1
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
2
|
Alijani H, Vaughan TJ. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model. J Mech Behav Biomed Mater 2024; 153:106471. [PMID: 38458079 DOI: 10.1016/j.jmbbm.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.
Collapse
Affiliation(s)
- Hamid Alijani
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
3
|
Alijani H, Vaughan TJ. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils. J Mech Behav Biomed Mater 2024; 153:106472. [PMID: 38432183 DOI: 10.1016/j.jmbbm.2024.106472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
At the tissue-scale and above, there are now well-established structure-property relationships that provide good approximations of the biomechanical performance of bone through, for example, power-law relationships that relate tissue mineral density to elastic properties. However, below the tissue-level, the individual role of the constituents becomes prominent and these simple relationships tend to break down, with more detailed theoretical and computational models are required to describe the mechanical response. In this study, a two-dimensional micromechanics damage-based representative volume element (RVE) of lamellar bone was developed, which included a novel implementation of a phase-field damage model to describe the behaviour of non-collagenous proteins at mineral-mineral and mineral-fibril interface regions. It was found that, while the stiffness of the tissue was governed by the relative proportion of extra-fibrillar mineral and mineralised collagen fibrils, the strength and toughness of the tissue in transverse direction relied on the interactions occurring at mineral-mineral and mineral-fibril interfaces, highlighting the prominence of non-collagenous proteins in determine fracture-based processes at this scale. While fractures tended to initiate in mineral rich areas of the extra-fibrillar mineral matrix, it was found that the presence of mineralised collagen fibrils at low density did not provide a substantial contribution to crack propagation behaviour under transverse loading. However, at physiological volume fraction (VfMCF=50%), different scenarios could arise depending on the relative strength value of the interphase around the MCFs ( [Formula: see text] ) to the interphase between individual minerals ( [Formula: see text] ): (i) When [Formula: see text] , MCFs appear to facilitate crack propagation with MCF-mineral debonding being the dominant failure mode; (ii) once γ>1, the MCFs hinder the microcracks, leading to inhibition of crack propagation, which can be regarded as an energy dissipation mechanism. The effective fracture properties of the tissue also experience a sudden increase in fracture work density (J-integral) once the crack is arrested by MCFs or severely deflected. Collectively, the predicted behaviour of the model compared well to those reported through experimental and computational methods, highlighting its potential to provide further understanding into the mechanistic response of bone ultrastructure alterations related to the structural and compositional changes resulting from disease and aging.
Collapse
Affiliation(s)
- Hamid Alijani
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
4
|
Yan H, Zhu X, Li Z, Liu Z, Jin S, Zhou X, Han Z, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Zhao Y, Zhao H, Waheed J. Effect of Ba 2+ on the biomineralization of Ca 2+ and Mg 2+ ions induced by Bacillus licheniformis. World J Microbiol Biotechnol 2024; 40:182. [PMID: 38668902 DOI: 10.1007/s11274-024-03975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
The effect of barium ions on the biomineralization of calcium and magnesium ions is often overlooked when utilizing microbial-induced carbonate precipitation technology for removing barium, calcium, and magnesium ions from oilfield wastewater. In this study, Bacillus licheniformis was used to bio-precipitate calcium, magnesium, and barium ions. The effects of barium ions on the physiological and biochemical characteristics of bacteria, as well as the components of extracellular polymers and mineral characteristics, were also studied in systems containing coexisting barium, calcium, and magnesium ions. The results show that the increasing concentrations of barium ions decreased pH, carbonic anhydrase activity, and concentrations of bicarbonate and carbonate ions, while it increased the contents of humic acids, proteins, polysaccharides, and DNA in extracellular polymers in the systems containing all three types of ions. With increasing concentrations of barium ions, the content of magnesium within magnesium-rich calcite and the size of minerals precipitated decreased, while the full width at half maximum of magnesium-rich calcite, the content of O-C=O and N-C=O, and the diversity of protein secondary structures in the minerals increased in systems containing all three coexisting ions. Barium ions does inhibit the precipitation of calcium and magnesium ions, but the immobilized bacteria can mitigate the inhibitory effect. The precipitation ratios of calcium, magnesium, and barium ions reached 81-94%, 68-82%, and 90-97%. This research provides insights into the formation of barium-enriched carbonate minerals and offers improvements for treating oilfield wastewater.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaofei Zhu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhenjiang Li
