1
|
Reilly-O’Donnell B, Ferraro E, Tikhomirov R, Nunez-Toldra R, Shchendrygina A, Patel L, Wu Y, Mitchell AL, Endo A, Adorini L, Chowdhury RA, Srivastava PK, Ng FS, Terracciano C, Williamson C, Gorelik J. Protective effect of UDCA against IL-11- induced cardiac fibrosis is mediated by TGR5 signalling. Front Cardiovasc Med 2024; 11:1430772. [PMID: 39691494 PMCID: PMC11650366 DOI: 10.3389/fcvm.2024.1430772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Cardiac fibrosis occurs in a wide range of cardiac diseases and is characterised by the transdifferentiation of cardiac fibroblasts into myofibroblasts these cells produce large quantities of extracellular matrix, resulting in myocardial scar. The profibrotic process is multi-factorial, meaning identification of effective treatments has been limited. The antifibrotic effect of the bile acid ursodeoxycholic acid (UDCA) is established in cases of liver fibrosis however its mechanism and role in cardiac fibrosis is less well understood. Methods In this study, we used cellular models of cardiac fibrosis and living myocardial slices to characterise the macroscopic and cellular responses of the myocardium to UDCA treatment. We complemented this approach by conducting RNA-seq on cardiac fibroblasts isolated from dilated cardiomyopathy patients. This allowed us to gain insights into the mechanism of action and explore whether the IL-11 and TGFβ/WWP2 profibrotic networks are influenced by UDCA. Finally, we used fibroblasts from a TGR5 KO mouse to confirm the mechanism of action. Results and discussion We found that UDCA reduced myofibroblast markers in rat and human fibroblasts and in living myocardial slices, indicating its antifibrotic action. Furthermore, we demonstrated that the treatment of UDCA successfully reversed the profibrotic IL-11 and TGFβ/WWP2 gene networks. We also show that TGR5 is the most highly expressed UDCA receptor in cardiac fibroblasts. Utilising cells isolated from a TGR5 knock-out mouse, we identified that the antifibrotic effect of UDCA is attenuated in the KO fibroblasts. This study combines cellular studies with RNA-seq and state-of-the-art living myocardial slices to offer new perspectives on cardiac fibrosis. Our data confirm that TGR5 agonists, such as UDCA, offer a unique pathway of action for the treatment of cardiac fibrosis. Medicines for cardiac fibrosis have been slow to clinic and have the potential to be used in the treatment of multiple cardiac diseases. UDCA is well tolerated in the treatment of other diseases, indicating it is an excellent candidate for further in-human trials.
Collapse
Affiliation(s)
- B. Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - E. Ferraro
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - R. Tikhomirov
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - R. Nunez-Toldra
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A. Shchendrygina
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - L. Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Y. Wu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A. L. Mitchell
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - A. Endo
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - L. Adorini
- Intercept Pharmaceuticals Inc., New York, NY, United States
| | - R. A. Chowdhury
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - P. K. Srivastava
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - F. S. Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - C. Terracciano
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - C. Williamson
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - J. Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Mihajlović D, Đukanović Đ, Gajić Bojić M, Jovičić S, Mandić-Kovačević N, Uletilović S, Maksimović ŽM, Pavlović N, Dojčinović B, Bolevich S, Mikov M, Škrbić R, Banjac N, Vasović V. Cardioprotective Effects of Ursodeoxycholic Acid in Isoprenaline-Induced Myocardial Injury in Rats. Biomolecules 2024; 14:1214. [PMID: 39456147 PMCID: PMC11506574 DOI: 10.3390/biom14101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/28/2024] Open
Abstract
Patients suffering from cholelithiasis have an increased risk of developing cardiovascular complications, particularly ischemic myocardial disease. Ursodeoxycholic acid (UDCA), already used in clinical practice for the treatment of cholelithiasis and related conditions, has proven antioxidative, anti-inflammatory, and cytoprotective effects. Therefore, the aim of this study was to investigate the cardioprotective effect of UDCA pre-treatment on isoprenaline-induced myocardial injury in rats. Male Wistar albino rats were randomized into four groups. Animals were pre-treated for 10 days with propylene glycol + saline on days 9 and 10 (control), 10 days with propylene glycol + isoprenaline on days 9 and 10 (I group), 10 days with UDCA + saline on days 9 and 10 (UDCA group), and 10 days with UDCA + isoprenaline on days 9 and 10 (UDCA + I group). UDCA pre-treatment significantly reduced values of high-sensitivity troponin I (hsTnI) and aspartate aminotransferase (AST) cardiac markers (p < 0.001 and p < 0.01, respectively). The value of thiobarbituric acid reactive substances (TBARS) was also decreased in the UDCA + I group compared to the I group (p < 0.001). UDCA also significantly increased glutathione (GSH) levels, while showing a tendency to increase levels of superoxide dismutase (SOD) and catalase (CAT). The level of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, a key regulatory gene of inflammation, was diminished when UDCA was administered. A reduction of cardiac damage was also observed in the UDCA pre-treated group. In conclusion, UDCA pre-treatment showed a cardioprotective effect on isoprenaline-induced myocardial injury in rats, primarily by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Dalibor Mihajlović
- Emergency Department, Primary Healthcare Centre, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
- Department of Emergency Medicine, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Đorđe Đukanović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina (N.M.-K.); (R.Š.)
