1
|
de Sousa DV, Maia PVS, Eltink E, de Moura Guimarães L. Biomolecules in Pleistocene fossils from tropical cave indicate fossil biofilm. Sci Rep 2024; 14:21071. [PMID: 39256439 PMCID: PMC11387772 DOI: 10.1038/s41598-024-71313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Finding biomolecules in fossils is a challenging task due to their degradation over time from physical, chemical, and biological factors. The primary hypothesis for explaining the presence of biomolecules in fossilized bones tissues suggests their survival in the fossilization process. In contrast, some of these biomolecules could either derive from bacteria biofilm, thus without a direct relationship with the fossil record or could be an artifact from measurement procedures. Raman spectroscopy studies across various fossil ages and environments have detected multiple bands ranging from 1200 to 1800 cm-1 associative of organic compounds. However, the significance of these bands remains elusive. Our research aims to address this issue through a deep Raman spectroscopy investigation on Pleistocene teeth from Tayassu and Smilodon populator. These fossils were obtained from a well-preserved stratigraphic succession in Toca de Cima do Pilão cave, near the National Park of Serra da Capivara in semiarid Brazil. We propose two hypotheses to explain the presence of organic compounds related to 1200 to 1800 cm-1 Raman spectral range in fossil tissues: (i) these bands are biological signatures of preserved fossil biomolecules, or (ii) they are exogenous biological signatures associated with the bacterial biofilm formation during post-depositional processes. Our results align with the latter hypothesis, followed by biofilm degradation. However, the specific mechanisms involved in the natural biofilm degradation in fossil records remain unexplored in this study. In our case, the formation of biofilm on fossil bones is attributed to the oligotrophic conditions of the cave sediment matrix. We present a comprehensive model to elucidate the existence of biofilm on fossilized tissues, emphasizing the pivotal role of post-depositional processes, especially water action, in the cave environment. As the fossils were discovered in a cave setting, post-depositional processes significantly contribute to the formation of the biofilm matrix. Although our study provides insights into biofilm formation, further research is needed to delve into the specific mechanisms driving natural biofilm degradation in fossils.
Collapse
Affiliation(s)
- Daniel Vieira de Sousa
- Colegiado de Geografia, Universidade Federal do Vale do São Francisco, Senhor do Bonfim, Petrolina, 48970-000, Brazil.
| | | | - Estevan Eltink
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco, Senhor do Bonfim, Petrolina, 48970-000, Brazil
| | | |
Collapse
|
2
|
Anderson HE, Morley MW, McAdams C, Zaim J, Rizal Y, Aswan, Puspaningrum MR, Hascaryo AT, Price GJ, Louys J. The microstratigraphy and depositional environments of Lida Ajer and Ngalau Gupin, two fossil-bearing tropical limestone caves of west Sumatra. Sci Rep 2024; 14:259. [PMID: 38168923 PMCID: PMC10761806 DOI: 10.1038/s41598-023-50975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Lida Ajer and Ngalau Gupin are karstic caves situated in the Padang Highlands, western Sumatra, Indonesia. Lida Ajer is best known for yielding fossil evidence that places the arrival of Homo sapiens in Southeast Asia during Marine Isotope Stage 4, one of the earliest records for the region. Ngalau Gupin recently produced the first record of hippopotamid Hexaprotodon on the island, representing the only globally extinct taxon in Pleistocene deposits from Sumatra. Microstratigraphic (micromorphological) analyses were applied to unconsolidated fossil-bearing cave sediments from these two sites. We use micromorphology as part of a micro-contextualised taphonomic approach to identify the diagenetic processes affecting fossils and sediments within these caves, through phases of their depositional history. The fossil-bearing sediments in Lida Ajer have been subjected to a suite of natural sedimentation processes ranging from water action to carnivore occupation, which would indicate the fossils underwent significant reworking prior to lithification of the deposit. The results demonstrate that the base of the unconsolidated fossil-bearing sediments in Ngalau Gupin were derived from the interior of the cave, where the matrix was partially phosphatized as a result of guano-driven diagenesis. These observations can be used to test hypotheses about the integrity of incorporated vertebrate remains and to aid in local palaeoenvironmental reconstructions. The methods employed in this research have not previously been applied to cave sediments from sites in the Padang Highlands and provide key new insights into the palaeontological and natural history of the western region of Sumatra.
