1
|
Singh H, Dan A, Prasanna Kumari B, Dave H, Parsaila N, Navale A, Darban Z, Yadav I, Goyal P, Misra SK, Shahabuddin S, Hassan S, Dhanka M. Copper-MOF and tannic acid-empowered composite cryogel as a skin substitute for accelerated deep wound healing. BIOMATERIALS ADVANCES 2024; 164:213983. [PMID: 39137704 DOI: 10.1016/j.bioadv.2024.213983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
The effective management of deep skin wounds remains a significant healthcare challenge that often deteriorates with bacterial infection, oxidative stress, tissue necrosis, and excessive production of wound exudate. Current medical approaches, including traditional wound dressing materials, cannot effectively address these issues. There is a great need to engineer advanced and multifunctional wound dressings to address this multifaceted problem effectively. Herein, a rationally designed composite cryogel composed of a Copper Metal-Organic Framework (Cu-MOF), tannic acid (TA), polyvinyl alcohol (PVA), and zein protein has been developed by freeze-thaw technique. Cryogels display a remarkable swelling capacity attributed to their interconnected microporous morphology. Moreover, dynamic mechanical behaviour with the characteristics of potent antimicrobial, antioxidant, and biodegradation makes it a desirable wound dressing material. It was further confirmed that the material is highly biocompatible and can release TA and copper ions in a controlled manner. In-vivo skin irritation in a rat model demonstrated that composite cryogel did not provoke any irritation/inflammation when applied to the skin of a healthy recipient. In a deep wound model, the composite cryogel significantly accelerates the wound healing rate. These findings highlight the multifunctional nature of composite cryogels and their promising potential for clinical applications as advanced wound dressings.
Collapse
Affiliation(s)
- Hemant Singh
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India; Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Aniruddha Dan
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - B Prasanna Kumari
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Harshil Dave
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Nitesh Parsaila
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India
| | - Archana Navale
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India
| | - Zenab Darban
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gujarat 382426, India
| | - Indu Yadav
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Prateek Goyal
- Materials Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Superb K Misra
- Materials Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Syed Shahabuddin
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gujarat 382426, India
| | - Shabir Hassan
- Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India.
| |
Collapse
|
2
|
Sun S, Wang Q, Zhang B, Cui Y, Si X, Wang G, Wang J, Xu H, Yuan B, Peng C. Vancomycin-Loaded in situ Gelled Hydrogel as an Antibacterial System for Enhancing Repair of Infected Bone Defects. Int J Nanomedicine 2024; 19:10227-10245. [PMID: 39411352 PMCID: PMC11476785 DOI: 10.2147/ijn.s448876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose During treatment of infected bone defects, control of infection is necessary for effective bone repair, and hence controlled topical application of antibiotics is required in clinical practice. In this study, a biodegradable drug delivery system with in situ gelation at the site of infection was prepared by integrating vancomycin into a polyethylene glycol/oxidized dextran (PEG/ODEX) hydrogel matrix. Methods In this work, PEG/ODEX hydrogels were prepared by Schiff base reaction, and vancomycin was loaded into them to construct a drug delivery system with controllable release and degradability. We first examined the microstructure, degradation time and drug release of the hydrogels. Then we verified the biocompatibility and in vitro ability of the release system. Finally, we used a rat infected bone defect model for further experiments. Results The results showed that this antibacterial system could be completely biodegradable in vivo for 56 days, and its degradation products did not cause specific inflammatory response. The cumulative release of vancomycin from the antibacterial system was 58.3% ± 3.8% at 14 days and 78.4% ± 3.2% at 35 days. The concentration of vancomycin in the surrounding environment was about 1.2 mg/mL, which can effectively remove bacteria. Further studies in vivo showed that the antibacterial system cleared the infection and accelerated repair of infected bone defects in the femur of rats. There was no infection in rats after 8 weeks of treatment. The 3D image analysis of the experimental group showed that the bone volume fraction (BV/TV) was 1.39-fold higher (p < 0.001), the trabecular number (Tb.N) was 1.31-fold higher (p < 0.05), and the trabecular separation (Tb.Sp) was 0.58-fold higher than those of the control group (p < 0.01). Conclusion In summary, this study clearly demonstrates that a clinical strategy based on biological materials can provide an innovative and effective approach to treatment of infected bone defects.
