1
|
Yang FQ, Tan XM, Chu SS, Yin MZ, Zhang ZY, Peng HS. UPLC-Q-TOF-MS With Chemometrics Approach Analysis of Nonvolatile Compounds for Medicinal Citrus reticulata With Cultivar and Areas Variations. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39731403 DOI: 10.1002/pca.3496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
INTRODUCTION Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. The quality of CRP can be affected by various factors, which are closely related to the metabolite composition of CRP. OBJECTIVES The objective of this study is to conduct a comprehensive comparative analysis on the chemical profiling of 51 C. reticulata samples of eight medicinal varieties, grown in different areas, and provide a methodological reference for the study of pharmacodynamic material bases and quality control of C. reticulata. METHODOLOGY Initially, a comprehensive characterization was performed using quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and a heatmap visualization was employed for clarifying the distribution of the annotated active ingredients. Furthermore, obtained chemical profiles data were employed in multivariate statistical methods, comprising principal component analysis (PCA), and orthogonal partial least-squares-discrimination analysis (OPLS-DA). RESULTS A total of 42 chemical components were annotated in positive ion mode. The relative contents were evident differences in the active ingredients of medicinal varieties of C. reticulata; mostly, polymethoxy flavones (PMFs) in C. reticulata "Dahongpao" were more abundant; among them, nobiletin and tangeretin are the main active ingredients in CRP. In addition, the relative contents of chemical constituents of C. reticulata "Dahongpao" and C. reticulata "Unshiu" from different areas were less variable. Compared with production origins, the varieties of C. reticulata had a greater impact on quality. CONCLUSION This work obtains a better understanding of the chemical profiles of medicinal varieties of C. reticulata, facilitated the reasonable applicability and quality control of medicinal varieties of C. reticulata.
Collapse
Affiliation(s)
- Fang-Qing Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Mei Tan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shan-Shan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Min-Zhen Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen-Yu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hua-Sheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kim GJ, Jang Y, Kwon KT, Kim JW, Kang SIL, Ko HC, Lee JY, Apostolidis E, Kwon YI. Jeju Citrus ( Citrus unshiu) Leaf Extract and Hesperidin Inhibit Small Intestinal α-Glucosidase Activities In Vitro and Postprandial Hyperglycemia in Animal Model. Int J Mol Sci 2024; 25:13721. [PMID: 39769483 PMCID: PMC11679778 DOI: 10.3390/ijms252413721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Citrus fruits are widely distributed in East Asia, and tea made from citrus peels has demonstrated health benefits, such as a reduction in fever, inflammation, and high blood pressure. However, citrus leaves have not been evaluated extensively for their possible health benefits. In this study, the α-glucosidase-inhibitory activity of Jeju citrus hot-water (CW) and ethyl alcohol (CE) extracts, along with hesperidin (HP) (a bioactive compound in citrus leaf extracts), was investigated, and furthermore, their effect on postprandial blood glucose reduction in an animal model was determined. The hesperidin contents of CW and CE were 15.80 ± 0.18 and 39.17 ± 0.07 mg/g-extract, respectively. Hesperidin inhibited α-glucosidase (IC50, 4.39), sucrase (0.50), and CE (2.62) and demonstrated higher α-glucosidase inhibitory activity when compared to CW (4.99 mg/mL). When using an SD rat model, during sucrose and starch loading tests with CE (p < 0.01) and HP (p < 0.01), a significant postprandial blood glucose reduction effect was observed when compared to the control. The maximum blood glucose levels (Cmax) of the CE administration group decreased by about 15% (from 229.3 ± 14.5 to 194.0 ± 7.4, p < 0.01) and 11% (from 225.1 ± 13.8 to 201.1 ± 7.2 hr·mg/dL, p < 0.05) in the sucrose and starch loading tests, respectively. Our findings suggest that citrus leaf extracts standardized to hesperidin may reduce postprandial blood glucose levels through the observed inhibitory effect against sucrase, which results in delayed carbohydrate absorption. Our findings provide a biochemical rationale for further evaluating the benefits of citrus leaves.
