1
|
Romera‐Castillo C, Birnstiel S, Sebastián M. Diversity of marine bacteria growing on leachates from virgin and weathered plastic: Insights into potential degraders. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13305. [PMID: 38923399 PMCID: PMC11194452 DOI: 10.1111/1758-2229.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Plastic debris in the ocean releases chemical compounds that can be toxic to marine fauna. It was recently found that some marine bacteria can degrade such leachates, but information on the diversity of these bacteria is mostly lacking. In this study, we analysed the bacterial diversity growing on leachates from new low-density polyethylene (LDPE) and a mix of naturally weathered plastic, collected from beach sand. We used a combination of Catalysed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH), BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT), and 16S rRNA gene amplicon sequencing to analyse bacterioplankton-groups specific activity responses and the identity of the responsive taxa to plastic leachates produced under irradiated and non-irradiated conditions. We found that some generalist taxa responded to all leachates, most of them belonging to the Alteromonadales, Oceanospirillales, Nitrosococcales, Rhodobacterales, and Sphingomonadales orders. However, there were also non-generalist taxa responding to specific irradiated and non-irradiated leachates. Our results provide information about bacterial taxa that could be potentially used to degrade the chemicals released during plastic degradation into seawater contributing to its bioremediation.
Collapse
|
2
|
Rey-Velasco X, Lucena T, Belda A, Gasol JM, Sánchez O, Arahal DR, Pujalte MJ. Genomic and phenotypic characterization of 26 novel marine bacterial strains with relevant biogeochemical roles and widespread presence across the global ocean. Front Microbiol 2024; 15:1407904. [PMID: 38863746 PMCID: PMC11165706 DOI: 10.3389/fmicb.2024.1407904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Prokaryotes dominate global oceans and shape biogeochemical cycles, yet most taxa remain uncultured and uncharacterized as of today. Here we present the characterization of 26 novel marine bacterial strains from a large isolate collection obtained from Blanes Bay (NW Mediterranean) microcosm experiments made in the four seasons. Morphological, cultural, biochemical, physiological, nutritional, genomic, and phylogenomic analyses were used to characterize and phylogenetically place the novel isolates. The strains represent 23 novel bacterial species and six novel genera: three novel species pertaining to class Alphaproteobacteria (families Rhodobacteraceae and Sphingomonadaceae), six novel species and three new genera from class Gammaproteobacteria (families Algiphilaceae, Salinispheraceae, and Alteromonadaceae), 13 novel species and three novel genera from class Bacteroidia (family Flavobacteriaceae), and one new species from class Rhodothermia (family Rubricoccaceae). The bacteria described here have potentially relevant roles in the cycles of carbon (e.g., carbon fixation or energy production via proteorhodopsin), nitrogen (e.g., denitrification or use of urea), sulfur (oxidation of sulfur compounds), phosphorus (acquisition and use of different forms of phosphorus and remodeling of membrane phospholipids), and hydrogen (oxidation of hydrogen to obtain energy). We mapped the genomes of the presented strains to the Tara Oceans metagenomes to reveal that these strains were globally distributed, with those of the family Flavobacteriaceae being the most widespread and abundant, while Rhodothermia being the rarest and most localized. While molecular-only approaches are also important, our study stresses the importance of culturing as a powerful tool to further understand the functioning of marine bacterial communities.
Collapse
Affiliation(s)
| | - Teresa Lucena
- Departamento de Microbiología y Ecología, Universitat de València, València, Spain
| | - Ana Belda
- Departamento de Microbiología y Ecología, Universitat de València, València, Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David R. Arahal
- Departamento de Microbiología y Ecología, Universitat de València, València, Spain
| | - María J. Pujalte
- Departamento de Microbiología y Ecología, Universitat de València, València, Spain
| |
Collapse
|
3
|
Brüwer JD, Sidhu C, Zhao Y, Eich A, Rößler L, Orellana LH, Fuchs BM. Globally occurring pelagiphage infections create ribosome-deprived cells. Nat Commun 2024; 15:3715. [PMID: 38698041 PMCID: PMC11066056 DOI: 10.1038/s41467-024-48172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.