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhiyong Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaotong Zhou
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1UJ, UK
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao, 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Junaid Waheed
- University of Azad Jammu and Kashmir, Muzaffarabad, 13110, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
5
|
Tavakol M, Liu J, Hoff SE, Zhu C, Heinz H. Osteocalcin: Promoter or Inhibitor of Hydroxyapatite Growth? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1747-1760. [PMID: 38181199 DOI: 10.1021/acs.langmuir.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Osteocalcin is the most abundant noncollagenous bone protein and the functions in bone remineralization as well as in inhibition of bone growth have remained unclear. In this contribution, we explain the dual role of osteocalcin in the nucleation of new calcium phosphate during bone remodeling and in the inhibition of hydroxyapatite crystal growth at the molecular scale. The mechanism was derived using pH-resolved all-atom models for the protein, phosphate species, and hydroxyapatite, along with molecular dynamics simulations and experimental and clinical observations. Osteocalcin binds to (hkl) hydroxyapatite surfaces through multiple residues, identified in this work, and the fingerprint of binding residues varies as a function of the (hkl) crystal facet and pH value. On balance, the affinity of osteocalcin to hydroxyapatite slows down crystal growth. The unique tricalcium γ-carboxylglutamic acid (Gla) domain hereby rarely adsorbs to hydroxyapatite surfaces and faces instead toward the solution. The Gla domain enables prenucleation of calcium phosphate for new bone formation at a slightly acidic pH of 5. The growth of prenucleation clusters of calcium phosphate continues upon increase in pH value from 5 to 7 and is much less favorable, or not observed, on the native osteocalcin structure at and above neutral pH values of 7. The results provide mechanistic insight into the early stages of bone remodeling from the molecular scale, help inform mutations of osteocalcin to modify binding to apatites, support drug design, and guide toward potential cures for osteoporosis and hyperosteogeny.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
- Department of Mechanical Engineering, Sharif University of Technology, PO Box 11365-11155, Tehran, Iran
| | - Juan Liu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
| | - Samuel E Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
| | - Cheng Zhu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
- Materials Science and Engineering Program, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
| |
Collapse
|
6
|
Maulana H, Widyastuti Y, Herlina N, Hasbuna A, Al-Islahi ASH, Triratna L, Mayasari N. Bioinformatics study of phytase from Aspergillus niger for use as feed additive in livestock feed. J Genet Eng Biotechnol 2023; 21:142. [PMID: 38008870 PMCID: PMC10678861 DOI: 10.1186/s43141-023-00600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Phytase supplementation in rations can reduce their phytic acid composition in order to enhance their nutritional value. Aspergillus niger is a fungus that can encode phytase. This study aims to determine the characteristics of its DNA sequences and amino acid composition that encode the phytase enzyme, as well as to determine the primer designs. METHOD This study used gene sequence data and protein-encoding phytase from Aspergillus niger that was collected manually from NCBI and PDB. The data was analyzed using SPDBV and then be aligned using the ClustalW Multiple Alignment features. The phylogenetic tree was built by Mega11 software. Primers were designed from selected candidate sequences that were analyzed. The designed primers were then simulated for PCR using FastPCR and SnapGene software. RESULTS There are 18 Aspergillus niger phytases in NCBI which is 14.87% of the total Aspergillus. There are 14 Aspergillus niger phytases that have identity above 95%. Aspergillus niger 110. M94550.1 is the closest strain to the PDB template. Candidate sources of phytase genes are Aspergillus niger 110.M94550.1, 48.2.BCMY01000003.1, and 92.JQ654450.1. The primer design has 2 possibilities of self-annealing and high melting temperature on the reverse primer. PCR simulation shows that the primer design can attach completely but still has the possibility of mispriming. CONCLUSION This study suggests promising results for the future development of phytase enzyme production from Aspergillus niger as a feed additive using genetic engineering to enhance the quality of livestock feed in Indonesia.