Collapse
Affiliation(s)
- Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qian Wang
- Department of Otolaryngology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bin Zhang
- Department of Spinal Surgery, The 964th Hospital of PLA Joint Logistic Support Force, Changchun, People’s Republic of China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xinghui Si
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Baoming Yuan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
3
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Omidian H, Wilson RL, Dey Chowdhury S. Injectable Biomimetic Gels for Biomedical Applications. Biomimetics (Basel) 2024; 9:418. [PMID: 39056859 PMCID: PMC11274625 DOI: 10.3390/biomimetics9070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these properties, develop cost-effective production techniques, and integrate emerging technologies like 3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
5
|
Calik F, Degirmenci A, Maouati H, Sanyal R, Sanyal A. Redox-Responsive "Catch and Release" Cryogels: A Versatile Platform for Capture and Release of Proteins and Cells. ACS Biomater Sci Eng 2024; 10:3017-3028. [PMID: 38655791 DOI: 10.1021/acsbiomaterials.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Macroporous cryogels are attractive scaffolds for biomedical applications, such as biomolecular immobilization, diagnostic sensing, and tissue engineering. In this study, thiol-reactive redox-responsive cryogels with a porous structure are prepared using photopolymerization of a pyridyl disulfide poly(ethylene glycol) methacrylate (PDS-PEG-MA) monomer. Reactive cryogels are produced using PDS-PEG-MA and hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) monomers, along with a PEG-based cross-linker and photoinitiator. Functionalization of cryogels using a fluorescent dye via the disulfide-thiol exchange reactions is demonstrated, followed by release under reducing conditions. For ligand-mediated protein immobilization, first, thiol-containing biotin or mannose is conjugated onto the cryogels. Subsequently, fluorescent dye-labeled proteins streptavidin and concanavalin A (ConA) are immobilized via ligand-mediated conjugation. Furthermore, we demonstrate that the mannose-decorated cryogel could capture ConA selectively from a mixture of lectins. The efficiency of protein immobilization could be easily tuned by changing the ratio of the thiol-sensitive moiety in the scaffold. Finally, an integrin-binding cell adhesive peptide is attached to cryogels to achieve successful attachment, and the on-demand detachment of integrin-receptor-rich fibroblast cells is demonstrated. Redox-responsive cryogels can serve as potential scaffolds for a variety of biomedical applications because of their facile synthesis and modification.
Collapse
Affiliation(s)
- Filiz Calik
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Aysun Degirmenci
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Hamida Maouati
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Türkiye
| |
Collapse
|
6
|
Vahora A, Singh H, Dan A, Puthenpurackel SS, Mishra NC, Dhanka M. Nanoengineered oxygen-releasing polymeric scaffold with sustained release of dexamethasone for bone regeneration. Biomed Mater 2024; 19:035007. [PMID: 38387063 DOI: 10.1088/1748-605x/ad2c17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Maintaining the continuous oxygen supply and proper cell growth before blood vessel ingrowth at the bone defect site are considerably significant issues in bone regeneration. Oxygen-producing scaffolds can supply oxygen and avoid hypoxia leading to expedited bone regeneration. Herein, first oxygen-producing calcium peroxide nanoparticles (CPO NPs) are synthesized, and subsequently, the various amounts of synthesized CPO NPs (0.1, 0.5, and 1 wt/v%) loaded in the scaffold composite, which is developed by simple physical blending of chitosan (CS) and polycaprolactone (PCL) polymers. To deliver the synergistic therapeutic effect, dexamethasone (DEX), known for its potential anti-inflammatory and osteogenic properties, is loaded into the nanocomposite scaffolds. The extensive physicochemical characterizations of nanocomposite scaffolds confirm the successful loading of CPO NPs, adequate porous morphology, pore size, hydrophilicity, and biodegradability.In vitro, biological studies support the antibacterial, hemocompatible, and cytocompatible (MG-63 and MC3T3-E1 cells) nature of the material when tested on respective cells. Field emission scanning electron microscopy and energy-dispersive x-ray spectroscopy confirm the successful biomineralization of the scaffolds. Scaffolds also exhibit the sustained release of DEX and efficient protein adsorption. This study revealed that a nanoengineered scaffold loaded with CPO NPs (PCL/CS/DEX/CPO 3) is a suitable candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Aatikaben Vahora
