1
|
Yang W, Lin R, Guan S, Dang Y, He H, Huang X, Yang C. HNF1ɑ promotes colorectal cancer progression via HKDC1-mediated activation of AKT/AMPK signaling pathway. Gene 2024; 928:148752. [PMID: 38986750 DOI: 10.1016/j.gene.2024.148752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The hepatocyte nuclear factor-1 (HNF1ɑ) is a transcription factor that contributes to several kinds of cancer progression. However, very little is known regarding the mechanisms underlying the activity of HNF1ɑ. We aimed to explore the role of HNF1ɑ in the progress of colorectal cancer (CRC) and elucidate its molecular mechanism. HNF1ɑ expression was upregulated in CRC samples and high expression of HNF1ɑ was associated with poor prognosis of CRC patients. HNF1α knockdown and overexpression inhibited and promoted proliferation, migration and invasion of CRC cells both in vitro and in vivo respectively. Mechanistically, HNF1ɑ increased the transcriptional activity of hexokinase domain component 1(HKDC1)promoter, thus activated AKT/AMPK signaling. Meanwhile, HKDC1 upregulation was important for the proliferation, migration and invasion of CRC cells and knockdown of HKDC1 significantly reversed the proliferation, migration and invasion induced by HNF1α overexpression. Taken together, HNF1ɑ contributes to CRC progression and metastasis through binding to HKDC1 and activating AKT/AMPK signaling. Targeting HNF1ɑ could be a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Weijin Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ruirong Lin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yuan Dang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Xinxiang Huang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
2
|
Mehmetoglu-Gurbuz T, Lakshmanaswamy R, Perez K, Sandoval M, Jimenez CA, Rocha J, Goldfarb RM, Perry C, Bencomo A, Neela N, Barragan JA, Sanchez R, Swain RM, Subramani R. Nimbolide Inhibits SOD2 to Control Pancreatic Ductal Adenocarcinoma Growth and Metastasis. Antioxidants (Basel) 2023; 12:1791. [PMID: 37891871 PMCID: PMC10604165 DOI: 10.3390/antiox12101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species are frequently associated with various cancers including pancreatic ductal adenocarcinomas (PDACs). Superoxide dismutase 2 (SOD2) is an enzyme that plays an important role in reactive oxygen species (ROS) signaling. Investigating the molecular function and biological functions of SOD2 can help us develop new therapeutic options and uncover new biomarkers for PDAC diagnosis and prognosis. Here, we show that nimbolide (NB), a triterpene limonoid, effectively blocks the growth and metastasis of PDACs by suppressing the expression and activity of SOD2. To identify the role of SOD2 in NB-induced anticancer activity, we used RNA interference to silence and plasmid transfection to overexpress it. Silencing SOD2 significantly reduced the growth and metastatic characteristics like epithelial-to-mesenchymal transition, invasion, migration, and colony-forming capabilities of PDACs, and NB treatment further reduced these characteristics. Conversely, the overexpression of SOD2 enhanced these metastatic characteristics. ROS signaling has a strong feedback mechanism with the PI3K/Akt signaling pathway, which could be mediated through SOD2. Finally, NB treatment to SOD2-overexpressing PDAC xenografts resulted in significant inhibition of tumor growth and metastasis. Overall, this work suggests that NB, a natural and safe phytochemical that silences SOD2 to induce high levels of ROS generation, results in increased apoptosis and reduced growth and progression of PDACs. The role of SOD2 in regulating NB-induced ROS generation presents itself as a therapeutic option for PDACs.
Collapse
Affiliation(s)
- Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Karla Perez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Mayra Sandoval
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Casandra A. Jimenez
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jackelyn Rocha
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rachel Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Courtney Perry
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Alejandra Bencomo
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Nishkala Neela
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jose A. Barragan
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Raquel Sanchez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Risa Mia Swain
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
3
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
4
|
Kopantzev E, Kondratyeva L, Kopantseva M, Kashkin K, Gnatenko D, Grigorieva E, Alekseenko I, Safina D, Chernov I. SOX9 Protein in Pancreatic Cancer Regulates Multiple Cellular Networks in a Cell-Specific Manner. Biomedicines 2022; 10:biomedicines10071466. [PMID: 35884771 PMCID: PMC9312990 DOI: 10.3390/biomedicines10071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
SOX9 is upregulated in the majority of pancreatic ductal adenocarcinoma cases. It is hypothesized that the increased expression of SOX9 is necessary for the formation and maintenance of tumor phenotypes in pancreatic cancer cells. In our research, we studied six pancreatic cancer cell lines, which displayed varying levels of differentiation and a range of oncogenic mutations. We chose the method of downregulation of SOX9 expression via siRNA transfection as the main method for investigating the functional role of the SOX9 factor in pancreatic cancer cells. We discovered that the downregulation of SOX9 expression in the cell lines leads to cell-line-specific changes in the expression levels of epithelial and mesenchymal protein markers. Additionally, the downregulation of SOX9 expression had a specific effect on the expression of pancreatic developmental master genes. SOX9 downregulation had the greatest effect on the expression levels of the protein regulators of cell proliferation. In three of the four cell lines studied, the transfection of siSOX9 led to a significant decrease in proliferative activity and to the activation of proapoptotic caspases in transfected cells. The acquired results demonstrate that the SOX9 protein exerts its multiple functions as a pleiotropic regulator of differentiation and a potential promoter of tumor growth in a cell-specific manner in pancreatic cancer cells.
Collapse
Affiliation(s)
- Eugene Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (M.K.); (K.K.); (D.G.); (E.G.); (I.A.); (I.C.)
- Correspondence: (E.K.); (L.K.); Tel.: +7-(916)-066-8752 (E.K.); +7-(965)-315-7274 (L.K.); Fax: +7-(495)-330-6538 (L.K.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (M.K.); (K.K.); (D.G.); (E.G.); (I.A.); (I.C.)
- Correspondence: (E.K.); (L.K.); Tel.: +7-(916)-066-8752 (E.K.); +7-(965)-315-7274 (L.K.); Fax: +7-(495)-330-6538 (L.K.)
| | - Marina Kopantseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (M.K.); (K.K.); (D.G.); (E.G.); (I.A.); (I.C.)
| | - Kirill Kashkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (M.K.); (K.K.); (D.G.); (E.G.); (I.A.); (I.C.)
| | - Dmitry Gnatenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (M.K.); (K.K.); (D.G.); (E.G.); (I.A.); (I.C.)
| | - Elizaveta Grigorieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (M.K.); (K.K.); (D.G.); (E.G.); (I.A.); (I.C.)
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (M.K.); (K.K.); (D.G.); (E.G.); (I.A.); (I.C.)
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
| | - Dina Safina
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (M.K.); (K.K.); (D.G.); (E.G.); (I.A.); (I.C.)
| |
Collapse
|
5
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|