Collapse
Affiliation(s)
- Gi-Jung Kim
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| | - Yelim Jang
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| | - Kyoung-Tae Kwon
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| | - Jae-Won Kim
- Jeju Institute of Korean Medicine, Jujusi, Juju 63309, Republic of Korea; (J.-W.K.); (S.-I.K.); (H.-C.K.)
| | - Seong-IL Kang
- Jeju Institute of Korean Medicine, Jujusi, Juju 63309, Republic of Korea; (J.-W.K.); (S.-I.K.); (H.-C.K.)
| | - Hee-Chul Ko
- Jeju Institute of Korean Medicine, Jujusi, Juju 63309, Republic of Korea; (J.-W.K.); (S.-I.K.); (H.-C.K.)
| | - Jung-Yun Lee
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| | - Emmanouil Apostolidis
- Department Chemistry and Food Science, Framingham State University, Framingham, MA 01701, USA
| | - Young-In Kwon
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| |
Collapse
|
3
|
Xiao W, Xiang P, Liao W, Xiong Z, Peng L, Zou L, Liu B, Li Q. Effects of polystyrene microplastics on the growth and metabolism of highland barley seedlings based on LC-MS. FRONTIERS IN PLANT SCIENCE 2024; 15:1477605. [PMID: 39741681 PMCID: PMC11685026 DOI: 10.3389/fpls.2024.1477605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Microplastics are widely present in the environment and can adversely affect plants. In this paper, the effects of different concentrations of microplastics on physiological indices and metabolites of highland barley were investigated for the first time using a metabolomics approach, and revealed the response mechanism of barley seedlings to polystyrene microplastics (PS-MPs) was revealed. The results showed that the aboveground biomass of highland barley exposed to low (10 mg/L) and medium (50 mg/L) concentrations of PS-MPs increased by 32.2% and 48.2%, respectively. The root length also increased by 16.4% and 21.6%, respectively. However, the aboveground biomass of highland barley exposed to high (100 mg/L) concentrations of PS-MPs decreased by 34.8%, leaf length by 20.7%, and root length by 25.9%. Microplastic exposure increased the levels of antioxidant activity, suggesting that highland barley responds to microplastic stress through oxidative stress. Metabolome analysis revealed that the contents of 4 metabolites increased significantly with increasing PS-MPs concentration in positive ionmode, while the contents of 8 metabolites increased significantly with increasing PS-MPs concentration in negative ionmode (P < 0.05), including prunin, dactylorhin E, and schisantherin B. Additionally, PS-MPs significantly interfered with highland barley flavonoid biosynthesis, pyrimidine metabolism, purine metabolism, fatty acid biosynthesis, and phenylpropanoid biosynthesis metabolic pathways. This study provides a new theoretical basis for a deeper understanding of the effects of different concentrations of PS-MPs on highland barley.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiang Li
- *Correspondence: Bingliang Liu, ; Qiang Li,
| |
Collapse
|
4
|
Dikmetas D, Devecioglu D, Karbancioglu-Guler F, Kahveci D. Sequential Extraction and Characterization of Essential Oil, Flavonoids, and Pectin from Industrial Orange Waste. ACS OMEGA 2024; 9:14442-14454. [PMID: 38559951 PMCID: PMC10976415 DOI: 10.1021/acsomega.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Orange is one of the primary fruits processed into juice and other products worldwide, leading to a vast amount of waste accumulation. Such waste has been considered as an attractive candidate for upcycling to obtain bioactive components remaining. The present study investigated the extraction of essential oil (EO), flavonoids, and pectin from industrial orange waste with a holistic approach. To maximize EO yield and d-limonene concentration, hydrodistillation (HD) conditions were selected to be 5.5 mL water/g solid for 180 min. Remaining solids were further used for flavonoid extraction where conventional solvent, sequential ultrasound + solvent, and ultrasound-assisted extraction (UE) were applied. UE applied for 50 min with 120 mL solvent/g solid yielded the highest total phenolic (TPCs) and total flavonoid contents (TFCs), antioxidant capacity, and hesperidin and neohesperidin concentrations. In terms of TPC, TFC, antioxidant capacity, and antibacterial activity, both EO and flavonoid fractions demonstrated moderate to high bioactivity. At the final step, ethanol precipitation was applied to obtain the pectin that was solubilized in hot water during HD and it was characterized by Fourier transform infrared, degree of esterification, and galacturonic acid content. Practical application: to ensure utilization in the food, pharmaceutical, and cosmetic industries, this study presents a combined method to obtain several value-added compounds from industrial orange waste. Bioactive EO and flavonoids obtained could have applications in functional food, supplements, or cosmetic formulations, whereas extracted pectin can be used in many formulated foods and drugs.
