1
|
Fan H, Lü D, Lu Z, Li H, Qi Z, Sun S, Guan D, Long M, Gao M, Liu S. TRPML1 ion channel promotes HepaRG cell differentiation under simulated microgravity conditions. NPJ Microgravity 2025; 11:9. [PMID: 40089547 PMCID: PMC11910645 DOI: 10.1038/s41526-025-00461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/17/2025] [Indexed: 03/17/2025] Open
Abstract
Stem cell differentiation must be regulated by intricate and complex interactions between cells and their surrounding environment, ensuring normal organ and tissue morphology such as the liver1. Though it is well acknowledged that microgravity provides necessary mechanical force signals for cell fate2, how microgravity affects growth, differentiation, and communication is still largely unknown due to the lack of real experimental scenarios and reproducibility tools. Here, Rotating Flat Chamber (RFC) was used to simulate ground-based microgravity effects to study how microgravity effects affect the differentiation of HepaRG (hepatic progenitor cells) cells. Unexpectedly, the results show that RFC conditions could promote HepaRG cell differentiation which exhibited increased expression of Alpha-fetoprotein (AFP), albumin (ALB), and Recombinant Cytokeratin 18 (CK18). Through screening a series of mechanical receptors, the ion channel TRPML1 was critical for promoting the differentiation effect under RFC conditions. Once TRPML1 was activated by stimulated microgravity effects, the concentration of lysosomal calcium ions was increased to activate the Wnt/β-catenin signaling pathway, which finally led to enhanced cell differentiation of HepaRG cells. In addition, the cytoskeleton was remodeled under RFC conditions to influence the expression of PI (3,5) P2, which is the best-known activator of TRPML1. In summary, our findings have established a mechanism by which simulated microgravity promotes the differentiation of HepaRG cells through the TRPML1 signaling pathway, which provides a potential target for the regulation of hepatic stem/progenitor cell differentiation and embryonic liver development under real microgravity conditions.
Collapse
Affiliation(s)
- Huancai Fan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Dongyuan Lü
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Zheng Lu
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Hangyu Li
- University of Chinese Academy of Sciences, Beijing, P.R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Zijuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Shujin Sun
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Dongshi Guan
- University of Chinese Academy of Sciences, Beijing, P.R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China.
- University of Chinese Academy of Sciences, Beijing, P.R. China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China
| |
Collapse
|
2
|
Momotyuk E, Ebrahim N, Shakirova K, Dashinimaev E. Role of the cytoskeleton in cellular reprogramming: effects of biophysical and biochemical factors. Front Mol Biosci 2025; 12:1538806. [PMID: 40123979 PMCID: PMC11926148 DOI: 10.3389/fmolb.2025.1538806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
The cytoskeleton plays a crucial role in regulating cellular behavior, acting as both a structural framework and a mediator of mechanical and biochemical signals that influence cell fate. In the context of cellular reprogramming, modifications to the cytoskeleton can have profound effects on lineage commitment and differentiation efficiency. This review explores the impact of mechanical forces such as substrate stiffness, topography, extracellular fluid viscosity, and cell seeding density on cytoskeletal organization and mechanotransduction pathways, including Rho/ROCK and YAP/TAZ signaling. Additionally, we examine the influence of biochemical agents that modulate cytoskeletal dynamics, such as actin and microtubule polymerization inhibitors, and their effects on stem cell differentiation. By understanding how cytoskeletal remodeling governs cellular identity, this review highlights potential strategies for improving reprogramming efficiency and directing cell fate by manipulating mechanical and biochemical cues.