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Hemant Singh
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
- Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Aniruddha Dan
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Surya Suresh Puthenpurackel
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Narayan Chandra Mishra
- Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Carriero VC, Di Muzio L, Petralito S, Casadei MA, Paolicelli P. Cryogel Scaffolds for Tissue-Engineering: Advances and Challenges for Effective Bone and Cartilage Regeneration. Gels 2023; 9:979. [PMID: 38131965 PMCID: PMC10742915 DOI: 10.3390/gels9120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Critical-sized bone defects and articular cartilage injuries resulting from trauma, osteonecrosis, or age-related degeneration can be often non-healed by physiological repairing mechanisms, thus representing a relevant clinical issue due to a high epidemiological incidence rate. Novel tissue-engineering approaches have been proposed as an alternative to common clinical practices. This cutting-edge technology is based on the combination of three fundamental components, generally referred to as the tissue-engineering triad: autologous or allogenic cells, growth-stimulating factors, and a scaffold. Three-dimensional polymer networks are frequently used as scaffolds to allow cell proliferation and tissue regeneration. In particular, cryogels give promising results for this purpose, thanks to their peculiar properties. Cryogels are indeed characterized by an interconnected porous structure and a typical sponge-like behavior, which facilitate cellular infiltration and ingrowth. Their composition and the fabrication procedure can be appropriately tuned to obtain scaffolds that match the requirements of a specific tissue or organ to be regenerated. These features make cryogels interesting and promising scaffolds for the regeneration of different tissues, including those characterized by very complex mechanical and physical properties, such as bones and joints. In this review, state-of-the-art fabrication and employment of cryogels for supporting effective osteogenic or chondrogenic differentiation to allow for the regeneration of functional tissues is reported. Current progress and challenges for the implementation of this technology in clinical practice are also highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Paolicelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (V.C.C.); (L.D.M.); (S.P.); (M.A.C.)
| |
Collapse
|
8
|
Wiśniewska P, Haponiuk J, Saeb MR, Rabiee N, Bencherif SA. Mitigating Metal-Organic Framework (MOF) Toxicity for Biomedical Applications. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 471:144400. [PMID: 39280062 PMCID: PMC11394873 DOI: 10.1016/j.cej.2023.144400] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline porous materials, consisting of metal ions and organic linkers. These hybrid materials possess exceptional porosity and specific surface area, which have recently garnered significant interest due to their potential applications in gas separation and storage, energy storage, biomedical imaging, and drug delivery. As MOFs are being explored for biomedical applications, it is essential to comprehensively assess their toxicity. Although nearly ninety thousand MOFs have been investigated, evaluating and optimizing their physico-chemical properties in relevant biological systems remain critical for their clinical translation. In this review article, we first provide a brief classification of MOFs based on their chemical structures. We then conduct a comprehensive evaluation of in vitro and in vivo studies that assess the biocompatibility of MOFs. Additionally, we discuss various approaches to mitigate the critical factors associated with MOF toxicity. To this end, the effects of chemistry, particle size, morphology, and particle aggregation are examined. To better understand MOFs' potential toxicity to living organisms, we also delve into the toxicity mechanisms of nanoparticles (NPs). Furthermore, we introduce and evaluate strategies such as surface modification to reduce the inherent toxicity of MOFs. Finally, we discuss current challenges, the path to clinical trials, and new research directions.