Collapse
Affiliation(s)
- Jan D Brüwer
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| | - Chandni Sidhu
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Yanlin Zhao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Andreas Eich
- PSL Research University: EPHE-UPVD-CNRS,UAR 3278 CRIOBE, Moorea, French Polynesia
| | - Leonard Rößler
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Luis H Orellana
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| |
Collapse
|
4
|
Stojan I, Šantić D, Villena-Alemany C, Trumbić Ž, Matić F, Vrdoljak Tomaš A, Lepen Pleić I, Piwosz K, Kušpilić G, Ninčević Gladan Ž, Šestanović S, Šolić M. Ecology of aerobic anoxygenic phototrophs on a fine-scale taxonomic resolution in Adriatic Sea unravelled by unsupervised neural network. ENVIRONMENTAL MICROBIOME 2024; 19:28. [PMID: 38685092 PMCID: PMC11059731 DOI: 10.1186/s40793-024-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphyletic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine environments, relatively little is still known about their community structure and ecology at fine-scale taxonomic resolution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composition in the Adriatic Sea. RESULTS Analysis was based on pufM gene metabarcoding and quantitative FISH-IR approach with the use of artificial neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abundances in spring 2.136 ± 0.081 × 104 cells mL-1, minimum in summer 0.86 × 104 cells mL-1), FISH-IR groups (Roseobacter clade prevalent in autumn, other Alpha- and Gammaproteobacteria in summer) and pufM sequencing data agglomerated at genus-level. FISH-IR results revealed heterogeneity with the highest average relative contribution of AAPs assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria (31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bacteria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abiotic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, and orthophosphate concentration). A type of neural network, neural gas analysis at order-, genus- and ASV-level, resulted in five distinct best matching units (representing particular environments) and revealed that high diversity was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton. CONCLUSION This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adriatic Sea on a trophic gradient during a year-round period. This study is also one of the first reports of their genus-level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, paving the way for further research of substantial contribution of this important bacterial functional group to marine ecosystems.
Collapse
Affiliation(s)
- Iva Stojan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Danijela Šantić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia.
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Frano Matić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Ana Vrdoljak Tomaš
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Kasia Piwosz
- Department of Fisheries, Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Grozdan Kušpilić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | | | - Stefanija Šestanović
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Mladen Šolić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| |
Collapse
|
5
|
Koblížek M, Ferrera I, Kolářová E, Duhamel S, Popendorf KJ, Gasol JM, Van Mooy BAS. Growth and mortality of aerobic anoxygenic phototrophs in the North Pacific Subtropical Gyre. Appl Environ Microbiol 2024; 90:e0003224. [PMID: 38551354 PMCID: PMC11022572 DOI: 10.1128/aem.00032-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria harvest light energy using bacteriochlorophyll-containing reaction centers to supplement their mostly heterotrophic metabolism. While their abundance and growth have been intensively studied in coastal environments, much less is known about their activity in oligotrophic open ocean regions. Therefore, we combined in situ sampling in the North Pacific Subtropical Gyre, north of O'ahu island, Hawaii, with two manipulation experiments. Infra-red epifluorescence microscopy documented that AAP bacteria represented approximately 2% of total bacteria in the euphotic zone with the maximum abundance in the upper 50 m. They conducted active photosynthetic electron transport with maximum rates up to 50 electrons per reaction center per second. The in situ decline of bacteriochlorophyll concentration over the daylight period, an estimate of loss rates due to predation, indicated that the AAP bacteria in the upper 50 m of the water column turned over at rates of 0.75-0.90 d-1. This corresponded well with the specific growth rate determined in dilution experiments where AAP bacteria grew at a rate 1.05 ± 0.09 d-1. An amendment of inorganic nitrogen to obtain N:P = 32 resulted in a more than 10 times increase in AAP abundance over 6 days. The presented data document that AAP bacteria are an active part of the bacterioplankton community in the oligotrophic North Pacific Subtropical Gyre and that their growth was mostly controlled by nitrogen availability and grazing pressure.IMPORTANCEMarine bacteria represent a complex assembly of species with different physiology, metabolism, and substrate preferences. We focus on a specific functional group of marine bacteria called aerobic anoxygenic phototrophs. These photoheterotrophic organisms require organic carbon substrates for growth, but they can also supplement their metabolic needs with light energy captured by bacteriochlorophyll. These bacteria have been intensively studied in coastal regions, but rather less is known about their distribution, growth, and mortality in the oligotrophic open ocean. Therefore, we conducted a suite of measurements in the North Pacific Subtropical Gyre to determine the distribution of these organisms in the water column and their growth and mortality rates. A nutrient amendment experiment showed that aerobic anoxygenic phototrophs were limited by inorganic nitrogen. Despite this, they grew more rapidly than average heterotrophic bacteria, but their growth was balanced by intense grazing pressure.