Collapse
Affiliation(s)
- Dilara
Nur Dikmetas
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Dilara Devecioglu
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Funda Karbancioglu-Guler
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Derya Kahveci
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
5
|
Kim JW, Ko HC, Jang MG, Han SH, Kim HJ, Kim SJ. Phytochemical content and antioxidant activity in eight citrus cultivars grown in Jeju Island according to harvest time. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2151620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jae-Won Kim
- Jeju Institute of Korean Medicine, Jeju, Republic of Korea
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Hee Chul Ko
- Jeju Institute of Korean Medicine, Jeju, Republic of Korea
| | - Mi-Gyeong Jang
- Biotech Regional Innovation Center, Jeju Nation University, Jeju, Republic of Korea
| | - Sang Heon Han
- Department of Horticultural Science, Jeju National University, Jeju, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Se-Jae Kim
- Biotech Regional Innovation Center, Jeju Nation University, Jeju, Republic of Korea
| |
Collapse
|
6
|
Islam F, Labib RK, Zehravi M, Lami MS, Das R, Singh LP, Mandhadi JR, Balan P, Khan J, Khan SL, Nainu F, Nafady MH, Rab SO, Emran TB, Wilairatana P. Genus Amorphophallus: A Comprehensive Overview on Phytochemistry, Ethnomedicinal Uses, and Pharmacological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3945. [PMID: 38068582 PMCID: PMC10707911 DOI: 10.3390/plants12233945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 07/01/2024]
Abstract
The genus Amorphophallus belongs to the family Araceae. Plants belonging to this genus are available worldwide and have been used in traditional medicines since ancient times, mainly in Ayurveda and Unani medical practices. Amorphophallus species are an abundant source of polyphenolic compounds; these are accountable for their pharmacological properties, such as their analgesic, neuroprotective, hepatoprotective, anti-inflammatory, anticonvulsant, antibacterial, antioxidant, anticancer, antiobesity, and immunomodulatory effects, as well as their ability to prevent gastrointestinal disturbance and reduce blood glucose. Moreover, Amorphophallus species contain numerous other classes of chemical compounds, such as alkaloids, steroids, fats and fixed oils, tannins, proteins, and carbohydrates, each of which contributes to the pharmacological effects for the treatment of acute rheumatism, tumors, lung swelling, asthma, vomiting, abdominal pain, and so on. Additionally, Amorphophallus species have been employed in numerous herbal formulations and pharmaceutical applications. There has been no extensive review conducted on the Amorphophallus genus as of yet, despite the fact that several experimental studies are being published regularly discussing these plants' pharmacological properties. So, this review discusses in detail the pharmacological properties of Amorphophallus species. We also discuss phytochemical constituents in the Amorphophallus species and their ethnomedicinal uses and toxicological profiles.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (T.B.E.)
| | - Rafiuddin Khan Labib
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram 821305, India
| | - Jithendar Reddy Mandhadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Assam Down Town University (AdtU), Gandhinagar 781026, India
| | - P. Balan
- Department of Pharmaceutical Chemistry, The Erode College of Pharmacy, Erode 638112, India
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (T.B.E.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Figueira O, Pereira V, Castilho PC. A Two-Step Approach to Orange Peel Waste Valorization: Consecutive Extraction of Pectin and Hesperidin. Foods 2023; 12:3834. [PMID: 37893727 PMCID: PMC10606305 DOI: 10.3390/foods12203834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Citrus consumption translates into large amounts of residue, the disposal of which is associated with environmental issues and high costs. Current trends in citrus waste focus on the extraction of highly valued bioactive compounds via single-compound extraction. There is a lack of knowledge on how these methodologies can be introduced into extraction schemes of bioactive compounds, maximizing the residue potential and reducing its amount. The present work aimed to address this issue by designing a consecutive extraction of pectin and hesperidin from orange peel waste. A novel method for extraction and precipitation of hesperidin with an eco-friendly approach is also presented. After neutral pretreatment, pectin extraction was conducted under acidic conditions, followed by hesperidin extraction with a drastic pH change. Pectin had a high AUA content (66.20 ± 1.25%), meeting the criteria for use in the food industry. The best-tested conditions for hesperidin extraction (30 min, 70 °C, 1:10 (w/v)) provided a yield of 1% and a purity of 84%. The designed extraction scheme shows the potential of citrus waste as a source of bioactive compounds of good quality and high interest in the food industry while following the principles of green chemistry and circular economy.