Collapse
Affiliation(s)
- Paulina Wiśniewska
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150 Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109 Australia
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA 02155, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02155, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02155, USA
| |
Collapse
|
9
|
Rana D, Colombani T, Saleh B, Mohammed HS, Annabi N, Bencherif SA. Engineering injectable, biocompatible, and highly elastic bioadhesive cryogels. Mater Today Bio 2023; 19:100572. [PMID: 36880083 PMCID: PMC9984686 DOI: 10.1016/j.mtbio.2023.100572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM), an integral component of all organs, is inherently tissue adhesive and plays a pivotal role in tissue regeneration and remodeling. However, man-made three-dimensional (3D) biomaterials that are designed to mimic ECMs do not intrinsically adhere to moisture-rich environments and often lack an open macroporous architecture required for facilitating cellularization and integration with the host tissue post-implantation. Furthermore, most of these constructs usually entail invasive surgeries and potentially a risk of infection. To address these challenges, we recently engineered biomimetic and macroporous cryogel scaffolds that are syringe injectable while exhibiting unique physical properties, including strong bioadhesive properties to tissues and organs. These biomimetic catechol-containing cryogels were prepared from naturally-derived polymers such as gelatin and hyaluronic acid and were functionalized with mussel-inspired dopamine (DOPA) to impart bioadhesive properties. We found that using glutathione as an antioxidant and incorporating DOPA into cryogels via a PEG spacer arm led to the highest tissue adhesion and improved physical properties overall, whereas DOPA-free cryogels were weakly tissue adhesive. As shown by qualitative and quantitative adhesion tests, DOPA-containing cryogels were able to adhere strongly to several animal tissues and organs such as the heart, small intestine, lung, kidney, and skin. Furthermore, these unoxidized (i.e., browning-free) and bioadhesive cryogels showed negligible cytotoxicity toward murine fibroblasts and prevented the ex vivo activation of primary bone marrow-derived dendritic cells. Finally, in vivo data suggested good tissue integration and a minimal host inflammatory response when subcutaneously injected in rats. Collectively, these minimally invasive, browning-free, and strongly bioadhesive mussel-inspired cryogels show great promise for various biomedical applications, potentially in wound healing, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Devyesh Rana
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Bahram Saleh
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
10
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
12
|
Abdullah T, Su E, Memić A. Designing Silk-Based Cryogels for Biomedical Applications. Biomimetics (Basel) 2022; 8:5. [PMID: 36648791 PMCID: PMC9844337 DOI: 10.3390/biomimetics8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under subzero or freezing temperatures, have great potential to address many current challenges. Unlike their hydrogel counterparts, which are also able to hold large amounts of biologically relevant fluids such as water, cryogels are often characterized by highly dense and crosslinked polymer walls, macroporous structures, and often improved properties. Recently, one biomaterial that has garnered a lot of interest for cryogel fabrication is silk and its derivatives. In this review, we provide a brief overview of silk-based biomaterials and how cryogelation can be used for novel scaffold design. We discuss how various parameters and fabrication strategies can be used to tune the properties of silk-based biomaterials. Finally, we discuss specific biomedical applications of silk-based biomaterials. Ultimately, we aim to demonstrate how the latest advances in silk-based cryogel scaffolds can be used to address challenges in numerous bioengineering disciplines.