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Milica Gajić Bojić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina (N.M.-K.); (R.Š.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Sanja Jovičić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina (N.M.-K.); (R.Š.)
- Department of Histology and Embryology, Faculty of Medicine, University of Banja Luka, 78 000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Nebojša Mandić-Kovačević
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina (N.M.-K.); (R.Š.)
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Snežana Uletilović
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Žana M. Maksimović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina (N.M.-K.); (R.Š.)
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Boris Dojčinović
- Emergency Department, Primary Healthcare Centre, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Sergey Bolevich
- Department of Pathologic Physiology, First Moscow State Medical University I.M. Sechenov, 119435 Moscow, Russia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia; (M.M.)
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina (N.M.-K.); (R.Š.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
- Department of Pathologic Physiology, First Moscow State Medical University I.M. Sechenov, 119435 Moscow, Russia
- Academy of Sciences and Arts of the Republic of Srpska, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Nada Banjac
- Emergency Department, Primary Healthcare Centre, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
- Department of Emergency Medicine, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Velibor Vasović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia; (M.M.)
| |
Collapse
|
3
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
4
|
Zhang Z, Zhang Y, Qu Z. Bistable spiral wave dynamics in electrically excitable media. Phys Rev E 2023; 108:064405. [PMID: 38243532 PMCID: PMC11338078 DOI: 10.1103/physreve.108.064405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024]
Abstract
We show that a positive feedback loop between sodium current inactivation and wave-front ramp-up speed causes a saddle-node bifurcation to result in bistable planar and spiral waves in electrically excitable media, in which both slow and fast waves are triggered by different stimulation protocols. Moreover, the two types of spiral wave conduction may interact to give rise to more complex spiral wave dynamics. The transitions between different spiral wave behaviors via saddle-node bifurcation can be a candidate mechanism for transitions widely seen in cardiac arrhythmias and neural diseases.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
An L, Gao H, Zhong Y, Liu Y, Cao Y, Yi J, Huang X, Wen C, Tong R, Pan Z, Yan X, Liu M, Wang S, Wu H, Hu T. The potential roles of stress-induced phosphoprotein 1 and connexin 43 in rats with reperfusion arrhythmia. Immun Inflamm Dis 2023; 11:e852. [PMID: 37904692 PMCID: PMC10546868 DOI: 10.1002/iid3.852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE Connexin 43 (Cx43) is a critical gene for maintaining myocardial homeostasis. Interestingly, Cx43 and stress-induced phosphoprotein 1 (STIP1) were recorded to be lowly expressed in ischemia/reperfusion (I/R). However, their impacts on reperfusion arrhythmia (RA) remain to be explored. Our study aimed to find out the related underlying mechanisms. METHODS After the establishment of an isolated heart model through Langendorff perfusion, the heart rate, conduction activation time, conduction velocity, and conduction direction of the left ventricle were evaluated, along with the apoptotic rate detection in the collected myocardial tissues. After the construction of a hypoxia/reoxygenation (H/R)-induced cellular model, cell apoptosis, intercellular communication, cell viability, and the content of reactive oxygen species, superoxide dismutase, malondialdehyde, and lactic dehydrogenase were measured. The expression of Cx43 and STIP1 was determined in both rat heart and cell models. The bindings of STIP3 and Cx43 to heat shock protein 90 (HSP90) and heat shock protein 70 (HSP70) were verified. RESULTS Relative to the corresponding controls, Cx43 and STIP1 were decreased in myocardial tissues of RA rats and H/R-stimulated H9C2 cells, where Cx43-binding HSP70 and HSP90 were respectively increased and decreased, and ubiquitination level of Cx43 was enhanced. STIP1 overexpression promoted protein expression of Cx43, intercellular communication, and cell viability, and reduced cell apoptosis and oxidative stress in H/R-stimulated H9C2 cells. CONCLUSION STIP1 promoted Cx43 expression to improve intercellular communication and reduce oxidative stress in H/R-stimulated H9C2 cells.