Collapse
Affiliation(s)
| | | | - Paula C. Castilho
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9200-105 Funchal, Portugal; (O.F.); (V.P.)
| |
Collapse
|
8
|
Kumar D, Ladaniya MS, Gurjar M, Mendke S, Kumar S, Ghosh D. Elucidation of flavanones, phenols and antioxidant capacity influenced by drying methods from physiologically dropped underutilized Citrus grandis fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1193635. [PMID: 37492768 PMCID: PMC10363982 DOI: 10.3389/fpls.2023.1193635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Introduction Nutritional content in citrus fruit is enormous. Citrus grandis (L.) Osbeck is underutilised citrus crop that receives little attention due to the lack of knowledge regarding its nutritional value. Citrus waste disposal poses a problem due to economic and environmental factors. Methods The metabolites flavonoids, phenols and antioxidant capacity in the dropped fruits of the underutilised citrus species pomelo (Citrus grandis (L.) Osbeck) were examined. Results and discussion Hesperidin varied from 1.22 to 2.83% and 1.08 to 1.16% from 10 mm to 14 mm whereas naringin dominates in fruits measuring 10 mm and 12mm with 60.61%, 60.77%, and 47.76%, 45.87% in freeze dried (FD) and hot air oven dried (HAOD) samples. According to the results of the antioxidant assays, the highest concentrations of ABTS azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and DPPH (2, 2-diphenyl-1-picrylhydrazyl radical) were found in freeze dried samples, ranging from 9.679 to 10.416 mmol L-1 Trolox and 14.825 to 16.432 mmol L-1 Trolox, respectively. However, the Ferric Reducing Antioxidant Power (FRAP) assay revealed higher content in samples of both FD and HAOD that were 10mm in size (4.578 mmol L-1 Trolox and 3.730 mmol L-1 Trolox). Total phenol content was measured, and the highest concentrations were found in fruits with a diameter between 10 mm and 18 mm. It ranged from 48.479 to 54.498 mg GAE L-1 in FD samples and from 45.757 to 51.159 mg GAE L-1 in HAOD samples. The smallest fruits, or those that were still in the immature stage, had the highest content. It was found that when the immature dropped fruits were dried by HAOD, the content decreased. At p<0.01 and p<0.05, there was a significant positive correlation between the flavonoids, antioxidants, and total phenols. The results showed that the immature dropped immature fruits of lesser known underutilised citrus sp. Citrus grandis can act as potential source of flavonoids, total phenol concentration, and antioxidant potential. Freeze drying can be recommended to recover the most bioactive substances from physiologically dropped fruits of Citrus grandis for use in the pharmaceutical and nutraceutical sectors. This study will help in reducing the environmental impact caused due to citrus dropped fruits and its responsible management.
Collapse
|
9
|
Extraction Optimization, Preliminary Identification, and Bioactivities in Corn Silk. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5685174. [PMID: 36777625 PMCID: PMC9911244 DOI: 10.1155/2023/5685174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023]
Abstract
For thousands of years, corn silk has been widely used as an antidiabetic, antioxidant, and antihyperlipidemic and for other effects, but there is a lack of studies that correlate the extracts of flavonoid composition with their biological activities. Thus, the objectives of this study were to optimize the conditions for extracting flavonoids, identify flavonoids, and correlate the flavonoid composition with the biological activities in corn silk. The response surface experiments showed that the highest flavonoid content was predicted at 45.321 min, 57.349°C, 26.089 mL/g, and 71.269%, respectively. The verification experiment results under these optimized conditions showed an ultrasonic time of 45 min, an ultrasonic temperature of 57°C, a liquid-to-material ratio of 26, and an ethanol volume fraction of 70%. No significant differences (the relative error is 4.378%) were observed between the theoretical and experimental TFC values, indicating that the developed models were accurate. Under these optimum extraction conditions, 20 major compounds were identified and quantified by UPLC-LTQ/Orbitrap MS. Furthermore, these optimum ethanol extracts of corn silk are effective against Bacillus subtilis and hypoglycemic activity compared with the traditional heating reflux extraction method. Six corn silk components seem to be the main contributors to the inhibitory effect against Bacillus subtilis and hyperglycemia activities. These results are useful for the application of corn silk in the food or pharmaceutical industry.