Collapse
Affiliation(s)
| | - Esra Su
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
- Faculty of Aquatic Sciences, Aquatic Biotechnology, Istanbul University, Istanbul 34134, Turkey
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Hamidi S, Monajjemzadeh F, Siahi‐Shadbad M, Khatibi SA, Farjami A. Antibacterial activity of natural polymer gels and potential applications without synthetic antibiotics. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Farnaz Monajjemzadeh
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadreza Siahi‐Shadbad
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Amin Khatibi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
14
|
Rezaeeyazdi M, Colombani T, Eggermont LJ, Bencherif SA. Engineering hyaluronic acid-based cryogels for CD44-mediated breast tumor reconstruction. Mater Today Bio 2022; 13:100207. [PMID: 35198956 PMCID: PMC8844817 DOI: 10.1016/j.mtbio.2022.100207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is a major health concern worldwide and is the leading cause of cancer-related death among American women. Traditional therapies, such as surgery, chemotherapy, and radiotherapy, are usually ineffective. Furthermore, cancer recurrence following targeted therapy often results from acquired drug resistance. Therefore, more realistic tumor models than monolayer cell culture for drug screening and discovery in an in vitro setting would facilitate the development of new therapeutic strategies. Toward this goal, we first developed a simple, rapid, low-cost, and high-throughput method for generating uniform multi-cellular tumor spheroids (MCTS) with controllable size. Next, biomimetic cryogel scaffolds fabricated from hyaluronic acid (HA) were utilized as a platform to reconstruct breast tumor microtissues with aspects of the complex tumor microenvironment in three dimensions. Finally, we investigated the interactions between the HA-based cryogels and CD44-positive breast tumor cells, individually or as MCTS. We found that incorporating the adhesive RGD peptide in cryogels led to the formation of a monolayer of tumor cells on the polymer walls, whereas MCTS cultured on RGD-free HA cryogels resulted in the growth of large and dense microtumors, more similar to native tumor masses. As a result, the MCTS-laden HA cryogel system induced a highly aggressive and chemotherapy drug-resistant tumor model. RGD-free HA-based cryogels represent an effective starting point for designing tumor models for preclinical research, therapeutic drug screening, and early cancer diagnosis.
Collapse
Affiliation(s)
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Loek J. Eggermont
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
Immune-instructive materials as new tools for immunotherapy. Curr Opin Biotechnol 2021; 74:194-203. [PMID: 34959210 DOI: 10.1016/j.copbio.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Immune instructive materials, are materials with the ability to modulate or mimic the function of immune cells, provide exciting opportunities for developing new therapies in many areas including medical devices, chronic inflammation, cancer, and autoimmune diseases. In this review we highlight some of the latest research involving material-based strategies for modulating macrophage phenotype and dendritic cell function, as well as a brief description on biomaterial use in T cell and natural killer cell engineering. We highlight studies on material topography, size, shape and surface chemistry to reduce inflammation, along with scaffold and hydrogel delivery systems that are used for modulating DC phenotype and influencing T cell polarization. Artificial antigen presenting cells are also reviewed as a promising approach to cancer immunotherapy.
Collapse
|
16
|
Motealleh A, Kart D, Czieborowski M, Kehr NS. Functional Nanomaterials and 3D-Printable Nanocomposite Hydrogels for Enhanced Cell Proliferation and for the Reduction of Bacterial Biofilm Formation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43755-43768. [PMID: 34464080 DOI: 10.1021/acsami.1c13392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomaterial-associated infections are a major cause of biomaterial implant failure. To prevent the initial attachment of bacteria to the implant surface, researchers have investigated various surface modification methods. However, most of these approaches also prevent the attachment, spread, and growth of mammalian cells, resulting in tissue integration failure. Therefore, the success of biomaterial implants requires an optimal balance between tissue integration (cell adhesion to biomaterial implants) and inhibition of bacterial colonization. In this regard, we synthesize bifunctional nanomaterials by functionalizing the pores and outer surfaces of periodic mesoporous organosilica (PMO) with antibacterial tetracycline (Tet) and antibacterial and cell-adhesive bipolymer poly-d-lysine (PDL), respectively. Then, the fabricated TetPMO-PDL nanomaterials are incorporated into alginate-based hydrogels to create injectable and 3D-printable nanocomposite (NC) hydrogels (AlgL-TetPMO-PDL). These bifunctional nanomaterial and 3D-printable NC hydrogel show pH-dependent release of Tet over 7 days. They also enhance the proliferation of eukaryotic cells (fibroblasts). TetPMO-PDL is inactive in reducing Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis biofilms. However, AlgL-TetPMO-PDL shows significant antibiofilm activity against P. aeruginosa. These results suggest that the incorporation of TetPMO-PDL into AlgL may have a synergistic effect on the inhibition of the Gram-negative bacterial (P. aeruginosa) biofilm, while this has no effect on the reduction of the Gram-positive bacterial (S. aureus and E. faecalis) biofilm.