1
|
Uthailak N, Adisakwattana P, Chienwichai P, Tipthara P, Tarning J, Thawornkuno C, Thiangtrongjit T, Reamtong O. Metabolite profiling of Trichinella spiralis adult worms and muscle larvae identifies their excretory and secretory products. Front Cell Infect Microbiol 2023; 13:1306567. [PMID: 38145042 PMCID: PMC10749202 DOI: 10.3389/fcimb.2023.1306567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Human trichinellosis is a parasitic infection caused by roundworms belonging to the genus Trichinella, especially Trichinella spiralis. Early and accurate clinical diagnoses of trichinellosis are required for efficacious prognosis and treatment. Current drug therapies are limited by antiparasitic resistance, poor absorption, and an inability to kill the encapsulating muscle-stage larvae. Therefore, reliable biomarkers and drug targets for novel diagnostic approaches and anthelmintic drugs are required. In this study, metabolite profiles of T. spiralis adult worms and muscle larvae were obtained using mass spectrometry-based metabolomics. In addition, metabolite-based biomarkers of T. spiralis excretory-secretory products and their related metabolic pathways were characterized. The metabolic profiling identified major, related metabolic pathways involving adenosine monophosphate (AMP)-dependent synthetase/ligase and glycolysis/gluconeogenesis in T. spiralis adult worms and muscle larvae, respectively. These pathways are potential drug targets for the treatment of the intestinal and muscular phases of infection. The metabolome of larva excretory-secretory products was characterized, with amino acid permease and carbohydrate kinase being identified as key metabolic pathways. Among six metabolites, decanoyl-l-carnitine and 2,3-dinor-6-keto prostaglandin F1α-d9 were identified as potential metabolite-based biomarkers that might be related to the host inflammatory processes. In summary, this study compared the relationships between the metabolic profiles of two T. spiralis growth stages. Importantly, the main metabolites and metabolic pathways identified may aid the development of novel clinical diagnostics and therapeutics for human trichinellosis and other related helminthic infections.
Collapse
Affiliation(s)
- Naphatsamon Uthailak
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Untargeted serum metabolomics analysis of Trichinella spiralis-infected mouse. PLoS Negl Trop Dis 2023; 17:e0011119. [PMID: 36809241 PMCID: PMC9943014 DOI: 10.1371/journal.pntd.0011119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Trichinellosis, caused by a parasitic nematode of the genus Trichinella, is a zoonosis that affects people worldwide. After ingesting raw meat containing Trichinella spp. larvae, patients show signs of myalgia, headaches, and facial and periorbital edema, and severe cases may die from myocarditis and heart failure. The molecular mechanisms of trichinellosis are unclear, and the sensitivity of the diagnostic methods used for this disease are unsatisfactory. Metabolomics is an excellent tool for studying disease progression and biomarkers; however, it has never been applied to trichinellosis. We aimed to elucidate the impacts of Trichinella infection on the host body and identify potential biomarkers using metabolomics. METHODOLOGY/PRINCIPAL FINDINGS Mice were infected with T. spiralis larvae, and sera were collected before and 2, 4, and 8 weeks after infection. Metabolites in the sera were extracted and identified using untargeted mass spectrometry. Metabolomic data were annotated via the XCMS online platform and analyzed with Metaboanalyst version 5.0. A total of 10,221 metabolomic features were identified, and the levels of 566, 330, and 418 features were significantly changed at 2-, 4-, and 8-weeks post-infection, respectively. The altered metabolites were used for further pathway analysis and biomarker selection. A major pathway affected by Trichinella infection was glycerophospholipid metabolism, and glycerophospholipids comprised the main metabolite class identified. Receiver operating characteristic revealed 244 molecules with diagnostic power for trichinellosis, with phosphatidylserines (PS) being the primary lipid class. Some lipid molecules, e.g., PS (18:0/19:0)[U] and PA (O-16:0/21:0), were not present in metabolome databases of humans and mice, thus they may have been secreted by the parasites. CONCLUSIONS/SIGNIFICANCE Our study highlighted glycerophospholipid metabolism as the major pathway affected by trichinellosis, hence glycerophospholipid species are potential markers of trichinellosis. The findings of this study represent the initial steps in biomarker discovery that may benefit future trichinellosis diagnosis.