Collapse
Affiliation(s)
- Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science, Třeboň, Czechia
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO-CSIC), Fuengirola, Málaga, Spain
| | - Eva Kolářová
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science, Třeboň, Czechia
| | - Solange Duhamel
- Department of Cellular and Molecular Biology, University of Arizona, Tucson, Arizona, USA
| | - Kimberly J. Popendorf
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Coral Gables, Florida, USA
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
6
|
Deulofeu-Capo O, Sebastián M, Auladell A, Cardelús C, Ferrera I, Sánchez O, Gasol JM. Growth rates of marine prokaryotes are extremely diverse, even among closely related taxa. ISME COMMUNICATIONS 2024; 4:ycae066. [PMID: 38800126 PMCID: PMC11126302 DOI: 10.1093/ismeco/ycae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Marine prokaryotes play crucial roles in ocean biogeochemical cycles, being their contribution strongly influenced by their growth rates. Hence, elucidating the variability and phylogenetic imprint of marine prokaryotes' growth rates are crucial for better determining the role of individual taxa in biogeochemical cycles. Here, we estimated prokaryotic growth rates at high phylogenetic resolution in manipulation experiments using water from the northwestern Mediterranean Sea. Experiments were run in the four seasons with different treatments that reduced growth limiting factors: predators, nutrient availability, viruses, and light. Single-amplicon sequence variants (ASVs)-based growth rates were calculated from changes in estimated absolute abundances using total prokaryotic abundance and the proportion of each individual ASV. The trends obtained for growth rates in the different experiments were consistent with other estimates based on total cell-counts, catalyzed reporter deposition fluorescence in situ hybridization subcommunity cell-counts or metagenomic-operational taxonomic units (OTUs). Our calculations unveil a broad range of growth rates (0.3-10 d-1) with significant variability even within closely related ASVs. Likewise, the impact of growth limiting factors changed over the year for individual ASVs. High numbers of responsive ASVs were shared between winter and spring seasons, as well as throughout the year in the treatments with reduced nutrient limitation and viral pressure. The most responsive ASVs were rare in the in situ communities, comprising a large pool of taxa with the potential to rapidly respond to environmental changes. Essentially, our results highlight the lack of phylogenetic coherence in the range of growth rates observed, and differential responses to the various limiting factors, even for closely related taxa.