Collapse
Affiliation(s)
- Holly E Anderson
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Brisbane, QLD, 4111, Australia.
| | - Mike W Morley
- Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Adelaide, SA, Australia
| | - Conor McAdams
- Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Adelaide, SA, Australia
| | - Jahdi Zaim
- Geology Study Program, Institut Teknologi Bandung, Bandung, Jawa Barat, 40132, Indonesia
| | - Yan Rizal
- Geology Study Program, Institut Teknologi Bandung, Bandung, Jawa Barat, 40132, Indonesia
| | - Aswan
- Geology Study Program, Institut Teknologi Bandung, Bandung, Jawa Barat, 40132, Indonesia
| | - Mika R Puspaningrum
- Geology Study Program, Institut Teknologi Bandung, Bandung, Jawa Barat, 40132, Indonesia
| | - Agus T Hascaryo
- Geology Study Program, Institut Teknologi Bandung, Bandung, Jawa Barat, 40132, Indonesia
| | - Gilbert J Price
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Julien Louys
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
3
|
S D Corrêa H, Alessandri I, Verzeletti A. Assessing the usefulness of Raman spectroscopy and lipid analysis of decomposed human bones in forensic genetics and molecular taphonomy. Forensic Sci Int 2024; 354:111881. [PMID: 38000148 DOI: 10.1016/j.forsciint.2023.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/18/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Bones are among the structures most likely to be recovered after death. However, the low quantity of preserved DNA and complex processing from sample to DNA profile make forensic DNA analysis of bones a challenging task. Raman spectroscopy and gas chromatography-mass spectrometry (GC/MS), have the potential to be useful as screening tools for DNA analysis and in decomposition studies. The objective of this research was to assess the usefulness of such molecular investigations. Femur samples collected from 50 decomposing human bodies were subjected to Raman spectroscopy and GC/MS. Assessment of nuclear DNA quantity and short tandem repeat (STR) genotyping efficiency were also performed. Raman parameters (crystallinity, carbonate-to-phosphate ratio, mineral-to-matrix ratio) and detected lipids were recorded. Background fluorescence proved problematic for Raman analysis of forensic bones. Regardless, it was not associated with less preserved DNA or less detected STR alleles. Fatty acids, hydrocarbons, and five types of fatty acid methyl esters (FAMEs) were detected. The main phosphate peak position in Raman spectra was significantly correlated with preserved DNA (p = 0.03713), while significantly more STR alleles were detected in bones containing methyl hexadecenoate (p = 0.04236). Detection of FAMEs in the bone matrix suggests a reaction between methanol produced by bacteria and free fatty acids, which are not associated with the level of preservation of endogenous DNA. The techniques assessed have shown to be useful in molecular taphonomy studies and forensic genetics.
Collapse
Affiliation(s)
- Heitor S D Corrêa
- Institute of Legal Medicine, Department of Medico-surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy; Forensic DNA Laboratory, Politec/MT, Cuiabá, Brazil.
| | - Ivano Alessandri
- INSTM and Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Andrea Verzeletti
- Institute of Legal Medicine, Department of Medico-surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Kitanaka R, Tsuboi M, Ozaki Y. Biogenic apatite in carbonate concretions with and without fossils investigated in situ by micro-Raman spectroscopy. Sci Rep 2023; 13:9714. [PMID: 37322242 PMCID: PMC10272169 DOI: 10.1038/s41598-023-36566-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Micro-Raman spectra of concretions with and without fossils were measured in a nondestructive manner. The band position and full width at half maximum height (FWHM) of ν1-PO43- of apatite in the concretions were analyzed to investigate the origin of apatite. The analyzed concretions were derived from the Kita-ama Formation of the Izumi Group, Japan. The micro-Raman analysis showed that the apatites in the concretions were divided into two groups: Group W (wide FWHM group) and Group N (narrow FWHM group). The apatite belonging to Group W is suggested to be biogenic apatite originating from the soft body tissues of organisms because the Sr content is high and the FWHM is similar to that of apatite in bones and teeth of present-day animals. The other apatite belonging to Group N is considered affected by the diagenetic process because of its narrow FWHM and F substitution. These features of both groups were observed regardless of the presence of fossils or absence of fossils in the concretions. This Raman spectroscopic study suggests that the apatite at the time of concretion formation belonged to Group W but was changed to Group N by the substitution of F during the diagenesis process.