Collapse
|
3
|
Patil AA, Kaushik P, Jain RD, Dandekar PP. Assessment of Urinary Biomarkers for Infectious Diseases Using Lateral Flow Assays: A Comprehensive Overview. ACS Infect Dis 2023; 9:9-22. [PMID: 36512677 DOI: 10.1021/acsinfecdis.2c00449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Screening of biomarkers is a powerful approach for providing a holistic view of the disease spectrum and facilitating the diagnosis and prognosis of the state of infectious diseases. Unaffected by the homeostasis mechanism in the human body, urine accommodates systemic changes and reflects the pathophysiological condition of an individual. Easy availability in large volumes and non-invasive sample collection have rendered urine an ideal source of biomarkers for various diseases. Infectious diseases may be communicable, and therefore early diagnosis and treatment are of immense importance. Current diagnostic approaches preclude the timely identification of clinical conditions and also lack portability. Point-of-care (POC) testing solutions have gained attention as alternative diagnostic measures due to their ability to provide rapid and on-site results. Lateral flow assays (LFAs) are the mainstay in POC device development and have attracted interest owing to their potential to provide instantaneous results in resource-limited settings. The discovery and optimization of a definitive biomarker can render POC testing an excellent platform, thus impacting unwarranted antibiotic administration and preventing the spread of infectious diseases. This Review summarizes the importance of urine as an emerging biological fluid in infectious disease research and diagnosis in clinical settings. We review the academic research related to LFAs. Further, we also describe commercial POC devices based on the identification of urinary biomarkers as diagnostic targets for infectious diseases. We also discuss the future use of LFAs in developing more effective POC tests for urinary biomarkers of various infections.
Collapse
Affiliation(s)
- Ashwini A Patil
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Preeti Kaushik
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Ratnesh D Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Prajakta P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| |
Collapse
|
4
|
Kadem JO, Al-Jashamy K. Incidence and pathophysiology of Ascaris lumbricoides infection among hospital patients. AIP CONFERENCE PROCEEDINGS 2023; 2808:050012. [DOI: 10.1063/5.0115773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Becher S, Berden G, Martens J, Oomens J, Heiles S. IRMPD Spectroscopy of [PC (4:0/4:0) + M] + (M = H, Na, K) and Corresponding CID Fragment Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2874-2884. [PMID: 34723538 DOI: 10.1021/jasms.1c00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycerophospholipids (GPs) are highly abundant in eukaryotic cells and take part in numerous fundamental physiological processes such as molecular signaling. The GP composition of samples is often analyzed using mass spectrometry (MS), but identification of some structural features, for example, differentiation of stereospecific numbering (sn) isomers by well-established tandem MS (MS2) methods, is challenging. In particular, the formation of 1,3-dioxolane over 1,3-dioxane intermediates proposed to be responsible for the sn-selectivity of these tandem MS strategies has not been validated by spectroscopic methods. In this work, we present infrared multiple photon dissociation (IRMPD) spectra of phosphatidylcholine (PC) ions [PC 4:0/4:0 + H/Na/K]+ and [PC 4:0/4:0 + Na/K - 183]+ fragments generated by electrospray ionization (ESI)-MS and collision-induced dissociation (CID), respectively. IRMPD spectra of protonated, sodiated, and potassiated PC 4:0/4:0 differ in the phosphate- and ester-related bands, which are increasingly shifted to lower wavenumbers with higher adduct masses. Comparison of calculated and experimental IR spectra indicates the presence of multiple, two and one isomer(s) for [PC 4:0/4:0 + H]+, [PC 4:0/4:0 + Na]+, and [PC 4:0/4:0 + K]+, respectively. Isomers exhibiting pronounced sn-1 ester-ion interactions are computationally predicted to be energetically preferred for all species and are in line with experimental results. IRMPD spectra of [PC 4:0/4:0 + Na/K - 183]+ are presented and shed the first light on the fragment ion structures, rationalizing MS-based lipidomics strategies that aim to characterize the sn-isomerism of GPs.