Collapse
Affiliation(s)
- Li An
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
- Department of AnaesthesiologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Translational Medicine Research CenterGuizhou Medical UniversityGuiyangGuizhouChina
| | - Hong Gao
- Department of AnesthesiologyGuizhou Hospital of The 1st Affiliated Hospital, Sun Yat‐sen UniversityGuiyangGuizhouChina
| | - Yi Zhong
- Department of AnaesthesiologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yanqiu Liu
- Department of AnesthesiologyGuiyang Fourth People's HospitalGuiyangGuizhouChina
| | - Ying Cao
- Department of AnesthesiologyGuiyang Second People's HospitalGuiyangGuizhouChina
| | - Jing Yi
- Department of AnaesthesiologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Xiang Huang
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Chunlei Wen
- Department of AnesthesiologyChildren's Hospital of Guiyang Maternal and Child Health HospitalGuiyangGuizhouChina
| | - Rui Tong
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Zhijun Pan
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Xu Yan
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Meiyan Liu
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Shengzhao Wang
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Hao Wu
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Tingju Hu
- Department of AnaesthesiologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
6
|
Gut Microbiome and Organ Fibrosis. Nutrients 2022; 14:nu14020352. [PMID: 35057530 PMCID: PMC8781069 DOI: 10.3390/nu14020352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathological process associated with most chronic inflammatory diseases. It is defined by an excessive deposition of extracellular matrix proteins and can affect nearly every tissue and organ system in the body. Fibroproliferative diseases, such as intestinal fibrosis, liver cirrhosis, progressive kidney disease and cardiovascular disease, often lead to severe organ damage and are a leading cause of morbidity and mortality worldwide, for which there are currently no effective therapies available. In the past decade, a growing body of evidence has highlighted the gut microbiome as a major player in the regulation of the innate and adaptive immune system, with severe implications in the pathogenesis of multiple immune-mediated disorders. Gut microbiota dysbiosis has been associated with the development and progression of fibrotic processes in various organs and is predicted to be a potential therapeutic target for fibrosis management. In this review we summarize the state of the art concerning the crosstalk between intestinal microbiota and organ fibrosis, address the relevance of diet in different fibrotic diseases and discuss gut microbiome-targeted therapeutic approaches that are current being explored.
Collapse
|
7
|
Zhang S, Zhou J, Wu W, Zhu Y, Liu X. The Role of Bile Acids in Cardiovascular Diseases: from Mechanisms to Clinical Implications. Aging Dis 2022; 14:261-282. [PMID: 37008052 PMCID: PMC10017164 DOI: 10.14336/ad.2022.0817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bile acids (BAs), key regulators in the metabolic network, are not only involved in lipid digestion and absorption but also serve as potential therapeutic targets for metabolic disorders. Studies have shown that cardiac dysfunction is associated with abnormal BA metabolic pathways. As ligands for several nuclear receptors and membrane receptors, BAs systematically regulate the homeostasis of metabolism and participate in cardiovascular diseases (CVDs), such as myocardial infarction, diabetic cardiomyopathy, atherosclerosis, arrhythmia, and heart failure. However, the molecular mechanism by which BAs trigger CVDs remains controversial. Therefore, the regulation of BA signal transduction by modulating the synthesis and composition of BAs is an interesting and novel direction for potential therapies for CVDs. Here, we mainly summarized the metabolism of BAs and their role in cardiomyocytes and noncardiomyocytes in CVDs. Moreover, we comprehensively discussed the clinical prospects of BAs in CVDs and analyzed the clinical diagnostic and application value of BAs. The latest development prospects of BAs in the field of new drug development are also prospected. We aimed to elucidate the underlying mechanism of BAs treatment in CVDs, and the relationship between BAs and CVDs may provide new avenues for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Shuwen Zhang
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Bi X, Zhang S, Jiang H, Wei Z. A Multi-Scale Computational Model for the Rat Ventricle: Construction, Parallelization, and Applications. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106289. [PMID: 34303152 DOI: 10.1016/j.cmpb.2021.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiovascular diseases are the top killer of human beings. The ventricular arrhythmia, as a type of malignant cardiac arrhythmias, typically leads to death if not treated within minutes. The multi-scale virtual heart provides an idealized tool for exploring the underlying mechanisms, by means of incorporating abundant experimental data at the level of ion channels and analyzing the subsequent pathological changes at organ levels. However, there are few studies on building a virtual heart model for rats-a species most widely used in experiments. OBJECTIVE To build a multi-scale computational model for rats, with detailed methodology for the model construction, computational optimization, and its applications. METHODS First, approaches for building multi-scale models ranging from cellular to 3-D organ levels are introduced, with detailed descriptions of handling the ventricular myocardium heterogeneity, geometry processing, and boundary conditions, etc. Next, for dealing with the expensive computational costs of 3-D models, optimization approaches including an optimized representation and a GPU-based parallelization method are introduced. Finally, methods for reproducing of some key phenomenon (e.g., electrocardiograph, spiral/scroll waves) are demonstrated. RESULTS Three types of heterogeneity, including the transmural heterogeneity, the interventricular heterogeneity, and the base-apex heterogeneity are incorporated into the model. The normal and reentrant excitation waves, as well as the corresponding pseudo-ECGs are reproduced by the constructed ventricle model. In addition, the temporal and spatial vulnerability to reentry arrhythmias are quantified based on the evaluation experiments of vulnerable window and the critical length. CONCLUSIONS The constructed multi-scale rat ventricle model is able to reproduce both the physiological and the pathological phenomenon in different scales. Evaluation experiments suggest that the apex is the most susceptible area to arrhythmias. The model can be a promising tool for the investigation of arrhythmogenesis and the screening of anti-arrhythmic drugs.
Collapse
Affiliation(s)
- Xiangpeng Bi
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China; High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China; High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|