1
|
Carbone A, Vitullo P, Di Gioia S, Conese M. Lung Inflammatory Genes in Cystic Fibrosis and Their Relevance to Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapies. Genes (Basel) 2023; 14:1966. [PMID: 37895314 PMCID: PMC10606852 DOI: 10.3390/genes14101966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome determined by over 2000 mutations in the CF Transmembrane Conductance Regulator (CFTR) gene harbored on chromosome 7. In people with CF (PWCF), lung disease is the major determinant of morbidity and mortality and is characterized by a clinical phenotype which differs in the presence of equal mutational assets, indicating that genetic and environmental modifiers play an important role in this variability. Airway inflammation determines the pathophysiology of CF lung disease (CFLD) both at its onset and progression. In this narrative review, we aim to depict the inflammatory process in CF lung, with a particular emphasis on those genetic polymorphisms that could modify the clinical outcome of the respiratory disease in PWCF. The natural history of CF has been changed since the introduction of CFTR modulator therapies in the clinical arena. However, also in this case, there is a patient-to-patient variable response. We provide an overview on inflammatory/immunity gene variants that affect CFLD severity and an appraisal of the effects of CFTR modulator therapies on the inflammatory process in lung disease and how this knowledge may advance the optimization of the management of PWCF.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
2
|
Aridgides DS, Mellinger DL, Gwilt LL, Hampton TH, Mould DL, Hogan DA, Ashare A. Comparative effects of CFTR modulators on phagocytic, metabolic and inflammatory profiles of CF and nonCF macrophages. Sci Rep 2023; 13:11995. [PMID: 37491532 PMCID: PMC10368712 DOI: 10.1038/s41598-023-38300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
Macrophage dysfunction has been well-described in Cystic Fibrosis (CF) and may contribute to bacterial persistence in the lung. Whether CF macrophage dysfunction is related directly to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in macrophages or an indirect consequence of chronic inflammation and mucostasis is a subject of ongoing debate. CFTR modulators that restore CFTR function in epithelial cells improve global CF monocyte inflammatory responses but their direct effects on macrophages are less well understood. To address this knowledge gap, we measured phagocytosis, metabolism, and cytokine expression in response to a classical CF pathogen, Pseudomonas aeruginosa in monocyte-derived macrophages (MDM) isolated from CF F508del homozygous subjects and nonCF controls. Unexpectedly, we found that CFTR modulators enhanced phagocytosis in both CF and nonCF cohorts. CFTR triple modulators also inhibited MDM mitochondrial function, consistent with MDM activation. In contrast to studies in humans where CFTR modulators decreased serum inflammatory cytokine levels, modulators did not alter cytokine secretion in our system. Our studies therefore suggest modulator induced metabolic effects may promote bacterial clearance in both CF and nonCF monocyte-derived macrophages.
Collapse
Affiliation(s)
- Daniel S Aridgides
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Diane L Mellinger
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lorraine L Gwilt
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Dallas L Mould
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Alix Ashare
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| |
Collapse
|
3
|
O'Carroll M. Advanced Cystic Fibrosis Lung Disease and Lung Transplantation in the Era of Cystic Fibrosis Transmembrane Conductance Regulator Modulators. Semin Respir Crit Care Med 2023; 44:260-268. [PMID: 36893762 DOI: 10.1055/s-0042-1758731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have changed the clinical landscape of cystic fibrosis (CF) by improving clinically significant outcome measures and quality of life of people with CF (pwCF). There are now long-term data showing improved 5-year survival with the use of ivacaftor, and the field continues to evolve at a rapid pace with the continued development of highly effective CFTR modulators. While the randomized controlled trials of CFTR modulators excluded patients with severe lung disease (forced expiratory volume in 1 second <40% predicted), observational data based on case reports and registry data show similar benefits in those with advanced lung disease. This has altered clinical practice particularly as it pertains to the role of lung transplantation in CF. This article describes the impact of highly effective modulator therapy (HEMT) on the natural history of CF and the influence on the timing of referral and consideration of listing for lung transplantation. CF clinicians play a pivotal role to ensure that the impetus of the CF foundation consensus guidelines to facilitate timely referral for lung transplantation is not lost among the excitement of anticipated sustained benefit from HEMT. While the widespread availability of elexacaftor/tezacaftor/ivacaftor over the past 2 years has been associated with a sharp drop in the number of people referred for consideration for lung transplantation and the number of people wait-listed for lung transplantation, it is difficult to accurately determine the true impact due to the confounding effect of the coronavirus disease 2019 pandemic. It is expected that lung transplantation will remain an important treatment for a smaller number of pwCF. Lung transplantation offers survival benefits in CF, and there remains an imperative to ensure timely consideration of lung transplantation in patients with advanced disease to further reduce the number of pwCF dying without consideration of lung transplant.