Collapse
Affiliation(s)
- Simon Becher
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Lagatie O, Njumbe Ediage E, Van Roosbroeck D, Van Asten S, Verheyen A, Batsa Debrah L, Debrah A, Odiere MR, T’Kindt R, Dumont E, Sandra K, Dillen L, Verhaeghe T, Vreeken R, Cuyckens F, Stuyver LJ. Multimodal biomarker discovery for active Onchocerca volvulus infection. PLoS Negl Trop Dis 2021; 15:e0009999. [PMID: 34843471 PMCID: PMC8659328 DOI: 10.1371/journal.pntd.0009999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
The neglected tropical disease onchocerciasis, or river blindness, is caused by infection with the filarial nematode Onchocerca volvulus. Current estimates indicate that 17 million people are infected worldwide, the majority of them living in Africa. Today there are no non-invasive tests available that can detect ongoing infection, and that can be used for effective monitoring of elimination programs. In addition, to enable pharmacodynamic studies with novel macrofilaricide drug candidates, surrogate endpoints and efficacy biomarkers are needed but are non-existent. We describe the use of a multimodal untargeted mass spectrometry-based approach (metabolomics and lipidomics) to identify onchocerciasis-associated metabolites in urine and plasma, and of specific lipid features in plasma of infected individuals (O. volvulus infected cases: 68 individuals with palpable nodules; lymphatic filariasis cases: 8 individuals; non-endemic controls: 20 individuals). This work resulted in the identification of elevated concentrations of the plasma metabolites inosine and hypoxanthine as biomarkers for filarial infection, and of the urine metabolite cis-cinnamoylglycine (CCG) as biomarker for O. volvulus. During the targeted validation study, metabolite-specific cutoffs were determined (inosine: 34.2 ng/ml; hypoxanthine: 1380 ng/ml; CCG: 29.7 ng/ml) and sensitivity and specificity profiles were established. Subsequent evaluation of these biomarkers in a non-endemic population from a different geographical region invalidated the urine metabolite CCG as biomarker for O. volvulus. The plasma metabolites inosine and hypoxanthine were confirmed as biomarkers for filarial infection. With the availability of targeted LC-MS procedures, the full potential of these 2 biomarkers in macrofilaricide clinical trials, MDA efficacy surveys, and epidemiological transmission studies can be investigated. Today’s diagnosis of infection with the filarial parasite Onchocerca volvulus mainly depends on the microscopic analysis of skin biopsies and serological testing. The work presented here describes the use of multiple mass spectrometry-based screening methods (metabolomics and lipidomics) to search for biomarkers indicative of infection with Onchocerca volvulus. This resulted in the identification of elevated concentrations of the plasma metabolites inosine and hypoxanthine as biomarkers for filarial infection, and of the urine metabolite cis-cinnamoylglycine as biomarker for O. volvulus. Further evaluation of these biomarkers in a geographically distinct non-endemic population however invalidated the use of urine cis-cinnamoylglycine. These findings are of utmost importance as it not only opens new avenues in the development of non-invasive diagnostic tools for filarial infections, but also emphasizes the need for evaluation and validation of newly discovered biomarkers in different populations from different geographies.