Collapse
Affiliation(s)
| | | | | | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Bermudez A, Latham ZD, Ma AJ, Bi D, Hu JK, Lin NYC. Regulation of chromatin modifications through coordination of nucleus size and epithelial cell morphology heterogeneity. Commun Biol 2025; 8:269. [PMID: 39979587 PMCID: PMC11842846 DOI: 10.1038/s42003-025-07677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Cell morphology heterogeneity is pervasive in epithelial collectives, yet the underlying mechanisms driving such heterogeneity and its consequential biological ramifications remain elusive. Here, we observed a consistent correlation between the epithelial cell morphology and nucleus morphology during crowding, revealing a persistent log-normal probability distribution characterizing both cell and nucleus areas across diverse epithelial model systems. We showed that this morphological diversity arises from asymmetric partitioning during cell division. Next, we provide insights into the impact of nucleus morphology on chromatin modifications. We demonstrated that constraining nucleus leads to downregulation of the euchromatic mark H3K9ac and upregulation of the heterochromatic mark H3K27me3. Furthermore, we showed that nucleus size regulates H3K27me3 levels through histone demethylase UTX. These findings highlight the significance of cell morphology heterogeneity as a driver of chromatin state diversity, shaping functional variability within epithelial tissues.
Collapse
Affiliation(s)
- Alexandra Bermudez
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Zoe D Latham
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Alex J Ma
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Broad Stem Cell Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Neil Y C Lin
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA.
- Broad Stem Cell Center, University of California Los Angeles, Los Angeles, CA, USA.
- Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Bermudez A, Latham ZD, Ma AJ, Bi D, Hu JK, Lin NYC. Regulation of Chromatin Modifications through Coordination of Nucleus Size and Epithelial Cell Morphology Heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.590164. [PMID: 38712099 PMCID: PMC11071433 DOI: 10.1101/2024.04.18.590164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cell morphology heterogeneity is pervasive in epithelial collectives, yet the underlying mechanisms driving such heterogeneity and its consequential biological ramifications remain elusive. Here, we observed a consistent correlation between the epithelial cell morphology and nucleus morphology during crowding, revealing a persistent log-normal probability distribution characterizing both cell and nucleus areas across diverse epithelial model systems. We further showed that this morphological diversity arises from asymmetric partitioning during cell division. Moreover, we provide insights into the impact of nucleus morphology on chromatin modifications. We demonstrated that constraining nucleus leads to downregulation of the euchromatic mark H3K9ac and upregulation of the heterochromatic mark H3K27me3. Furthermore, we showed that nucleus size regulates H3K27me3 levels through histone demethylase UTX. These findings highlight the significance of cell morphology heterogeneity as a driver of chromatin state diversity, shaping functional variability within epithelial tissues.
Collapse
|
5
|
Zhou W, Lin J, Wang Q, Wang X, Yao X, Yan Y, Sun W, Zhu Q, Zhang X, Wang X, Ji B, Ouyang H. Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate. Cell Rep 2025; 44:115106. [PMID: 39723890 DOI: 10.1016/j.celrep.2024.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear. Here, we demonstrate that microtopography influences nuclear tension in mesenchymal stem cells (MSCs), shaping chromatin accessibility and determining lineage commitment. On aligned substrates, MSCs exhibit high cytoskeletal tension along the fiber direction, creating anisotropic nuclear stress that opens chromatin sites for neurogenic, myogenic, and tenogenic genes via transcription factors like Nuclear receptor TLX (TLX). In contrast, random substrates induce isotropic nuclear stress, promoting chromatin accessibility for osteogenic and chondrogenic genes through Runt-related transcription factors (RUNX). Our findings reveal that aligned and random microtopographies direct site-specific chromatin stretch and lineage-specific gene expression, priming MSCs for distinct lineages. This study introduces a novel framework for understanding how topographic cues govern cell fate in tissue repair and regeneration.