Collapse
Affiliation(s)
- Ona Deulofeu-Capo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Adrià Auladell
- Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Catalunya, Spain
| | - Clara Cardelús
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Puerto Pesquero s/n, Fuengirola 29640, Málaga, Spain
| | - Olga Sánchez
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya 08193, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| |
Collapse
|
7
|
Rey-Velasco X, Deulofeu-Capo O, Sanz-Sáez I, Cardelús C, Ferrera I, Gasol JM, Sánchez O. Expanding success in the isolation of abundant marine bacteria after reduction in grazing and viral pressure and increase in nutrient availability. Microbiol Spectr 2023; 11:e0089023. [PMID: 37747249 PMCID: PMC10580928 DOI: 10.1128/spectrum.00890-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Isolation of microorganisms is a useful approach to gathering knowledge about their genomic properties, physiology, and ecology, in addition to allowing the characterization of novel taxa. We performed an extensive isolation effort on samples from seawater manipulation experiments that were carried out during the four astronomical seasons in a coastal site of the northwest Mediterranean to evaluate the impact of grazing, viral mortality, resource competition reduction, and light presence/absence on bacterioplankton growth. Isolates were retrieved using two growth media, and their full 16S rRNA gene was sequenced to assess their identity and calculate their culturability across seasons and experimental conditions. A total of 1,643 isolates were obtained, mainly affiliated to the classes Gammaproteobacteria (44%), Alphaproteobacteria (26%), and Bacteroidia (17%). Isolates pertaining to class Gammaproteobacteria were the most abundant in all experiments, while Bacteroidia were preferentially enriched in the treatments with reduced grazing. Sixty-one isolates had a similarity below 97% to cultured taxa and are thus putatively novel. Comparison of isolate sequences with 16S rRNA gene amplicon sequences from the same samples showed that the percentage of reads corresponding to isolates was 21.4% within the whole data set, with dramatic increases in the summer virus-reduced (71%) and diluted (47%) treatments. In fact, we were able to isolate the top 10 abundant taxa in several experiments and from the whole data set. We also show that top-down and bottom-up controls differentially affect taxa in terms of culturability. Our results indicate that culturing marine bacteria using agar plates can be successful in certain ecological situations. IMPORTANCE Bottom-up and top-down controls greatly influence marine microbial community composition and dynamics, which in turn have effects on their culturability. We isolated a high amount of heterotrophic bacterial strains from experiments where seawater environmental conditions had been manipulated and found that decreasing grazing and viral pressure as well as rising nutrient availability are key factors increasing the success in culturing marine bacteria. Our data hint at factors influencing culturability and underpin bacterial cultures as a powerful way to discover new taxa.
Collapse
Affiliation(s)
| | - Ona Deulofeu-Capo
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Isabel Sanz-Sáez
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Clara Cardelús
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Isabel Ferrera
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, (IEO-CSIC), Fuengirola, Málaga, Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
8
|
Brüwer JD, Orellana LH, Sidhu C, Klip HCL, Meunier CL, Boersma M, Wiltshire KH, Amann R, Fuchs BM. In situ cell division and mortality rates of SAR11, SAR86, Bacteroidetes, and Aurantivirga during phytoplankton blooms reveal differences in population controls. mSystems 2023; 8:e0128722. [PMID: 37195198 PMCID: PMC10308942 DOI: 10.1128/msystems.01287-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 05/18/2023] Open
Abstract
Net growth of microbial populations, that is, changes in abundances over time, can be studied using 16S rRNA fluorescence in situ hybridization (FISH). However, this approach does not differentiate between mortality and cell division rates. We used FISH-based image cytometry in combination with dilution culture experiments to study net growth, cell division, and mortality rates of four bacterial taxa over two distinct phytoplankton blooms: the oligotrophs SAR11 and SAR86, and the copiotrophic phylum Bacteroidetes, and its genus Aurantivirga. Cell volumes, ribosome content, and frequency of dividing cells (FDC) co-varied over time. Among the three, FDC was the most suitable predictor to calculate cell division rates for the selected taxa. The FDC-derived cell division rates for SAR86 of up to 0.8/day and Aurantivirga of up to 1.9/day differed, as expected for oligotrophs and copiotrophs. Surprisingly, SAR11 also reached high cell division rates of up to 1.9/day, even before the onset of phytoplankton blooms. For all four taxonomic groups, the abundance-derived net growth (-0.6 to 0.5/day) was about an order of magnitude lower than the cell division rates. Consequently, mortality rates were comparably high to cell division rates, indicating that about 90% of bacterial production is recycled without apparent time lag within 1 day. Our study shows that determining taxon-specific cell division rates complements omics-based tools and provides unprecedented clues on individual bacterial growth strategies including bottom-up and top-down controls. IMPORTANCE The growth of a microbial population is often calculated from their numerical abundance over time. However, this does not take cell division and mortality rates into account, which are important for deriving ecological processes like bottom-up and top-down control. In this study, we determined growth by numerical abundance and calibrated microscopy-based methods to determine the frequency of dividing cells and subsequently calculate taxon-specific cell division rates in situ. The cell division and mortality rates of two oligotrophic (SAR11 and SAR86) and two copiotrophic (Bacteroidetes and Aurantivirga) taxa during two spring phytoplankton blooms showed a tight coupling for all four taxa throughout the blooms without any temporal offset. Unexpectedly, SAR11 showed high cell division rates days before the bloom while cell abundances remained constant, which is indicative of strong top-down control. Microscopy remains the method of choice to understand ecological processes like top-down and bottom-up control on a cellular level.
