1
|
Chen H, Chigusa K, Kanda K, Tanoue R, Ochiai M, Iwata H. Developmental toxicity of short-chain chlorinated paraffins on early-stage chicken embryos in a shell-less (ex-ovo) incubation system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116304. [PMID: 38626606 DOI: 10.1016/j.ecoenv.2024.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Short-chain chlorinated paraffins (SCCPs) are listed as a category of globally controlled persistent organic pollutants (POPs) by the Stockholm Convention in 2017. However, SCCP toxicity, particularly their developmental toxicity in avian embryos, has not been well studied. In this study, we observed the early development of chicken embryos (Gallus gallus domesticus) by applying a shell-less (ex-ovo) incubation system developed in our previous studies. After exposing embryos at Hamburger Hamilton stage (HHS) 1 to SCCPs (control, 0.1% DMSO; SCCPs-L, 200 ng/g; SCCPs-M, 2000 ng/g; SCCPs-H, 20,000 ng/g), we observed the development of embryos from the 3rd to 9th incubation day. Exposure to SCCPs-M and -H induced a significant reduction in survival, with an LD50 of 3100 ng/g on the 9th incubation day. Significant dose-dependent decreases in body length were observed from days 4-9. We also found that SCCPs-H decreased the blood vessel length and branch number on the 4th incubation day. Additionally, SCCPs-H significantly reduced the heart rate on the 4th and 5th incubation days. These findings suggest that SCCPs may have potential of developmental and cardiovascular toxicity during the early stages of chicken embryos. Quantitative PCR of the mRNA of genes related to embryonic development showed that SLC16A10 (a triiodothyronine transporter) level decreased in the SCCPs-H group, showing a significant positive correlation with the body length of embryos. THRA level, a thyroid hormone receptor, was significantly decreased in the SCCPs-H group, whereas that of DIO3 level, a deiodinase was significantly increased. These results suggest that SCCPs exposure induces developmental delays via the thyroxine signaling pathway. Analysis of thyroid hormones (THs) in blood plasma also indicated a significant reduction in thyroxine (T4) levels in the SCCPs-H group on the 9th incubation day of embryos. In conclusion, SCCPs induce developmental toxicity by disrupting thyroid functions at the early-life stage of chicken embryos.
Collapse
Affiliation(s)
- Hao Chen
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Kaori Chigusa
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Kazuki Kanda
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Mari Ochiai
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan.
| |
Collapse
|
2
|
Foury A, Mach N, Ruet A, Lansade L, Moisan MP. Transcriptomic signature related to poor welfare of sport horses. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100201. [PMID: 37655309 PMCID: PMC10465861 DOI: 10.1016/j.cpnec.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
The improvement of horse welfare through housing conditions has become a real issue in recent years and have highlighted the detrimental effect of individual housing of horses on their health and behaviour. In this new study, we analysed the blood transcriptome of 45 sport horses housed individually that were previously examined for their behaviour and gut microbiota. We performed differential and regression analyses of gene expression, followed by downstream bioinformatic analyses, to unveil the molecular pathways related to the behavioural changes associated with welfare impairment in these sport horses. We found that aggressiveness towards humans was the behavioural indicator the most correlated to blood gene expression and that the pathways involved belonged mainly to systemic inflammation. In contrast, the correlations between genes, alert postures and unresponsiveness towards the environment were weak. When blood gene expression profiling was combined with faecal microbiota of a sub-population of horses, stereotypies came out as the most correlated to blood gene expression. This study shows that aggressiveness towards humans and stereotypies are behavioural indicators that covary with physiological alterations. Further studies are needed regarding the biological correlates of unresponsiveness to the environment and alert postures.
Collapse
Affiliation(s)
- A. Foury
- Univ. Bordeaux, INRAE, INP, UMR 1286 Nutrineuro, Team Nutripsy, 33076, Bordeaux, France
| | - N. Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - A. Ruet
- INRAE, UMR 85 PRC, CNRS, UMR 7247, IFCE, University of Tours, Nouzilly, France
| | - L. Lansade
- INRAE, UMR 85 PRC, CNRS, UMR 7247, IFCE, University of Tours, Nouzilly, France
| | - M.-P. Moisan
- Univ. Bordeaux, INRAE, INP, UMR 1286 Nutrineuro, Team Nutripsy, 33076, Bordeaux, France
| |
Collapse
|
3
|
Veit W, Browning H. Developmental Programming, Evolution, and Animal Welfare: A Case for Evolutionary Veterinary Science. J APPL ANIM WELF SCI 2023; 26:552-564. [PMID: 34913795 DOI: 10.1080/10888705.2021.2014838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The conditions animals experience during the early developmental stages of their lives can have critical ongoing effects on their future health, welfare, and proper development. In this paper we draw on evolutionary theory to improve our understanding of the processes of developmental programming, particularly Predictive Adaptive Responses (PAR) that serve to match offspring phenotype with predicted future environmental conditions. When these predictions fail, a mismatch occurs between offspring phenotype and the environment, which can have long-lasting health and welfare effects. Examples include metabolic diseases resulting from maternal nutrition and behavioral changes from maternal stress. An understanding of these processes and their evolutionary origins will help in identifying and providing appropriate developmental conditions to optimize offspring welfare. This serves as an example of the benefits of using evolutionary thinking within veterinary science and we suggest that in the same way that evolutionary medicine has helped our understanding of human health, the implementation of evolutionary veterinary science (EvoVetSci) could be a useful way forward for research in animal health and welfare.