Collapse
Affiliation(s)
- Ryosuke Kitanaka
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen-Uegahara 1, Sanda, Hyogo, 669-1330, Japan
| | - Motohiro Tsuboi
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen-Uegahara 1, Sanda, Hyogo, 669-1330, Japan.
| | - Yukihiro Ozaki
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen-Uegahara 1, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
5
|
Bone Molecular Modifications Induced by Diagenesis Followed-Up for 12 Months. BIOLOGY 2022; 11:biology11101542. [PMID: 36290445 PMCID: PMC9598178 DOI: 10.3390/biology11101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
Abstract
After death, diagenesis takes place. Numerous processes occur concomitantly, which makes it difficult to identify the diagenetic processes. The diagenetic processes refer to all processes (chemical or physical) that modify the skeletal remains. These processes are highly variable depending on the environmental factors (weather, temperature, age, sex, etc.), especially in the early stages. Numerous studies have evaluated bone diagenetic processes over long timescales (~millions of years), but fewer have been done over short timescales (between days and thousands of years). The objective of the study is to assess the early stages of diagenetic processes by Raman microspectroscopy over 12 months. The mineral and organic matrix modifications are monitored through physicochemical parameters. Ribs from six humans were buried in soil. The modifications of bone composition were followed by Raman spectroscopy each month. The decrease in the mineral/organic ratio and carbonate type-B content and the increase in crystallinity reveal that minerals undergo dissolution-recrystallization. The decrease in collagen cross-linking indicates that collagen hydrolysis induces the fragmentation of collagen fibres over 12 months.
Collapse
|
6
|
Jurašeková Z, Fabriciová G, Silveira LF, Lee YN, Gutak JM, Ataabadi MM, Kundrát M. Raman Spectra and Ancient Life: Vibrational ID Profiles of Fossilized (Bone) Tissues. Int J Mol Sci 2022; 23:10689. [PMID: 36142598 PMCID: PMC9502200 DOI: 10.3390/ijms231810689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Raman micro-spectroscopy is a non-destructive and non-contact analytical technique that combines microscopy and spectroscopy, thus providing a potential for non-invasive and in situ molecular identification, even over heterogeneous and rare samples such as fossilized tissues. Recently, chemical imaging techniques have become an increasingly popular tool for characterizing trace elements, isotopic information, and organic markers in fossils. Raman spectroscopy also shows a growing potential in understanding bone microstructure, chemical composition, and mineral assemblance affected by diagenetic processes. In our lab, we have investigated a wide range of different fossil tissues, mainly of Mesozoic vertebrates (from Jurassic through Cretaceous). Besides standard spectra of sedimentary rocks, including pigment contamination, our Raman spectra also exhibit interesting spectral features in the 1200-1800 cm-1 spectral range, where Raman bands of proteins, nucleic acids, and other organic molecules can be identified. In the present study, we discuss both a possible origin of the observed bands of ancient organic residues and difficulties with definition of the specific spectral markers in fossilized soft and hard tissues.
Collapse
Affiliation(s)
- Zuzana Jurašeková
- Department of Biophysics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Luis F. Silveira
- Museu de Zoologia da Universidade de São Paulo, Caixa Postal 42.494, São Paulo 04218-970, Brazil
| | - Yuong-Nam Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaroslav M. Gutak
- Department of Geology, Geodesy, and Life Security, Institute of Mining and Geosystems, Siberian State Industrial University, Kirov Street 42, 654007 Novokuznetsk, Russia
| | - Majid Mirzaie Ataabadi
- Department of Geology, Faculty of Science, University of Zanjan, Zanjan 4537138791, Iran
| | - Martin Kundrát
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group, Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| |
Collapse
|