Collapse
Affiliation(s)
- Mark O'Carroll
- Respiratory Services, Auckland City Hospital, Te Toka Tumai, Te Whatu Ora - Health New Zealand, Auckland, New Zealand
| |
Collapse
|
4
|
Zhang S, Shrestha CL, Robledo-Avila F, Jaganathan D, Wisniewski BL, Brown N, Pham H, Carey K, Amer AO, Hall-Stoodley L, McCoy KS, Bai S, Partida-Sanchez S, Kopp BT. Cystic fibrosis macrophage function and clinical outcomes after elexacaftor/tezacaftor/ivacaftor. Eur Respir J 2023; 61:2102861. [PMID: 36265882 PMCID: PMC10066828 DOI: 10.1183/13993003.02861-2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Abnormal macrophage function caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) is a critical contributor to chronic airway infections and inflammation in people with cystic fibrosis (PWCF). Elexacaftor/tezacaftor/ivacaftor (ETI) is a new CFTR modulator therapy for PWCF. Host-pathogen and clinical responses to CFTR modulators are poorly described. We sought to determine how ETI impacts macrophage CFTR function, resulting effector functions and relationships to clinical outcome changes. METHODS Clinical information and/or biospecimens were obtained at ETI initiation and 3, 6, 9 and 12 months post-ETI in 56 PWCF and compared with non-CF controls. Peripheral blood monocyte-derived macrophages (MDMs) were isolated and functional assays performed. RESULTS ETI treatment was associated with increased CF MDM CFTR expression, function and localisation to the plasma membrane. CF MDM phagocytosis, intracellular killing of CF pathogens and efferocytosis of apoptotic neutrophils were partially restored by ETI, but inflammatory cytokine production remained unchanged. Clinical outcomes including increased forced expiratory volume in 1 s (+10%) and body mass index (+1.0 kg·m-2) showed fluctuations over time and were highly individualised. Significant correlations between post-ETI MDM CFTR function and sweat chloride levels were observed. However, MDM CFTR function correlated with clinical outcomes better than sweat chloride. CONCLUSION ETI is associated with unique changes in innate immune function and clinical outcomes.
Collapse
Affiliation(s)
- Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin L Wisniewski
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Nevian Brown
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hanh Pham
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine Carey
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Karen S McCoy
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
6
|
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. Int J Mol Sci 2022; 23:7750. [PMID: 35887098 PMCID: PMC9319215 DOI: 10.3390/ijms23147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Chronic inflammation and decline in lung function are major reasons for morbidity in CF. Mutant CFTR expressed in phagocytic cells such as macrophages contributes to persistent infection, inflammation, and lung disease in CF. Macrophages play a central role in innate immunity by eliminating pathogenic microbes by a process called phagocytosis. Phagocytosis is required for tissue homeostasis, balancing inflammation, and crosstalk with the adaptive immune system for antigen presentation. This review focused on (1) current understandings of the signaling underlying phagocytic mechanisms; (2) existing evidence for phagocytic dysregulation in CF; and (3) the emerging role of CFTR modulators in influencing CF phagocytic function. Alterations in CF macrophages from receptor initiation to phagosome formation are linked to disease progression in CF. A deeper understanding of macrophages in the context of CFTR and phagocytosis proteins at each step of phagosome formation might contribute to the new therapeutic development of dysregulated innate immunity in CF. Therefore, the review also indicates future areas of research in the context of CFTR and macrophages.
Collapse
Affiliation(s)
- Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Benjamin T. Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|
7
|
Chuanhui Huang, Wang S, Ma W. Design, Synthesis, and Antitumor Activity of New N4-Alkyl-N2-Phenyl-Pyrrolo[3,2-d]Pyrimidine-2,4-Diamine Derivatives as CDK6 Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
9
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
10
|
Le Moigne V, Rodriguez Rincon D, Glatigny S, Dupont CM, Langevin C, Ait Ali Said A, Renshaw SA, Floto RA, Herrmann JL, Bernut A. Roscovitine Worsens Mycobacterium abscessus Infection by Reducing DUOX2-mediated Neutrophil Response. Am J Respir Cell Mol Biol 2022; 66:439-451. [PMID: 35081328 PMCID: PMC8990120 DOI: 10.1165/rcmb.2021-0406oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Daniela Rodriguez Rincon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Glatigny
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Christian M. Dupont
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, UMR 9004, Montpellier, France
| | - Christelle Langevin
- Inrae, Infectiologie Expérimentale des Rongeurs et des Poissons, UE 0907, Jouy-en-Josas, France
| | - Amel Ait Ali Said
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield Medical School, and
- Firth Court, Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom; and
| | - Jean-Louis Herrmann
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
- Hôpital Raymond Poincaré, AP-HP, Groupe Hospitalo-universitaire Paris-Saclay, Garches, France
| | - Audrey Bernut
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield Medical School, and
- Firth Court, Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
The Effect of CFTR Modulators on Airway Infection in Cystic Fibrosis. Int J Mol Sci 2022; 23:ijms23073513. [PMID: 35408875 PMCID: PMC8998472 DOI: 10.3390/ijms23073513] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
The advent of Cystic fibrosis transmembrane receptor (CFTR) modulators in 2012 was a critical event in the history of cystic fibrosis (CF) treatment. Unlike traditional therapies that target downstream effects of CFTR dysfunction, CFTR modulators aim to correct the underlying defect at the protein level. These genotype-specific therapies are now available for an increasing number of CF patients, transforming the way we view the condition from a life-limiting disease to one that can be effectively managed. Several studies have demonstrated the vast improvement CFTR modulators have on normalization of sweat chloride, CFTR function, clinical endpoints, and frequency of pulmonary exacerbation. However, their impact on other aspects of the disease, such as pathogenic burden and airway infection, remain under explored. Frequent airway infections as a result of increased susceptibility and impaired innate immune response are a serious problem within CF, often leading to accelerated decline in lung function and disease progression. Current evidence suggests that CFTR modulators are unable to eradicate pathogenic organisms in those with already established lung disease. However, this may not be the case for those with relatively low levels of disease progression and conserved microbial diversity, such as young patients. Furthermore, it remains unknown whether the restorative effects exerted by CFTR modulators extend to immune cells, such as phagocytes, which have the potential to modulate the response of people with CF (pwCF) to infection. Throughout this review, we look at the potential impact of CFTR modulators on airway infection in CF and their ability to shape impaired pulmonary defences to pathogens.