Collapse
|
4
|
Wang YF, Zheng Y, Cha YY, Feng Y, Dai SX, Zhao S, Chen H, Xu M. Essential oil of lemon myrtle (Backhousia citriodora) induces S-phase cell cycle arrest and apoptosis in HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116493. [PMID: 37054823 DOI: 10.1016/j.jep.2023.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lemon myrtle (Backhousia citriodora F.Muell.) leaves, whether fresh or dried, are used traditionally in folk medicine to treat wounds, cancers, skin infections, and other infectious conditions. However, the targets and mechanisms related to anti-cancer effect of lemon myrtle are unavailable. In our study, we found that the essential oil of lemon myrtle (LMEO) showed anti-cancer activity in vitro, and we initially explored its mechanism of action. MATERIALS AND METHODS We analyzed the chemical compositions of LMEO by GC-MS. We tested the cytotoxicity of LMEO on various cancer cell lines using the MTT assay. Network pharmacology was used also to analyze the targets of LMEO. Moreover, the mechanisms of LMEO were investigated through scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. RESULTS LMEO showed cytotoxicity on various cancer cell lines with values of IC50 40.90 ± 2.23 (liver cancer HepG2 cell line), 58.60 ± 6.76 (human neuroblastoma SH-SY5Y cell line), 68.91 ± 4.62 (human colon cancer HT-29 cell line) and 57.57 ± 7.61 μg/mL (human non-small cell lung cancer A549 cell line), respectively. The major cytotoxic chemical constituent in LMEO was identified as citrals, which accounted for 74.9% of the content. Network pharmacological analysis suggested that apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1), androgen receptor (AR), cyclin-dependent kinases 1 (CDK1), nuclear factor erythroid 2-related factor 2 (Nrf-2), fatty acid synthase (FASN), epithelial growth factor receptor (EGFR), estrogen receptor 1 (ERα) and cyclin-dependent kinases 4 (CDK4) are potential cytotoxic targets of LMEO. These targets are closely related to cell migration, cycle and apoptosis. Notley, the p53 protein had the highest confidence to co-associate with the eight common targets, which was further confirmed by scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. LMEO significantly inhibited the migration of HepG2 cells in time-dependent and dose-dependent manner. Moreover, LMEO caused a S-phase blocking on HepG2 cells and promoted apoptosis in the meanwhile. Western blot results indicated that p53 protein, Cyclin A2 and Bax proteins were up-regulated, while Cyclin E1 and Bcl-2 proteins were down-regulated. CONCLUSION LMEO showed cytotoxicity in various cancer cell lines in vitro. Pharmacological networks showed LMEO to have multi-component and multi-targeting effects that are related to inhibit migration of HepG2 cells, and affect cell cycle S-phase arrest and apoptosis through modulation of p53 protein.
Collapse
Affiliation(s)
- Yun-Fen Wang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yin-Yue Cha
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Shao-Xing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Chenggong, Kunming, 650500, China.
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| |
Collapse
|
5
|
Durand D, Collin A, Merlot E, Baéza E, Guilloteau LA, Le Floc'h N, Thomas A, Fontagné-Dicharry S, Gondret F. Review: Implication of redox imbalance in animal health and performance at critical periods, insights from different farm species. Animal 2022; 16:100543. [PMID: 35623200 DOI: 10.1016/j.animal.2022.100543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/01/2022] Open
Abstract
The process of oxidative stress occurs all over the production chain of animals and food products. This review summarises insights obtained in different farm species (pigs, ruminants, poultry, and fishes) to underpin the most critical periods for the venue of oxidative stress, namely birth/hatching and weaning/start-feeding phase. Common responses between species are also unravelled in periods of high physiological demands when animals are facing dietary deficiencies in specific nutrients, suggesting that nutritional recommendations must consider the modulation of responses to oxidative stress for optimising production performance and quality of food products. These conditions concern challenges such as heat stress, social stress, and inflammation. The magnitude of the responses is partly dependent on the prior experience of the animals before the challenge, reinforcing the importance of nutrition and other management practices during early periods to promote the development of antioxidant reserves in the animal. When these practices also improved the performance and health of the animal, this further confirms the central role played by oxidative stress in physiologically and environmentally induced perturbations. Difficulties in interpreting responses to oxidative stress arise from the fact that the indicators are only partly shared between studies, and their modulations may also be challenge-specific. A consensus about the best indicators to assess pro-oxidative and antioxidant pathways is of huge demand to propose a synthetic index measurable in a non-invasive way and interpretable along the productive life of the animals.