Collapse
Affiliation(s)
- Hamdan Maulana
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia
| | - Yantyati Widyastuti
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Nina Herlina
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Abun Hasbuna
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia
| | | | - Lita Triratna
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Novi Mayasari
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia.
| |
Collapse
|
7
|
Tavakol M, Hajipour MJ, Ferdousi M, Zanganeh S, Maurizi L. Competition of opsonins and dysopsonins on the nanoparticle surface. NANOSCALE 2023; 15:17342-17349. [PMID: 37860936 DOI: 10.1039/d3nr03823h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The biological behavior and fate of nanoparticles are dependent on their retention time in the blood circulation system. The protein corona components, especially opsonins, and dysopsonins, adsorbed on the nanoparticle surface determine their blood circulation time. The protein corona formation is a dynamic process that involves the competition between different proteins to be adsorbed on the nanoparticles. Therefore, studying how proteins compete and are oriented on the nanoparticle surface is essential. We hypothesized that the presence of opsonins (immunoglobulin (IgG)) might affect the adsorption of dysopsonins (human serum albumin (HSA)) and vice versa. Using the molecular dynamics simulations, we showed that the adsorption of HSA on the GO surface after the IgG adsorption is more probable than the opposite order of adsorption. It was also observed that the higher lateral diffusion of the HSA compared to the IgG helped the system reach a more stable configuration while the initial adsorption of the HSA limits the lateral diffusion of IgG. Therefore, replacing IgG adsorbed on the GO surface with HSA is plausible while the reverse process is less likely to occur. This study revealed that albumin might extend the blood circulation time of GO by replacing opsonins (IgG).
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Mohammad Javad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California 94304, USA.
| | - Maryam Ferdousi
- Neurobiology Department, Northwestern University, Evanston, Illinois, USA
| | | | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France.
| |
Collapse
|
8
|
Bailey S, Poundarik AA, Sroga GE, Vashishth D. Structural role of osteocalcin and its modification in bone fracture. APPLIED PHYSICS REVIEWS 2023; 10:011410. [PMID: 36915902 PMCID: PMC9999293 DOI: 10.1063/5.0102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Osteocalcin (OC), an abundant non-collagenous protein in bone extracellular matrix, plays a vital role in both its biological and mechanical function. OC undergoes post-translational modification, such as glycation; however, it remains unknown whether glycation of OC affects bone's resistance to fracture. Here, for the first time, we demonstrate the formation of pentosidine, an advanced glycation end-product (AGE) cross-link on mouse OC analyzed by ultra-performance liquid chromatography. Next, we establish that the presence of OC in mouse bone matrix is associated with lower interlamellar separation (distance) and thicker bridges spanning the lamellae, both of which are critical for maintaining bone's structural integrity. Furthermore, to determine the impact of modification of OC by glycation on bone toughness, we glycated bone samples in vitro from wild-type (WT) and osteocalcin deficient (Oc-/-) mice, and compared the differences in total fluorescent AGEs and fracture toughness between the Oc -/- glycated and control mouse bones and the WT glycated and control mouse bones. We determined that glycation resulted in significantly higher AGEs in WT compared to Oc-/- mouse bones (delta-WT > delta-OC, p = 0.025). This observed change corresponded to a significant decrease in fracture toughness between WT and Oc-/- mice (delta-WT vs delta-OC, p = 0.018). Thus, we propose a molecular deformation and fracture mechanics model that corroborates our experimental findings and provides evidence to support a 37%-90% loss in energy dissipation of OC due to formation of pentosidine cross-link by glycation. We anticipate that our study will aid in elucidating the effects of a major non-collagenous bone matrix protein, osteocalcin, and its modifications on bone fragility and help identify potential therapeutic targets for maintaining skeletal health.