Collapse
Affiliation(s)
- Ole Lagatie
- J&J Global Public Health, Janssen R&D, Beerse, Belgium
- * E-mail:
| | | | | | | | - Ann Verheyen
- J&J Global Public Health, Janssen R&D, Beerse, Belgium
| | - Linda Batsa Debrah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Maurice R. Odiere
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ruben T’Kindt
- Research Institute for Chromatography (RIC), Kortrijk, Belgium
| | - Emmie Dumont
- Research Institute for Chromatography (RIC), Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), Kortrijk, Belgium
| | - Lieve Dillen
- Discovery Sciences, Janssen R&D, Beerse, Belgium
| | | | - Rob Vreeken
- Discovery Sciences, Janssen R&D, Beerse, Belgium
| | | | | |
Collapse
|
7
|
van Outersterp R, Engelke UF, Merx J, Berden G, Paul M, Thomulka T, Berkessel A, Huigen MC, Kluijtmans LA, Mecinović J, Rutjes FP, van Karnebeek CD, Wevers RA, Boltje TJ, Coene KL, Martens J, Oomens J. Metabolite Identification Using Infrared Ion Spectroscopy─Novel Biomarkers for Pyridoxine-Dependent Epilepsy. Anal Chem 2021; 93:15340-15348. [PMID: 34756024 PMCID: PMC8613736 DOI: 10.1021/acs.analchem.1c02896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics strategies are being increasingly applied in metabolite screening for a wide variety of medical conditions. The long-standing "grand challenge" in the utilization of this approach is metabolite identification─confidently determining the chemical structures of m/z-detected unknowns. Here, we use a novel workflow based on the detection of molecular features of interest by high-throughput untargeted LC-MS analysis of patient body fluids combined with targeted molecular identification of those features using infrared ion spectroscopy (IRIS), effectively providing diagnostic IR fingerprints for mass-isolated targets. A significant advantage of this approach is that in silico-predicted IR spectra of candidate chemical structures can be used to suggest the molecular structure of unknown features, thus mitigating the need for the synthesis of a broad range of physical reference standards. Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine metabolism, resulting from a mutation in the ALDH7A1 gene that leads to an accumulation of toxic levels of α-aminoadipic semialdehyde (α-AASA), piperideine-6-carboxylate (P6C), and pipecolic acid in body fluids. While α-AASA and P6C are known biomarkers for PDE in urine, their instability makes them poor candidates for diagnostic analysis from blood, which would be required for application in newborn screening protocols. Here, we use combined untargeted metabolomics-IRIS to identify several new biomarkers for PDE-ALDH7A1 that can be used for diagnostic analysis in urine, plasma, and cerebrospinal fluids and that are compatible with analysis in dried blood spots for newborn screening. The identification of these novel metabolites has directly provided novel insights into the pathophysiology of PDE-ALDH7A1.
Collapse
Affiliation(s)
- Rianne
E. van Outersterp
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Udo F.H. Engelke
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jona Merx
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Mathias Paul
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Thomas Thomulka
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Albrecht Berkessel
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Marleen C.D.G. Huigen
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo A.J. Kluijtmans
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jasmin Mecinović
- University
of Southern Denmark, Department of Physics,
Chemistry and Pharmacy, Campusvej 55, 5230 Odense, Denmark
| | - Floris P.J.T. Rutjes
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Clara D.M. van Karnebeek
- Department
of Pediatrics-Metabolic Diseases, Radboud Center for Mitochondrial
Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Ron A. Wevers
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Karlien L.M. Coene
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 908, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
van Outersterp RE, Martens J, Peremans A, Lamard L, Cuyckens F, Oomens J, Berden G. Evaluation of table-top lasers for routine infrared ion spectroscopy in the analytical laboratory. Analyst 2021; 146:7218-7229. [PMID: 34724520 PMCID: PMC8607882 DOI: 10.1039/d1an01406d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
Infrared ion spectroscopy is increasingly recognized as a method to identify mass spectrometry-detected analytes in many (bio)chemical areas and its integration in analytical laboratories is now on the horizon. Commercially available quadrupole ion trap mass spectrometers are attractive ion spectroscopy platforms but operate at relatively high pressures. This promotes collisional deactivation which directly interferes with the multiple-photon excitation process required for ion spectroscopy. To overcome this, infrared lasers having a high instantaneous power are required and therefore a majority of analytical studies have been performed at infrared free electron laser facilities. Proliferation of the technique to routine use in analytical laboratories requires table-top infrared lasers and optical parametric oscillators (OPOs) are the most suitable candidates, offering both relatively high intensities and reasonable spectral tuning ranges. Here, we explore the potential of a range of commercially available high-power OPOs for ion spectroscopy, comparing systems with repetition rates of 10 Hz, 20 kHz, 80 MHz and a continuous-wave (cw) system. We compare the performance for various molecular ions and show that the kHz and MHz repetition-rate systems outperform cw and 10 Hz systems in photodissociation efficiency and offer several advantages in terms of cost-effectiveness and practical implementation in an analytical laboratory not specialized in laser spectroscopy.