Collapse
|
10
|
Sun M, Wei Y, Feng X, Fan J, Chen X. Composition, anti-LDL oxidation, and non-enzymatic glycosylation inhibitory activities of the flavonoids from Mesembryanthemum crystallinum. Front Nutr 2022; 9:963858. [PMID: 36185681 PMCID: PMC9521712 DOI: 10.3389/fnut.2022.963858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
This study identified the constituents of purified flavonoid (PEF) isolated from Mesembryanthemum crystallinum and examined their inhibitory effects on low-density lipoprotein (LDL) oxidation and non-enzymatic glycosylation. More than 30 kinds of flavonoid compounds were identified in M. crystallinum, including tangeretin, nobiletin, farrerol, protocatechuic aldehyde, diosmin, and rutin. Moreover, tangeretin corresponds to approximately 51% of the total identified flavonoids. PEF had a low IC50 value for 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH·), hydroxyl radical (·OH), and superoxide anion free radical (O2-·) scavenging. They were found to effectively delay and inhibit the production of conjugated diene (CD) and thiobarbituric acid reactive substance (TBARS) during LDL oxidation. Meanwhile, scanning electron microscopy (SEM) of the LDL oxidation incubation system with PEF showed a smooth and dense surface, with no obvious cavitation phenomenon. Furthermore, PEF effectively inhibited the production of LDL glycosylation products and showed a strong inhibitory effect in the latter stage. The electrophoresis of advanced glycosylation end products (AGEs) further confirmed that PEF can effectively prevent the cross-linking between glucose and proteins, protecting LDL from glycosylation-induced damage.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Food Science and Engineering, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Ying Wei
- Department of Food Science and Engineering, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Xiaoguang Feng
- Beijing Unong High-Quality Farm Products Planning Limited Company, Beijing, China
| | - Junfeng Fan
- Beijing Key Laboratory of Forest Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiangning Chen
- Department of Food Science and Engineering, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
- *Correspondence: Xiangning Chen
| |
Collapse
|
11
|
Lee S, Kim HJ. Antioxidant activities of premature and mature mandarin ( Citrus unshiu) peel and juice extracts. Food Sci Biotechnol 2022; 31:627-633. [PMID: 35529692 PMCID: PMC9033906 DOI: 10.1007/s10068-022-01064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
In vitro antioxidant activities of premature and mature mandarin peel and juice extracts were investigated for their potentials as functional food materials. Total phenolic and flavonoid content of premature and mature mandarin peel and juice was in the range of 31.20 to 94.04 mg gallic acid equivalent (GAE)/g and 0.09 to 43.99 mg quercetin equivalent (QE)/g, respectively. Among flavanone compounds, hesperidin and narirutin were identified as 76.81 and 51.35 mg/g, respectively, in the premature mandarin peel extract. Mandarin peel extracts were mostly high in in vitro antioxidant activities compared to mandarin juices. Hydrogen peroxide and hydroxyl radical scavenging activities (81.52-93.24%) of the premature mandarin peel extract were higher than DPPH and ABTS+ radical scavenging activities (24.03-30.39%). These results confirmed that the potential of premature mandarin peels as a natural antioxidant source for functional foods. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01064-5.