Collapse
Affiliation(s)
- Jan D. Brüwer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Chandni Sidhu
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Helena C. L. Klip
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Cédric L. Meunier
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Maarten Boersma
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- University of Bremen, Bremen, Germany
| | - Karen H. Wiltshire
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Wattenmeerstation, List auf Sylt, Bremerhaven, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
9
|
Šantić D, Stojan I, Matić F, Trumbić Ž, Vrdoljak Tomaš A, Fredotović Ž, Piwosz K, Lepen Pleić I, Šestanović S, Šolić M. Picoplankton diversity in an oligotrophic and high salinity environment in the central Adriatic Sea. Sci Rep 2023; 13:7617. [PMID: 37165047 PMCID: PMC10172355 DOI: 10.1038/s41598-023-34704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
By combining qualitative 16S metabarcoding and quantitative CARD-FISH methods with neural gas analysis, different patterns of the picoplankton community were revealed at finer taxonomic levels in response to changing environmental conditions in the Adriatic Sea. We present the results of a one-year study carried out in an oligotrophic environment where increased salinity was recently observed. We have shown that the initial state of community structure changes according to environmental conditions and is expressed as qualitative and quantitative changes. A general pattern of increasing diversity under harsh environmental conditions, particularly under the influence of increasing salinity at the expense of community abundance was observed. Considering the trend of changing seawater characteristics due to climate change, this study helps in understanding a possible structural change in the microbial community of the Adriatic Sea that could affect higher levels of the marine food web.
Collapse
Affiliation(s)
- Danijela Šantić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Iva Stojan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia.
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, Split, Croatia.
| | - Frano Matić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Ana Vrdoljak Tomaš
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, Gdynia, Poland
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Stefanija Šestanović
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Mladen Šolić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| |
Collapse
|
10
|
Abreu CI, Dal Bello M, Bunse C, Pinhassi J, Gore J. Warmer temperatures favor slower-growing bacteria in natural marine communities. SCIENCE ADVANCES 2023; 9:eade8352. [PMID: 37163596 PMCID: PMC10171810 DOI: 10.1126/sciadv.ade8352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Earth's life-sustaining oceans harbor diverse bacterial communities that display varying composition across time and space. While particular patterns of variation have been linked to a range of factors, unifying rules are lacking, preventing the prediction of future changes. Here, analyzing the distribution of fast- and slow-growing bacteria in ocean datasets spanning seasons, latitude, and depth, we show that higher seawater temperatures universally favor slower-growing taxa, in agreement with theoretical predictions of how temperature-dependent growth rates differentially modulate the impact of mortality on species abundances. Changes in bacterial community structure promoted by temperature are independent of variations in nutrients along spatial and temporal gradients. Our results help explain why slow growers dominate at the ocean surface, during summer, and near the tropics and provide a framework to understand how bacterial communities will change in a warmer world.