Collapse
Affiliation(s)
- Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - André Peremans
- Laboratoire Physique de la Matière et du Rayonnement (P.M.R), Université de Namur, 5000 Namur, Belgium
| | | | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Assessment of the required performance and the development of corresponding program decision rules for neglected tropical diseases diagnostic tests: Monitoring and evaluation of soil-transmitted helminthiasis control programs as a case study. PLoS Negl Trop Dis 2021; 15:e0009740. [PMID: 34520474 PMCID: PMC8480900 DOI: 10.1371/journal.pntd.0009740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/29/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Recently, the World Health Organization established the Diagnostic Technical Advisory Group to identify and prioritize diagnostic needs for neglected tropical diseases, and to ultimately describe the minimal and ideal characteristics for new diagnostic tests (the so-called target product profiles (TPPs)). We developed two generic frameworks: one to explore and determine the required sensitivity (probability to correctly detect diseased persons) and specificity (probability to correctly detect persons free of disease), and another one to determine the corresponding samples sizes and the decision rules based on a multi-category lot quality assurance sampling (MC-LQAS) approach that accounts for imperfect tests. We applied both frameworks for monitoring and evaluation of soil-transmitted helminthiasis control programs. Our study indicates that specificity rather than sensitivity will become more important when the program approaches the endgame of elimination and that the requirements for both parameters are inversely correlated, resulting in multiple combinations of sensitivity and specificity that allow for reliable decision making. The MC-LQAS framework highlighted that improving diagnostic performance results in a smaller sample size for the same level of program decision making. In other words, the additional costs per diagnostic tests with improved diagnostic performance may be compensated by lower operational costs in the field. Based on our results we proposed the required minimal and ideal diagnostic sensitivity and specificity for diagnostic tests applied in monitoring and evaluating of soil-transmitted helminthiasis control programs. The World Health Organization established an advisory group to identify and prioritize diagnostic needs for neglected tropical diseases, and to ultimately describe the minimal and ideal characteristics for new diagnostic tests. To support this advisory group, we developed two generic frameworks, which we applied to soil-transmitted helminthiases: one to explore and determine the required sensitivity (probability to correctly detect a diseased person) and specificity (probability to correctly detect a person free of disease), and another one to determine the corresponding samples size and decision rules during surveys. We showed that specificity rather than sensitivity will become more important when the program approaches the endgame of elimination and that the requirements for both parameters are inversely correlated, resulting in multiple combinations of sensitivity and specificity that allow for reliable decision making. We also highlighted that improving diagnostic performance results in smaller sample sizes for the same level of program decision making. In other words, the additional costs per diagnostic tests with improved diagnostic performance can be compensated by the lower operational costs in the field. Based on our results we proposed to the advisory group the required performance characteristics of diagnostic tests for soil-transmitted helminthiasis control programs.