Collapse
Affiliation(s)
- D Durand
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.
| | - A Collin
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | - E Merlot
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - E Baéza
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | | | - N Le Floc'h
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - A Thomas
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - S Fontagné-Dicharry
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France
| | - F Gondret
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| |
Collapse
|
6
|
Travel A, Petit A, Barat P, Collin A, Bourrier-Clairat C, Pertusa M, Skiba F, Crochet S, Cailleau-Audouin E, Chartrin P, Guillory V, Bellenot D, Guabiraba R, Guilloteau LA. Methodologies to Assess the Bioactivity of an Herbal Extract on Immunity, Health, Welfare and Production Performance in the Chicken: The Case of Melissa officinalis L. Extract. Front Vet Sci 2021; 8:759456. [PMID: 34746291 PMCID: PMC8569472 DOI: 10.3389/fvets.2021.759456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The potential of herbal extracts containing bioactive compounds to strengthen immunity could contribute to reducing antimicrobial use in poultry. This study aimed at developing a reliable and robust methodological pipeline to assess the ability of herbal extracts to strengthen chicken innate defenses, especially concerning inflammation and oxidative stress. This methodology was applied to Melissa officinalis L. (MEL) extract, recognized for its biological activities including antioxidant and anti-inflammatory properties. Different methods were used to (1). guarantee the quality of MEL extract and its capacity to stimulate the innate immune system; (2). evaluate the relevance of an ex vivo model to mimic inflammatory and oxidative stress challenges to replace LPS injection in chickens; (3). analyse the effects of feed supplemented with MEL extract on inflammation and oxidative stress induced ex vivo; (4). assess the effects of MEL extract on the redox balance, health, welfare and performance in broilers exposed to suboptimal starting conditions through a large-scale approach. The quality of MEL extract preparations, through phytochemical quantification of rosmarinic acid (RA), revealed varying concentrations of RA in the different MEL extracts. RA concentrations remained stable for at least 9 months and in feed three months after incorporating MEL extract. When incubated with chicken cell lines MEL extract showed potential metabolic activation and ability to stimulate immune functions but induced cytotoxicity at high concentrations. The original ex vivo model of inflammation developed on chicken blood cells enabled inflammation and oxidative stress biomarkers to be expressed and revealed antioxidative and anti-inflammatory properties of blood cells from chickens fed MEL extract. The experimental model of chicken suboptimal starting conditions validated beneficial effects of MEL extract on the redox balance and also evidenced improved performance during the growth phase, a tendency for fewer muscle defects but a higher severity of pododermatitis lesions without affecting other welfare indicators. This study grouped methods and tools that could be combined according to the plant extract, the needs of professionals working in poultry production systems and staff responsible for animal health, welfare and feeding.
Collapse
Affiliation(s)
- Angélique Travel
- Institut technique des filières avicole, cunicole et piscicole, Nouzilly, France
| | - Angélique Petit
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Biologie des oiseaux et aviculture, Nouzilly, France
| | - Perrine Barat
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Biologie des oiseaux et aviculture, Nouzilly, France
| | - Anne Collin
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Biologie des oiseaux et aviculture, Nouzilly, France
| | | | - Marion Pertusa
- Institut technique des filières avicole, cunicole et piscicole, Nouzilly, France
| | | | - Sabine Crochet
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Biologie des oiseaux et aviculture, Nouzilly, France
| | - Estelle Cailleau-Audouin
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Biologie des oiseaux et aviculture, Nouzilly, France
| | - Pascal Chartrin
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Biologie des oiseaux et aviculture, Nouzilly, France
| | - Vanaïque Guillory
- nstitut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Infectiologie et santé publique, Nouzilly, France
| | - Denis Bellenot
- Institut technique interprofessionnel des plantes à parfum, médicinales et aromatiques, Chemillé-en-Anjou, France
| | - Rodrigo Guabiraba
- nstitut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Infectiologie et santé publique, Nouzilly, France
| | - Laurence A Guilloteau
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Tours, Biologie des oiseaux et aviculture, Nouzilly, France
| |
Collapse
|