Collapse
Affiliation(s)
- Clare I Abreu
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carina Bunse
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution of Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Mise K, Iwasaki W. Unexpected absence of ribosomal protein genes from metagenome-assembled genomes. ISME COMMUNICATIONS 2022; 2:118. [PMID: 37938339 PMCID: PMC9723686 DOI: 10.1038/s43705-022-00204-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 05/30/2023]
Abstract
Metagenome-assembled genomes (MAGs) have revealed the hidden diversity and functions of uncultivated microbes, but their reconstruction from metagenomes remains a computationally difficult task. Repetitive or exogenous sequences, such as ribosomal RNA and horizontally transferred genes, are frequently absent from MAGs because of misassembly and binning errors. Here, we report that ribosomal protein genes are also often absent from MAGs, although they are neither repetitive nor exogenous. Comprehensive analyses of more than 190,000 MAGs revealed that these genes could be missing in more than 20-40% of near-complete (i.e., with completeness of 90% or higher) MAGs. While some uncultivated environmental microbes intrinsically lack some ribosomal protein genes, we found that this unexpected absence is largely due to special evolutionary patterns of codon usage bias in ribosomal protein genes and algorithmic characteristics of metagenomic binning, which is dependent on tetranucleotide frequencies of contigs. This problem reflects the microbial life-history strategy. Fast-growing microbes tend to have this difficulty, likely because of strong evolutionary pressures on ribosomal protein genes toward the efficient assembly of ribosomes. Our observations caution those who study genomics and phylogeny of uncultivated microbes, the diversity and evolution of microbial genes in the central dogma, and bioinformatics in metagenomics.
Collapse
Affiliation(s)
- Kazumori Mise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo. Bunkyo-ku, Tokyo, 113-0032, Japan.
- National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, 062-8517, Japan.
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo. Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
12
|
Lineage-Specific Growth Curves Document Large Differences in Response of Individual Groups of Marine Bacteria to the Top-Down and Bottom-Up Controls. mSystems 2021; 6:e0093421. [PMID: 34581594 PMCID: PMC8547455 DOI: 10.1128/msystems.00934-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Marine bacterioplankton represent a diverse assembly of species differing largely in their abundance, physiology, metabolic activity, and role in microbial food webs. To analyze their sensitivity to bottom-up and top-down controls, we performed a manipulation experiment where grazers were removed, with or without the addition of phosphate. Using amplicon-reads normalization by internal standard (ARNIS), we reconstructed growth curves for almost 300 individual phylotypes. Grazer removal caused a rapid growth of most bacterial groups, which grew at rates of 0.6 to 3.5 day−1, with the highest rates (>4 day−1) recorded among Rhodobacteraceae, Oceanospirillales, Alteromonadaceae, and Arcobacteraceae. Based on their growth response, the phylotypes were divided into three basic groups. Most of the phylotypes responded positively to both grazer removal as well as phosphate addition. The second group (containing, e.g., Rhodobacterales and Rhizobiales) responded to the grazer removal but not to the phosphate addition. Finally, some clades, such as SAR11 and Flavobacteriaceae, responded only to phosphate amendment but not to grazer removal. Our results show large differences in bacterial responses to experimental manipulations at the phylotype level and document different life strategies of marine bacterioplankton. In addition, growth curves of 130 phylogroups of aerobic anoxygenic phototrophs were reconstructed based on changes of the functional pufM gene. The use of functional genes together with rRNA genes may significantly expand the scientific potential of the ARNIS technique. IMPORTANCE Growth is one of the main manifestations of life. It is assumed generally that bacterial growth is constrained mostly by nutrient availability (bottom-up control) and grazing (top-down control). Since marine bacteria represent a very diverse assembly of species with different metabolic properties, their growth characteristics also largely differ accordingly. Currently, the growth of marine microorganisms is typically evaluated using microscopy in combination with fluorescence in situ hybridization (FISH). However, these laborious techniques are limited in their throughput and taxonomical resolution. Therefore, we combined a classical manipulation experiment with next-generation sequencing to resolve the growth dynamics of almost 300 bacterial phylogroups in the coastal Adriatic Sea. The analysis documented that most of the phylogroups responded positively to both grazer removal and phosphate addition. We observed significant differences in growth kinetics among closely related species, which could not be distinguished by the classical FISH technique.
Collapse
|