Collapse
Affiliation(s)
- Wenyan Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Junxin Lin
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Qianchun Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Xianliu Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 200051, China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province 322000, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Qiuwen Zhu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaoan Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaozhao Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang Province 310027, China; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
6
|
Castillo C, Grieco M, D'Amone S, Lolli MG, Ursini O, Cortese B. Hypoxia effects on glioblastoma progression through YAP/TAZ pathway regulation. Cancer Lett 2024; 588:216792. [PMID: 38453044 DOI: 10.1016/j.canlet.2024.216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The resistance of glioblastomas (GBM) to standard therapies poses a clinical challenge with limited survival despite interventions. The tumor microenvironment (TME) orchestrates GBM progression, comprising stromal and immune cells and is characterized by extensive hypoxic regions. Hypoxia activates the hypoxia-inducible factor 1 alpha (HIF-1α) pathway, interacting with the Hippo pathway (YAP/TAZ) in crucial cellular processes. We discuss here the related signaling crosstalk between YAP/TAZ and regions of hypoxia in the TME with particular attention on the MST1/2 and LATS1/2-regulated YAP/TAZ activation, impacting cell proliferation, invasion, and stemness. Moreover, the hypoxia-YAP/TAZ axis influence on angiogenesis, stem cells, and metabolic regulators is defined. By reviewing extracellular matrix alterations activation of YAP/TAZ, modulation of signaling pathways we also discuss the significance of spatial constraints and epigenetic modifications contribution to GBM progression, with potential therapeutic targets in YAP/TAZ-mediated gene regulation. Comprehensive understanding of the hypoxia-Hippo pathway-TME interplay offers insights for novel therapeutic strategies, aiming to provide new directions for treatment.
Collapse
Affiliation(s)
- Carolina Castillo
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Maddalena Grieco
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Stefania D'Amone
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Maria Grazia Lolli
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Ornella Ursini
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Barbara Cortese
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
8
|
Song Y, Soto J, Wong SY, Wu Y, Hoffman T, Akhtar N, Norris S, Chu J, Park H, Kelkhoff DO, Ang CE, Wernig M, Kasko A, Downing TL, Poo MM, Li S. Biphasic regulation of epigenetic state by matrix stiffness during cell reprogramming. SCIENCE ADVANCES 2024; 10:eadk0639. [PMID: 38354231 PMCID: PMC10866547 DOI: 10.1126/sciadv.adk0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
We investigate how matrix stiffness regulates chromatin reorganization and cell reprogramming and find that matrix stiffness acts as a biphasic regulator of epigenetic state and fibroblast-to-neuron conversion efficiency, maximized at an intermediate stiffness of 20 kPa. ATAC sequencing analysis shows the same trend of chromatin accessibility to neuronal genes at these stiffness levels. Concurrently, we observe peak levels of histone acetylation and histone acetyltransferase (HAT) activity in the nucleus on 20 kPa matrices, and inhibiting HAT activity abolishes matrix stiffness effects. G-actin and cofilin, the cotransporters shuttling HAT into the nucleus, rises with decreasing matrix stiffness; however, reduced importin-9 on soft matrices limits nuclear transport. These two factors result in a biphasic regulation of HAT transport into nucleus, which is directly demonstrated on matrices with dynamically tunable stiffness. Our findings unravel a mechanism of the mechano-epigenetic regulation that is valuable for cell engineering in disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sze Yue Wong
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yifan Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Navied Akhtar
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Sam Norris
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Julia Chu
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hyungju Park
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Structure and Function of Neural Network, Korea Brain Research Institute (KBRI), Daegu 41068, South Korea
| | - Douglas O. Kelkhoff
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cheen Euong Ang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Andrea Kasko
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Mu-ming Poo
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
10
|