Collapse
Affiliation(s)
| | | | - Grazyna E. Sroga
- Department of Biomedical Engineering, Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
9
|
Tavakol M, Vaughan TJ. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils. J R Soc Interface 2023; 20:20220803. [PMID: 36695019 PMCID: PMC9874270 DOI: 10.1098/rsif.2022.0803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
Mineralized collagen fibrils (MCFs) comprise collagen molecules and hydroxyapatite (HAp) crystals and are considered universal building blocks of bone tissue, across different bone types and species. In this study, we developed a coarse-grained molecular dynamics (CGMD) framework to investigate the role of mineral arrangement on the load-deformation behaviour of MCFs. Despite the common belief that the collagen molecules are responsible for flexibility and HAp minerals are responsible for stiffness, our results showed that the mineral phase was responsible for limiting collagen sliding in the large deformation regime, which helped the collagen molecules themselves undergo high tensile loading, providing a substantial contribution to the ultimate tensile strength of MCFs. This study also highlights different roles for the mineralized and non-mineralized protofibrils within the MCF, with the mineralized groups being primarily responsible for load carrying due to the presence of the mineral phase, while the non-mineralized groups are responsible for crack deflection. These results provide novel insight into the load-deformation behaviour of MCFs and highlight the intricate role that both collagen and mineral components have in dictating higher scale bone biomechanics.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J. Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Palaniraj S, Murugesan R, Narayan S. Aprotinin – Conjugated biocompatible porous nanocomposite for dentine remineralization and biofilm degradation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
A multiscale finite element investigation on the role of intra- and extra-fibrillar mineralisation on the elastic properties of bone tissue. J Mech Behav Biomed Mater 2022; 129:105139. [DOI: 10.1016/j.jmbbm.2022.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 11/24/2022]
|
12
|
Tavakol M, Vaughan TJ. Energy dissipation of osteopontin at a HAp mineral interface: Implications for bone biomechanics. Biophys J 2022; 121:228-236. [PMID: 34932955 PMCID: PMC8790188 DOI: 10.1016/j.bpj.2021.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
Osteopontin (OPN) is a one of the most abundant non-collagenous proteins in the bone's organic matrix. OPN is responsible for mediating bonding at mineral interfaces in the extrafibrillar space and recent evidence shows that it is a major contributor to bone's fracture resistance. While several experimental studies have identified an important role for calcium ions in mediating energy dissipation in OPN protein networks, the underlying molecular mechanisms remain largely unknown. In the current study, the role of calcium ions on energy dissipation at OPN interface with hydroxyapatite (HAp) as the main bone mineral was investigated. For the first time, the three-dimensional structure of OPN proteins were predicted, and it was found that calcium ions greatly influenced the final protein configuration and energy dissipation performance. Under small deformation, the compact cOPN structure, resulting from calcium ions presence, facilitated greater energy dissipation through sacrificial bond breaking and mechanisms mediated by the surface-bound calcium. At larger deformation, the compact structure also enabled cOPN to dissipate higher energy. Moreover, it was found that phosphorylation of OPN played an important role in energy dissipation. While previous studies have shown that OPN dissipated energy by forming aggregate networks, this study also showed that network formation is not necessary and that individual OPN proteins can dissipate large amounts of energy at HAp interfaces.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Ted J. Vaughan
- Biomedical Engineering and Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland,Corresponding author
| |
Collapse
|
13
|
Sroga GE, Vashishth D. Controlled Formation of Carboxymethyllysine in Bone Matrix through Designed Glycation Reaction. JBMR Plus 2021; 5:e10548. [PMID: 34761150 PMCID: PMC8567485 DOI: 10.1002/jbm4.10548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023] Open
Abstract