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Sihhiye, 06100 Ankara, Turkey
| | - Michael Czieborowski
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Nermin S Kehr
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
17
|
Boulais L, Jellali R, Pereira U, Leclerc E, Bencherif SA, Legallais C. Cryogel-Integrated Biochip for Liver Tissue Engineering. ACS APPLIED BIO MATERIALS 2021; 4:5617-5626. [PMID: 35006744 DOI: 10.1021/acsabm.1c00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microfluidic systems and polymer hydrogels have been widely developed for tissue engineering. Yet, only a few tools combining both approaches, especially for in vitro liver models, are being explored. In this study, an alginate-based cryogel-integrated biochip was engineered for dynamic hepatoma cell line culture in three dimensions (3D). The alginate cryogel was covalently cross-linked in the biochip at subzero temperatures (T < 0 °C) to create a scaffold with high mechanical stability and an interconnected macroporous network. By varying the alginate concentration and the cross-linker ratio, Young's modulus of the cryogel can be fine-tuned between 1.5 and 29 kPa, corresponding to the range of stiffness of the different physiological states of the liver. We demonstrated that HepG2/C3A cells can be cultured and maintained as viable under dynamic conditions in this device up to 6 days. Albumin synthesis and glucose consumption increased over the cell culture days. Moreover, a 3D cell structure was observed across the entire height of the biochip, which was preserved following alginate lyase treatment to remove the cryogel-based scaffold. In summary, these results represent a proof of concept of an interesting cell culture technology that should be further investigated to engineer healthy and cirrhotic liver models.
Collapse
Affiliation(s)
- Lilandra Boulais
- Université de Technologie de Compiègne, UMR CNRS 7338 Biomécanique et Bioingénierie, Centre de Recherche de Royallieu, Compiègne 60203, France
| | - Rachid Jellali
- Université de Technologie de Compiègne, UMR CNRS 7338 Biomécanique et Bioingénierie, Centre de Recherche de Royallieu, Compiègne 60203, France
| | - Ulysse Pereira
- Université de Technologie de Compiègne, UMR CNRS 7338 Biomécanique et Bioingénierie, Centre de Recherche de Royallieu, Compiègne 60203, France
| | - Eric Leclerc
- Université de Technologie de Compiègne, UMR CNRS 7338 Biomécanique et Bioingénierie, Centre de Recherche de Royallieu, Compiègne 60203, France
| | - Sidi A Bencherif
- Université de Technologie de Compiègne, UMR CNRS 7338 Biomécanique et Bioingénierie, Centre de Recherche de Royallieu, Compiègne 60203, France.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115-5005, United States.,Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115-5005, United States.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cécile Legallais
- Université de Technologie de Compiègne, UMR CNRS 7338 Biomécanique et Bioingénierie, Centre de Recherche de Royallieu, Compiègne 60203, France
| |
Collapse
|
18
|
Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021; 7:79. [PMID: 34203439 PMCID: PMC8293244 DOI: 10.3390/gels7030079] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| | - Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| |
Collapse
|
19
|
Colombani T, Rogers ZJ, Eggermont LJ, Bencherif SA. Harnessing biomaterials for therapeutic strategies against COVID-19. EMERGENT MATERIALS 2021; 4:9-18. [PMID: 33842840 PMCID: PMC8022295 DOI: 10.1007/s42247-021-00171-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 05/16/2023]
Abstract
With the emergence of the coronavirus disease 2019 (COVID-19), the world is experiencing a profound human health crisis. The number of infections and deaths due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to increase every minute, pinpointing major shortcomings in our ability to prevent viral outbreaks. Although several COVID-19 vaccines have been recently approved for emergency use, therapeutic options remain limited, and their long-term potency has yet to be validated. Biomaterials science has a pivotal role to play in pushing the boundaries of emerging technologies for antiviral research and treatment. In this perspective, we discuss how biomaterials can be harnessed to develop accurate COVID-19 infection models, enhance antiviral drug delivery, foster new antiviral strategies, and boost vaccine efficacy. These efforts will not only contribute to stop or mitigate the current pandemic but will also provide unorthodox platforms to understand, prevent, and protect us from future viral outbreaks.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