Collapse
Affiliation(s)
- Seogyeong Lee
- Department of Food Bioengineering, Jeju National University, 102 Jejudaehak- ro, Jeju, 63243 Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, 102 Jejudaehak- ro, Jeju, 63243 Korea
| |
Collapse
|
12
|
Kumar D, Ladaniya MS, Gurjar M, Kumar S. Impact of drying methods on natural antioxidants, phenols and flavanones of immature dropped Citrus sinensis L. Osbeck fruits. Sci Rep 2022; 12:6684. [PMID: 35461355 PMCID: PMC9035179 DOI: 10.1038/s41598-022-10661-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Citrus fruits are famous for nutritional value and studies are there for extraction of secondary metabolites from citrus waste. An attempt was made to quantify antioxidants, flavonoids and phenols from dropped fruits of 8–24 mm size, to find the impact of freeze and hot-air oven drying techniques on extraction. Flavonoids (hesperidin, narirutin/isonaringin, diosmin and didymin/neoponcirin) were quantified through high performance liquid chromatography (HPLC) and total phenols (TPC) were estimated by Folin-Ciocalteu method. Antioxidant capacity was adjudged by azino-bis [3-ethylbenzthiazoline-6-sulfonic acid] (ABTS), 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric Reducing Antioxidant Power (FRAP). Freeze dried fruits of 10 mm and 12 mm retained maximum hesperidin content (22.383% and 21.560%) in comparison to hot-air oven counterparts (18.377% and 15.090%). Narirutin/isonaringin (1.343% and 1.191%), diosmin (5.293% and 3.234%) and didymin/neoponcirin (1.187% and 1.113%) content were found higher in 8 mm and 10 mm freeze dried fruits. The antioxidant capacity (7.548–11.643 mmol L−1 Trolox, 8.164–14.710 mmol L−1 Trolox, 4.008–5.863 mmol L−1 Trolox by ABTS, DPPH and FRAP assays) and TPC were found higher in freeze dried samples. Significant correlation was found between antioxidant capacity, TPC and flavonoids at p < 0.01. Freeze drying technique can be adopted for retaining and quality extraction of bioactive compounds from immature dropped fruits for further use in nutraceutical industries.
Collapse
|
13
|
Haida Z, Ab Ghani S, Juju Nakasha J, Hakiman M. Determination of experimental domain factors of polyphenols, phenolic acids and flavonoids of lemon (Citrus limon) peel using two-level factorial design. Saudi J Biol Sci 2022; 29:574-582. [PMID: 35002453 PMCID: PMC8716932 DOI: 10.1016/j.sjbs.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/26/2023] Open
Abstract
This study aimed to evaluate the significant extraction factors in achieving higher recovery yield of total polyphenols, phenolic acids and flavonoids content from Citrus limon peel using two-level factorial design. The effect of five independent factors including drying temperature (40–60 °C), methanol concentration (20–60%), extraction temperature (28–60 °C), extraction time (30–60 min) and storage duration (0–14 days) were evaluated. Among all the examined factors, results showed that drying temperature, storage duration and extraction temperature were the most significant and contributing factors affecting the total polyphenols, phenolic acids and flavonoids content of lemon peel at P < 0.05. On the contrary, methanol concentration and extraction time exhibited the least significant and contribution at P greater than 0.05. In conclusion, the experimental domain factors were successfully obtained from this experiment, Therefore, further study on optimization of the obtained factors will be conducted in the future study using response surface methodology.
Collapse
Affiliation(s)
- Zainol Haida
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sharin Ab Ghani
- High Voltage Engineering Research Laboratory, Faculty of Electrical Engineering, Universiti Teknikal Malaysia, Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - Jaafar Juju Nakasha
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mansor Hakiman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Chien WJ, Saputri DS, Lin HY. Valorization of Taiwan's Citrus depressa Hayata peels as a source of nobiletin and tangeretin using simple ultrasonic-assisted extraction. Curr Res Food Sci 2022; 5:278-287. [PMID: 35146444 PMCID: PMC8816667 DOI: 10.1016/j.crfs.2022.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/28/2022] Open
Abstract
As the highest yield crop worldwide, citrus peels that possess bioactive compounds were discarded as a futile by-product. Ultrasonication with environmentally friendly solvent (50% ethanol and ddH2O) were used in the present study to extract flavonoids from Citrus depressa Hayata peels with extraction period and fruit maturity as other variables. DPPH scavenging activity was investigated. Qualitative flavonoid content analysis was done by UV/Vis and FTIR-ATR spectra. Quantification of flavonoid using LC-MS/MS found that solvent type, fruit maturity, and ultrasonication period significantly affect the extracted flavonoid yield (p < 0.05). Extraction using 50% ethanol showed a higher yield than ddH2O. Flavonoid content was also higher in unripe than ripe samples. Nobiletin, tangeretin, and rutin were dominant among the identified compounds in all sample treatments. Flavonoid content in Citrus depressa Hayata extract was found to negatively correlate to DPPH scavenging activity, which needs further research to identify other bioactivities of these flavonoids. Utilization of simple ultrasonication method with less preparation to extract flavonoids from Citrus depressa Hayata peels. Fruit maturity, extraction time and solvent preference significantly affect the yield of extracted flavonoid. Environmentally friendly solvent for extraction, deliver a comparable yield of flavonoid compounds to other methods. The negative correlation of extracted flavonoid to DPPH scavenging activity.
