenobiotics, and contribution to environmental adaptation. Eukaryotic CYPs with versatile functionalities are undeniably regarded as promising biocatalysts with great potential for biotechnological, pharmaceutical and chemical industry applications. Nevertheless, the modes of action and the challenges associated with these membrane-bound proteins have hampered the effective utilization of eukaryotic CYPs in a broader range. This review is focused on comprehensive and consolidated approaches to address the core challenges in heterologous expression of membrane-bound eukaryotic CYPs in different surrogate microbial cell factories, aiming to provide key insights for better studies and applications of diverse eukaryotic CYPs in the future. We also highlight the functional significance of the previously underrated cytochrome P450 reductases (CPRs) and provide a rational justification on the progression of CPR from auxiliary redox partner to function modulator in CYP catalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
15
|
Siamoglou S, Koromina M, Hishinuma E, Yamazaki S, Tsermpini EE, Kordou Z, Fukunaga K, Chantratita W, Zhou Y, Lauschke V, Mushiroda T, Hiratsuka M, Patrinos GP. Identification and functional validation of novel pharmacogenomic variants using a next-generation sequencing-based approach for clinical pharmacogenomics. Pharmacol Res 2022; 176:106087. [PMID: 35033648 DOI: 10.1016/j.phrs.2022.106087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/10/2023]
Abstract
Inter-individual variability in pharmacokinetics and drug response is heavily influenced by single-nucleotide variants (SNVs) and copy-number variations (CNVs) in genes with importance for drug disposition. Nowadays, a plethora of studies implement next generation sequencing to capture rare and novel pharmacogenomic (PGx) variants that influence drug response. To address these issues, we present a comprehensive end-to-end analysis workflow, beginning from targeted PGx panel re-sequencing to in silico analysis pipelines and in vitro validation assays. Specifically, we show that novel pharmacogenetic missense variants that are predicted or putatively predicted to be functionally deleterious, significantly alter protein activity levels of CYP2D6 and CYP2C19 proteins. We further demonstrate that variant priorization pipelines tailored with functional in vitro validation assays provide supporting evidence for the deleterious effect of novel PGx variants. The proposed workflow could provide the basis for integrating next-generation sequencing for PGx testing into routine clinical practice.
Collapse
Affiliation(s)
- Stavroula Siamoglou
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
| | - Maria Koromina
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shuki Yamazaki
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Evangelia-Eirini Tsermpini
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
| | - Zoe Kordou
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Taisei Mushiroda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - George P Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece; United Arab Emirates University, College of Medicine and Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates; United Arab Emirates University, Zayed Center for Health Sciences, Al-Ain, United Arab Emirates.
| |
Collapse
|
16
|
Kumondai M, Gutiérrez Rico EM, Hishinuma E, Nakanishi Y, Yamazaki S, Ueda A, Saito S, Tadaka S, Kinoshita K, Saigusa D, Nakayoshi T, Oda A, Hirasawa N, Hiratsuka M. Functional Characterization of 21 Rare Allelic CYP1A2 Variants Identified in a Population of 4773 Japanese Individuals by Assessing Phenacetin O-Deethylation. J Pers Med 2021; 11:690. [PMID: 34442334 PMCID: PMC8401128 DOI: 10.3390/jpm11080690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cytochrome P450 1A2 (CYP1A2), which accounts for approximately 13% of the total hepatic cytochrome content, catalyzes the metabolic reactions of approximately 9% of frequently used drugs, including theophylline and olanzapine. Substantial inter-individual differences in enzymatic activity have been observed among patients, which could be caused by genetic polymorphisms. Therefore, we functionally characterized 21 novel CYP1A2 variants identified in 4773 Japanese individuals by determining the kinetic parameters of phenacetin O-deethylation. Our results showed that most of the evaluated variants exhibited decreased or no enzymatic activity, which may be attributed to potential structural alterations. Notably, the Leu98Gln, Gly233Arg, Ser380del Gly454Asp, and Arg457Trp variants did not exhibit quantifiable enzymatic activity. Additionally, three-dimensional (3D) docking analyses were performed to further understand the underlying mechanisms behind variant pharmacokinetics. Our data further suggest that despite mutations occurring on the protein surface, accumulating interactions could result in the impairment of protein function through the destabilization of binding regions and changes in protein folding. Therefore, our findings provide additional information regarding rare CYP1A2 genetic variants and how their underlying effects could clarify discrepancies noted in previous phenotypical studies. This would allow the improvement of personalized therapeutics and highlight the importance of identifying and characterizing rare variants.
Collapse
Affiliation(s)
- Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Yuya Nakanishi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
| | - Shuki Yamazaki
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
| | - Akiko Ueda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
| | - Sakae Saito
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Tomoki Nakayoshi
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (T.N.); (A.O.)
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (T.N.); (A.O.)