20
|
Çimen D, Özbek MA, Bereli N, Mattiasson B, Denizli A. Injectable Cryogels in Biomedicine. Gels 2021; 7:gels7020038. [PMID: 33915687 PMCID: PMC8167568 DOI: 10.3390/gels7020038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cryogels are interconnected macroporous materials that are synthesized from a monomer solution at sub-zero temperatures. Cryogels, which are used in various applications in many research areas, are frequently used in biomedicine applications due to their excellent properties, such as biocompatibility, physical resistance and sensitivity. Cryogels can also be prepared in powder, column, bead, sphere, membrane, monolithic, and injectable forms. In this review, various examples of recent developments in biomedical applications of injectable cryogels, which are currently scarce in the literature, made from synthetic and natural polymers are discussed. In the present review, several biomedical applications of injectable cryogels, such as tissue engineering, drug delivery, therapeutic, therapy, cell transplantation, and immunotherapy, are emphasized. Moreover, it aims to provide a different perspective on the studies to be conducted on injectable cryogels, which are newly emerging trend.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Merve Asena Özbek
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Box 124, 221 00 Lund, Sweden;
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
- Correspondence:
| |
Collapse
|
21
|
He T, Li B, Colombani T, Joshi-Navare K, Mehta S, Kisiday J, Bencherif SA, Bajpayee AG. Hyaluronic Acid-Based Shape-Memory Cryogel Scaffolds for Focal Cartilage Defect Repair. Tissue Eng Part A 2021; 27:748-760. [PMID: 33108972 DOI: 10.1089/ten.tea.2020.0264] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic joint injuries can result in significant cartilage defects, which can greatly increase the risk of osteoarthritis development. Due to the limited self-healing capacity of avascular cartilage, tissue engineering approaches are required for filling defects and promoting cartilage regeneration. Current approaches utilize invasive surgical procedures for extraction and implantation of autologous chondrocytes; therefore, injectable biomaterials have gained interest to minimize the risk of infection as well as patient pain and discomfort. In this study, we engineered biomimetic, hyaluronic acid (HA)-based cryogel scaffolds that possess shape-memory properties as they contract and regain their shape after syringe injection to noninvasively fill cartilage defects. The cryogels, fabricated with HA and glycidyl methacrylate at -20°C, resulted in an elastic, macroporous, and highly interconnected network that provided a conducive microenvironment for chondrocytes to remain viable and metabolically active after injection through a syringe needle. Chondrocytes seeded within cryogels and cultured for 15 days exhibited enhanced cell proliferation, metabolism, and production of cartilage extracellular matrix glycosaminoglycans compared with HA-based hydrogels. Furthermore, immunohistochemical staining revealed production of collagen type II from chondrocyte-seeded cryogels, indicating the maintenance of cell phenotype. These results demonstrate the potential of chondrocyte-seeded, HA-based, injectable cryogel scaffolds to promote regeneration of cartilage tissue for nonsurgically invasive defect repair. Impact statement Hyaluronic acid-based shape-memory cryogels provide a conducive microenvironment for chondrocyte adhesion, proliferation, and matrix biosynthesis for use in repair of cartilage defects. Due to their sponge-like elastic properties, cryogels can fully recover their original shape back after injection while not impacting metabolism or viability of encapsulated cells. Clinically, they provide an opportunity for filling focal cartilage defects by using a single, minimally invasive injection of a cell encapsulating biocompatible three-dimensional scaffold that can return to its original structure to fit the defect geometry and enable matrix regeneration.
Collapse
Affiliation(s)
- Tengfei He
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Boting Li
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Kasturi Joshi-Navare
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Shikhar Mehta
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - John Kisiday
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sidi A Bencherif
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G Bajpayee
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA.,Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|