Collapse
|
15
|
Rajan P, Natraj P, Ranaweera SS, Dayarathne LA, Lee YJ, Han CH. Anti-adipogenic effect of the flavonoids through the activation of AMPK in palmitate (PA)-treated HepG2 cells. J Vet Sci 2022; 23:e4. [PMID: 35088951 PMCID: PMC8799946 DOI: 10.4142/jvs.21256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Flavonoids are natural polyphenols found widely in citrus fruit and peel that possess anti-adipogenic effects. On the other hand, the detailed mechanisms for the anti-adipogenic effects of flavonoids are unclear. OBJECTIVES The present study observed the anti-adipogenic effects of five major citrus flavonoids, including hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on AMP-activated protein kinase (AMPK) activation in palmitate (PA)-treated HepG2 cells. METHODS The intracellular lipid accumulation and triglyceride (TG) contents were quantified by Oil-red O staining and TG assay, respectively. The glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) assay. The levels of AMPK, acetyl-CoA carboxylase (ACC), and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, and levels of sterol regulatory element-binding protein 2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) expression were analyzed by Western blot analysis. The potential interaction between the flavonoids and the γ-subunit of AMPK was investigated by molecular docking analysis. RESULTS The flavonoid treatment reduced both intracellular lipid accumulation and TG content in PA-treated HepG2 cells significantly. In addition, the flavonoids showed increased 2-NBDG uptake in an insulin-independent manner in PA-treated HepG2 cells. The flavonoids increased the AMPK, ACC, and GSK3β phosphorylation levels and decreased the SREBP-2 and HMGCR expression levels in PA-treated HepG2 cells. Molecular docking analysis showed that the flavonoids bind to the CBS domains in the regulatory γ-subunit of AMPK with high binding affinities and could serve as potential AMPK activators. CONCLUSION The overall results suggest that the anti-adipogenic effect of flavonoids on PA-treated HepG2 cells results from the activation of AMPK by flavonoids.
Collapse
Affiliation(s)
- Priyanka Rajan
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | | | | | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Chang-Hoon Han
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
16
|
Lim SB. Organic Acid-Catalyzed Subcritical Water Hydrolysis of Immature Citrus unshiu Pomace. Foods 2021; 11:foods11010018. [PMID: 35010143 PMCID: PMC8750635 DOI: 10.3390/foods11010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Immature Citrus unshiu pomace (ICUP) was hydrolyzed under organic acid-catalyzed, subcritical water (SW) conditions to produce flavonoid monoglucosides (hesperetin-7-O-glycoside and prunin) and aglycons (hesperetin and naringenin) with high biological activities. The results of single-factor experiments showed that with 8 h of hydrolysis and an increasing citric acid concentration, the yield of flavonoid monoglucosides (hesperetin-7-O-glycoside and prunin) increased from 0 to 7% citric acid. Afterward, the hesperetin-7-O-glycoside yield remained constant (from 7 to 19% citric acid) while the pruning yield decreased with 19% of citric acid, whereas the aglycon yield increased continuously. In response surface methodology analysis, a citric acid concentration and hydrolysis duration of 13.34% and 7.94 h were predicted to produce the highest monoglucoside yield of 15.41 mg/g, while 18.48% citric acid and a 9.65 h hydrolysis duration produced the highest aglycon yield of 10.00 mg/g. The inhibitory activities of the SW hydrolysates against pancreatic lipase (PL) and xanthine oxidase (XO) were greatly affected by citric acid concentration and hydrolysis duration, respectively. PL and α-glucosidase inhibition rates of 88.2% and 62.7%, respectively, were achieved with 18.48% citric acid and an 8 h hydrolysis duration, compared to 72.8% for XO with 16% citric acid and 12 h of hydrolysis. This study confirms the potential of citric acid-catalyzed SW hydrolysis of ICUP for producing flavonoid monoglucosides and aglycons with enhanced enzyme inhibitory activities.