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| |
Collapse
|
17
|
Functional Assessment of 12 Rare Allelic CYP2C9 Variants Identified in a Population of 4773 Japanese Individuals. J Pers Med 2021; 11:jpm11020094. [PMID: 33540768 PMCID: PMC7912942 DOI: 10.3390/jpm11020094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) is an important drug-metabolizing enzyme that contributes to the metabolism of approximately 15% of clinically used drugs, including warfarin, which is known for its narrow therapeutic window. Interindividual differences in CYP2C9 enzymatic activity caused by CYP2C9 genetic polymorphisms lead to inconsistent treatment responses in patients. Thus, in this study, we characterized the functional differences in CYP2C9 wild-type (CYP2C9.1), CYP2C9.2, CYP2C9.3, and 12 rare novel variants identified in 4773 Japanese individuals. These CYP2C9 variants were heterologously expressed in 293FT cells, and the kinetic parameters (Km, kcat, Vmax, catalytic efficiency, and CLint) of (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation were estimated. From this analysis, almost all novel CYP2C9 variants showed significantly reduced or null enzymatic activity compared with that of the CYP2C9 wild-type. A strong correlation was found in catalytic efficiencies between (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation among all studied CYP2C9 variants. The causes of the observed perturbation in enzyme activity were evaluated by three-dimensional structural modeling. Our findings could clarify a part of discrepancies among genotype–phenotype associations based on the novel CYP2C9 rare allelic variants and could, therefore, improve personalized medicine, including the selection of the appropriate warfarin dose.
Collapse
|
18
|
Kumondai M, Gutiérrez Rico EM, Hishinuma E, Ueda A, Saito S, Saigusa D, Tadaka S, Kinoshita K, Nakayoshi T, Oda A, Abe A, Maekawa M, Mano N, Hirasawa N, Hiratsuka M. Functional Characterization of 40 CYP3A4 Variants by Assessing Midazolam 1'-Hydroxylation and Testosterone 6 β-Hydroxylation. Drug Metab Dispos 2020; 49:212-220. [PMID: 33384383 DOI: 10.1124/dmd.120.000261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
CYP3A4 is among the most abundant liver and intestinal drug-metabolizing cytochrome P450 enzymes, contributing to the metabolism of more than 30% of clinically used drugs. Therefore, interindividual variability in CYP3A4 activity is a frequent cause of reduced drug efficacy and adverse effects. In this study, we characterized wild-type CYP3A4 and 40 CYP3A4 variants, including 11 new variants, detected among 4773 Japanese individuals by assessing CYP3A4 enzymatic activities for two representative substrates (midazolam and testosterone). The reduced carbon monoxide-difference spectra of wild-type CYP3A4 and 31 CYP3A4 variants produced with our established mammalian cell expression system were determined by measuring the increase in maximum absorption at 450 nm after carbon monoxide treatment. The kinetic parameters of midazolam and testosterone hydroxylation by wild-type CYP3A4 and 29 CYP3A4 variants (K m , k cat , and catalytic efficiency) were determined, and the causes of their kinetic differences were evaluated by three-dimensional structural modeling. Our findings offer insight into the mechanism underlying interindividual differences in CYP3A4-dependent drug metabolism. Moreover, our results provide guidance for improving drug administration protocols by considering the information on CYP3A4 genetic polymorphisms. SIGNIFICANCE STATEMENT: CYP3A4 metabolizes more than 30% of clinically used drugs. Interindividual differences in drug efficacy and adverse-effect rates have been linked to ethnicity-specific differences in CYP3A4 gene variants in Asian populations, including Japanese individuals, indicating the presence of CYP3A4 polymorphisms resulting in the increased expression of loss-of-function variants. This study detected alterations in CYP3A4 activity due to amino acid substitutions by assessing the enzymatic activities of coding variants for two representative CYP3A4 substrates.
Collapse
Affiliation(s)
- Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Eiji Hishinuma
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Akiko Ueda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Sakae Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Daisuke Saigusa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Shu Tadaka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Kengo Kinoshita
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Tomoki Nakayoshi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Akifumi Oda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Ai Abe
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Masamitsu Maekawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Nariyasu Mano
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| |
Collapse
|
19
|
Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet 2020; 37:100373. [PMID: 33631535 DOI: 10.1016/j.dmpk.2020.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Metabolomics has been widely used for investigating the biological functions of disease expression and has the potential to discover biomarkers in circulating biofluids or tissue extracts that reflect in phenotypic changes. Metabolic profiling has advantages because of the use of unbiased techniques, including multivariate analysis, and has been applied in pharmacological studies to predict therapeutic and adverse reactions of drugs, which is called pharmacometabolomics (PMx). Nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics has contributed to the discovery of recent disease biomarkers; however, the optimal strategy for the study purpose must be selected from many established protocols, methodologies and analytical platforms. Additionally, information on molecular localization in tissue is essential for further functional analyses related to therapeutic and adverse effects of drugs in the process of drug development. MS imaging (MSI) is a promising technology that can visualize molecules on tissue surfaces without labeling and thus provide localized information. This review summarizes recent uses of MS-based global and wide-targeted metabolomics technologies and the advantages of the MSI approach for PMx and highlights the PMx technique for the biomarker discovery of adverse drug effects.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| |
Collapse
|