Urciuolo F, Imparato G, Netti PA. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front Bioeng Biotechnol 2023; 11:1197075. [PMID: 37434756 PMCID: PMC10330728 DOI: 10.3389/fbioe.2023.1197075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The extracellular microenvironment regulates cell decisions through the accurate presentation at the cell surface of a complex array of biochemical and biophysical signals that are mediated by the structure and composition of the extracellular matrix (ECM). On the one hand, the cells actively remodel the ECM, which on the other hand affects cell functions. This cell-ECM dynamic reciprocity is central in regulating and controlling morphogenetic and histogenetic processes. Misregulation within the extracellular space can cause aberrant bidirectional interactions between cells and ECM, resulting in dysfunctional tissues and pathological states. Therefore, tissue engineering approaches, aiming at reproducing organs and tissues in vitro, should realistically recapitulate the native cell-microenvironment crosstalk that is central for the correct functionality of tissue-engineered constructs. In this review, we will describe the most updated bioengineering approaches to recapitulate the native cell microenvironment and reproduce functional tissues and organs in vitro. We have highlighted the limitations of the use of exogenous scaffolds in recapitulating the regulatory/instructive and signal repository role of the native cell microenvironment. By contrast, strategies to reproduce human tissues and organs by inducing cells to synthetize their own ECM acting as a provisional scaffold to control and guide further tissue development and maturation hold the potential to allow the engineering of fully functional histologically competent three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- F. Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - G. Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - P. A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
11
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
13
|
Sawant M, Benamrouz-Vanneste S, Meloni D, Gantois N, Even G, Guyot K, Creusy C, Duval E, Wintjens R, Weitzman JB, Chabe M, Viscogliosi E, Certad G. Putative SET-domain methyltransferases in Cryptosporidium parvum and histone methylation during infection. Virulence 2022; 13:1632-1650. [PMID: 36097362 PMCID: PMC9487757 DOI: 10.1080/21505594.2022.2123363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cryptosporidium parvum is a leading cause of diarrhoeal illness worldwide being a significant threat to young children and immunocompromised patients, but the pathogenesis caused by this parasite remains poorly understood. C. parvum was recently linked with oncogenesis. Notably, the mechanisms of gene expression regulation are unexplored in Cryptosporidium and little is known about how the parasite impact host genome regulation. Here, we investigated potential histone lysine methylation, a dynamic epigenetic modification, during the life cycle of the parasite. We identified SET-domain containing proteins, putative lysine methyltransferases (KMTs), in the C. parvum genome and classified them phylogenetically into distinct subfamilies (namely CpSET1, CpSET2, CpSET8, CpKMTox and CpAKMT). Our structural analysis further characterized CpSET1, CpSET2 and CpSET8 as histone lysine methyltransferases (HKMTs). The expression of the CpSET genes varies considerably during the parasite life cycle and specific methyl-lysine antibodies showed dynamic changes in parasite histone methylation during development (CpSET1:H3K4; CpSET2:H3K36; CpSET8:H4K20). We investigated the impact of C. parvum infection on the host histone lysine methylation. Remarkably, parasite infection led to a considerable decrease in host H3K36me3 and H3K27me3 levels, highlighting the potential of the parasite to exploit the host epigenetic regulation to its advantage. This is the first study to describe epigenetic mechanisms occurring throughout the parasite life cycle and during the host–parasite interaction. A better understanding of histone methylation in both parasite and host genomes may highlight novel infection control strategies.
Collapse
Affiliation(s)
- Manasi Sawant
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Sadia Benamrouz-Vanneste
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Unité de Recherche Smart and Sustainable Cities, Faculté de Gestion, Economie et Sciences, Institut Catholique de Lille, France
| | - Dionigia Meloni
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Nausicaa Gantois
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Gaël Even
- Gènes Diffusion, F-59501 Douai, France.,PEGASE-Biosicences Plateforme d'Expertises Génomiques Appliquées aux Sciences Expérimentales, Institut Pasteur de Lille, F-59000 Lille, France
| | - Karine Guyot
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille (GHICL), F-59000 Lille, France
| | - Erika Duval
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille (GHICL), F-59000 Lille, France
| | - René Wintjens
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Jonathan B Weitzman
- UMR7216 Epigenetics and Cell, Université Paris Cité, Fate, CNRS, F-75013 Paris, France
| | - Magali Chabe
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Eric Viscogliosi
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Gabriela Certad
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Délégation à la Recherche Clinique et à l'Innovation, Groupement des Hôpitaux de l'Institut Catholique de Lille, F-59462 Lomme, France
| |
Collapse
|
14
|
Varankar SS, Hari K, Kartika S, Bapat SA, Jolly MK. Cell geometry distinguishes migration‐associated heterogeneity in two‐dimensional systems. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sagar S Varankar
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
- National Centre for Cell Science Savitribai Phule Pune University Ganeshkhind Pune India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
| | - Sharon Kartika
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur Nadia West Bengal India
| | - Sharmila A Bapat
- National Centre for Cell Science Savitribai Phule Pune University Ganeshkhind Pune India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
| |
Collapse
|
15
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
16
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|