Collapse
Affiliation(s)
- Sang-Bin Lim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
17
|
Seo SH, Jo SM, Truong TTM, Zhang G, Kim DS, Lee M, Lee Y, Kang I. Peanut sprout rich in p-coumaric acid ameliorates obesity and lipopolysaccharide-induced inflammation and the inhibition of browning in adipocytes via mitochondrial activation. Food Funct 2021; 12:5361-5374. [PMID: 33982705 DOI: 10.1039/d1fo00342a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is accompanied by adipose tissue inflammation that subsequently reduces thermogenic potential in brown and beige (brown-like) adipocytes. We previously reported that peanut sprout (PS) inhibited triglyceride accumulation via fatty acid oxidation in adipocytes. However, it is unknown whether PS reverses diet-induced obesity/inflammation and protects against the inflammation-induced inhibition of browning. To investigate this, C57BL/6 male mice, as an in vivo model, were randomly assigned to three different diets and fed for 8 weeks: (i) low-fat diet (LF, 11% kcal from fat), (ii) high-fat diet (HF, 61% kcal from fat), or (iii) HF diet with PS (4% PS in diet, HF + PS). As an in vitro model, lipopolysaccharides (LPS)-induced macrophages and 3T3-L1 adipocytes in the absence (white adipocytes) or presence of dibutyryl-cAMP (Bt-cAMP, beige adipocytes) were used. The supplementation of PS improved HF-diet-mediated body weight gain, dyslipidemia, and hyperglycemia as compared to the HF group. Although there was a marginal impact on visceral hypertrophy, PS reversed the adipocyte inflammation. In parallel, LPS-mediated induction of inflammation was impeded by PS extract (PSE) in macrophages and adipocytes. PSE also protected against LPS-induced suppression of adipocyte browning in Bt-cAMP-treated adipocytes with mitochondrial activation. The phenolic acid analysis showed that among the constituent of PSE, p-coumaric acid (PCA) was identified as a polyphenol that showed a similar effect to PSE. PCA treatment was also able to maintain a higher temperature than the control group upon cold exposure. Taken together, PCA-enriched PS attenuated HF-diet-induced obesity and protected against LPS-induced inflammation and the inhibition of browning via mitochondrial activation.
Collapse
Affiliation(s)
- Seok Hee Seo
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea.
| | - Sang-Mi Jo
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea.
| | - Tien Thi My Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| | - Guiguo Zhang
- College of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Dong-Shin Kim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| | - Myoungsook Lee
- Department of Food and Nutrition, Sungshin Women's University, Seoul 01133, Korea
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea. and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| | - Inhae Kang
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea. and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
18
|
Green Extraction Techniques for Obtaining Bioactive Compounds from Mandarin Peel ( Citrus unshiu var. Kuno): Phytochemical Analysis and Process Optimization. Foods 2021; 10:foods10051043. [PMID: 34064619 PMCID: PMC8150917 DOI: 10.3390/foods10051043] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, an efficient utilization and valorization of mandarin peel (Citrus unshiu Marc. var. Kuno) was investigated using innovative and green extraction techniques. The first step of this study included the extraction and analysis of the volatile compounds by performing a supercritical CO2 (SC-CO2) extraction under different operating pressure conditions (100 and 300 bar). The analysis of volatile compounds of the obtained extracts was conducted by gas chromatography-mass spectrometry (GC-MS), and limonene was found to be the dominant volatile component (13.16% at 100 bar; 30.65% at 300 bar). After SC-CO2 treatment, the exhausted citrus peel waste enriched with bioactive compounds was subjected to subcritical water extraction (SWE) in a wide temperature range (130–220 °C) using different solvent-solid ratio (10–30 mL/g) in time periods from 5 to 15 min, in order to obtain bioflavonoids. Identification and quantification of present bioflavonoids was conducted by high-performance liquid chromatography with a with a diode array detector (HPLC), and hesperidin (0.16–15.07 mg/g) was determined as the most abundant flavanon in mandarin peel with other polyphenolic compounds that were possible by-products of thermal degradation. At higher temperatures, the presence of 5-hydroxymethylfurfural (5-HMF) and chlorogenic acid were detected. Antiradical activity and total phenolic content in the extracts were determined using spectrophotometric methods, while the process optimization was performed by response surface methodology (RSM).
Collapse
|