Collapse
|
10
|
Khurana S, Singh S, Mewara A. Diagnostic Techniques for Soil-Transmitted Helminths - Recent Advances. Res Rep Trop Med 2021; 12:181-196. [PMID: 34377048 PMCID: PMC8349539 DOI: 10.2147/rrtm.s278140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022] Open
Abstract
Soil-transmitted helminth (STH) infections (hookworms, Trichuris, Ascaris) and Strongyloides spp. are associated with a substantial global burden and high morbidity. Sensitive and specific methods for diagnosis of these infections are essential for mapping the burden in communities, accurate assessment of infection levels, to guide interventions and monitoring the success of STH control programs. Despite considerable progress to control STH over several decades, we are still far from identifying a fully adequate diagnostic test. Conventional microscopy-based methods such as direct Kato–Katz smear or mounts after stool centrifugation/flotation-based concentration techniques have been the mainstay of diagnosis, especially in resource-poor countries where these infections abound. However, recently, these are being adapted to closed, easy to perform, digital formats, thereby improving the sensitivity as well as applicability in a remote, resource-limited setting. The use of image analysis systems to identify and quantify helminth eggs, with potential adaptation to smartphones, is also promising. Antibody detection tests have a limited role mostly in the case of Strongyloides hyperinfection. Coproantigen detection tests have been developed and used in veterinary practice for detection of STH, but these have not been evaluated for use in humans. More sensitive molecular diagnostics, including assays developed with new bioinformatic tools and techniques such as polymerase chain reaction (PCR), quantitative PCR (qPCR) and loop-mediated amplification assay, can help in the clear and precise assessment of STH burden during elimination phase and are of immense value for diagnosis in areas with low endemicity and in travelers to endemic regions. Moreover, the molecular techniques will help detect new species that may emerge. Sample preservation and efficient DNA extraction are critical and significantly affect the efficiency of molecular diagnostic tests. In addition to the diagnosis of clinical or asymptomatic infection in humans, detection of STH eggs in environmental samples is imperative to boost STH control efforts. Overall the diagnostic performance, cost-effectiveness, ease of performance, rapidity and in-field applicability of any test should be considered when choosing from the various diagnostic assays in areas with different endemicity, in addition to striving towards the development of novel technologies and optimization of existing methods.
Collapse
Affiliation(s)
- Sumeeta Khurana
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhishek Mewara
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
The role of diagnostic technologies to measure progress toward WHO 2030 targets for soil-transmitted helminth control programs. PLoS Negl Trop Dis 2021; 15:e0009422. [PMID: 34081694 PMCID: PMC8174700 DOI: 10.1371/journal.pntd.0009422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
van Geenen FAMG, Kranenburg RF, van Asten AC, Martens J, Oomens J, Berden G. Isomer-Specific Two-Color Double-Resonance IR 2MS 3 Ion Spectroscopy Using a Single Laser: Application in the Identification of Novel Psychoactive Substances. Anal Chem 2021; 93:2687-2693. [PMID: 33470107 PMCID: PMC7859929 DOI: 10.1021/acs.analchem.0c05042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The capability of
an ion trap mass
spectrometer to store ions for
an arbitrary amount of time allows the use of a single infrared (IR)
laser to perform two-color double resonance IR–IR spectroscopic
experiments on mass-to-charge (m/z) selected ions. In this single-laser IR2MS3 scheme, one IR laser frequency is used to remove a selected set
of isomers from the total trapped ion population and the second IR
laser frequency, from the same laser, is used to record the IR spectrum
of the remaining precursor ions. This yields isomer-specific vibrational
spectra of the m/z-selected ions,
which can reveal the structure and identity of the initially co-isolated
isomeric species. The use of a single laser greatly reduces the experimental
complexity of two-color IR2MS3 and enhances
its application in fields employing analytical MS. In this work, we
demonstrate the methodology by acquiring single-laser IR2MS3 spectra in a forensic context, identifying two previously
unidentified isomeric novel psychoactive substances (NPS) from a sample
that was confiscated by the Amsterdam Police.
Collapse
Affiliation(s)
- Fred A M G van Geenen
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Ruben F Kranenburg
- Forensic Laboratory, Unit Amsterdam, Dutch National Police, Kabelweg 25, 1014 BA Amsterdam, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Arian C van Asten
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.,Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|