It has been a challenge to establish a link between specific advanced glycation end products (AGEs) as causal agents of different pathologies and age‐related diseases, primarily because of the lack of suitable in vitro experimental strategies facilitating increased formation of a specific AGE, here carboxymethyllysine (CML), over other AGEs under controlled conditions. CML is of considerable importance to various oxidative stress–related diseases, because in vivo formation of this AGE is connected with cellular oxidative/carbonyl metabolism. The mechanistic implications of CML accumulation in bone remain to be elucidated. To facilitate such studies, we developed a new in vitro strategy that allows preferential generation of CML in bone matrix over other AGEs. Using bone samples from human donors of different age (young, middle‐age, and elderly), we show successful in vitro generation of the desired levels of CML and show that they mimic those observed in vivo in several bone disorders. Formation of such physiologically relevant CML levels was achieved by selecting two oxidative/carbonyl stress compounds naturally produced in the human body, glyoxal and glyoxylic acid. Kinetic studies using the two compounds revealed differences not only between their reaction rates but also in the progression and enhanced formation of CML over other AGEs (measured by their collective fluorescence as fluorescent AGEs [fAGEs]) Consequently, through the regulation of reaction time, the levels of CML and fAGEs could be controlled and separated. Given that the developed approach does not fully eliminate the formation of other uncharacterized glycation products, this could be considered as the study limitation. We expect that the concepts of our experimental approach can be used to develop diverse strategies facilitating production of the desired levels of selected AGEs in bone and other tissues, and thus, opens new avenues for investigating the role and mechanistic aspects of specific AGEs, here CML, in bone. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies Troy NY USA
| | - Deepak Vashishth
- Department of Biomedical Engineering Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies Troy NY USA
| |
Collapse
|
14
|
Muñoz A, Docaj A, Ugarteburu M, Carriero A. Poor bone matrix quality: What can be done about it? Curr Osteoporos Rep 2021; 19:510-531. [PMID: 34414561 DOI: 10.1007/s11914-021-00696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Bone's ability to withstand load resisting fracture and adapting to it highly depends on the quality of its matrix and its regulators. This review focuses on the contribution of bone quality to fracture resistance and possible therapeutic targets for skeletal fragility in aging and disease. RECENT FINDINGS The highly organized, hierarchical composite structure of bone extracellular matrix together with its (re)modeling mechanisms and microdamage dynamics determines its stiffness, strength, and toughness. Aging and disease affect the biological processes regulating bone quality, thus resulting in defective extracellular matrix and bone fragility. Targeted therapies are being developed to restore bone's mechanical integrity. However, their current limitations include low tissue selectivity and adverse side effects. Biological and mechanical insights into the mechanisms controlling bone quality, together with advances in drug delivery and studies in animal models, will accelerate the development and translation to clinical application of effective targeted-therapeutics for bone fragility.
Collapse
Affiliation(s)
- Asier Muñoz
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Anxhela Docaj
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Maialen Ugarteburu
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA.
| |
Collapse
|
15
|
Designing Hydrogel-Based Bone-On-Chips for Personalized Medicine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent development of bone-on-chips (BOCs) holds the main advantage of requiring a low quantity of cells and material, compared to traditional In Vitro models. By incorporating hydrogels within BOCs, the culture system moved to a three dimensional culture environment for cells which is more representative of bone tissue matrix and function. The fundamental components of hydrogel-based BOCs, namely the cellular sources, the hydrogel and the culture chamber, have been tuned to mimic the hematopoietic niche in the bone aspirate marrow, cancer bone metastasis and osteo/chondrogenic differentiation. In this review, we examine the entire process of developing hydrogel-based BOCs to model In Vitro a patient specific situation. First, we provide bone biological understanding for BOCs design and then how hydrogel structural and mechanical properties can be tuned to meet those requirements. This is followed by a review on hydrogel-based BOCs, developed in the last 10 years, in terms of culture chamber design, hydrogel and cell source used. Finally, we provide guidelines for the definition of personalized pathological and physiological bone microenvironments. This review covers the information on bone, hydrogel and BOC that are required to develop personalized therapies for bone disease, by recreating clinically relevant scenarii in miniaturized devices.
Collapse
|