Collapse
|
12
|
Meijer L, Hery-Arnaud G, Leven C, Nowak E, Hillion S, Renaudineau Y, Durieu I, Chiron R, Prevotat A, Fajac I, Hubert D, Murris-Espin M, Huge S, Danner-Boucher I, Ravoninjatovo B, Leroy S, Macey J, Urban T, Rault G, Mottier D, Berre RL. Safety and pharmacokinetics of Roscovitine (Seliciclib) in cystic fibrosis patients chronically infected with Pseudomonas aeruginosa, a randomized, placebo-controlled study. J Cyst Fibros 2021; 21:529-536. [PMID: 34961705 DOI: 10.1016/j.jcf.2021.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND The orally available kinase inhibitor R-roscovitine has undergone clinical trials against various cancers and is currently under clinical evaluation against Cushing disease and rheumatoid arthritis. Roscovitine displays biological properties suggesting potential benefits in CF: it partially corrects F508del-CFTR trafficking, stimulates the bactericidal properties of CF alveolar macrophages, and displays anti-inflammatory properties and analgesic effects. METHODS A phase 2 trial study (ROSCO-CF) was launched to evaluate the safety and effects of roscovitine in Pseudomonas aeruginosa infected adult CF patients carrying two CF causing mutations (at least one F508del-CFTR mutation) and harboring a FEV1 ≥40%. ROSCO-CF was a multicenter, double-blind, placebo-controlled, dose-ranging study (200, 400, 800 mg roscovitine, orally administered daily for 4 days/week/4 weeks). RESULTS Among the 34 volunteers enrolled, randomization assigned 11/8/8/7 to receive the 0 (placebo)/ 200/400/800 mg roscovitine doses, respectively. In these subjects with polypharmacy, roscovitine was relatively safe and well-tolerated, with no significant adverse effects (AEs) other than five serious AEs (SAEs) possibly related to roscovitine. Pharmacokinetics of roscovitine were rather variable among subjects. No significant efficacy, at the levels of inflammation, infection, spirometry, sweat chloride, pain and quality of life, was detected in roscovitine-treated groups compared to the placebo-treated group. CONCLUSION Roscovitine was relatively safe and well-tolerated in CF patients especially at the 200 and 400 mg doses. However, there were 5 subject withdrawals due to SAEs in the roscovitine group and none in the placebo group. The lack of evidence for efficacy of roscovitine (despite encouraging cellular and animal results) may be due to high pharmacokinetics variability, short duration of treatment, and/or inappropriate dosing protocol.
Collapse
Affiliation(s)
- Laurent Meijer
- ManRos Therapeutics, Presqu'île de Perharidy, Roscoff 29680, France.
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest cedex 29609, France; Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest 29200, France
| | - Cyril Leven
- Département de Biochimie et Pharmaco-Toxicologie, CHRU Brest, Brest cedex 29609, France; Univ Brest, EA 3878, GETBO, Brest 29200, France
| | - Emmanuel Nowak
- INSERM CIC 1412, Brest University Hospital, Brest cedex 29609, France
| | - Sophie Hillion
- Laboratoire d'Immunologie et Immunothérapie, CHRU de Brest, INSERM U1227, 2 avenue Foch, BP824, 29609 Brest cedex, France
| | - Yves Renaudineau
- Laboratoire d'Immunologie et Immunothérapie, CHRU de Brest, INSERM U1227, 2 avenue Foch, BP824, 29609 Brest cedex, France
| | - Isabelle Durieu
- Research on Healthcare Performance (RESHAPE), INSERM U1290, Claude Bernard Lyon 1 University, 8 Avenue Rockefeller, 69003 Lyon, France; Department of Internal Medicine, Cystic Fibrosis Center, Hospices Civils de Lyon, Pierre-Bénite 69495, France
| | - Raphaël Chiron
- CHU Montpellier, Maladies Respiratoires, Hôpital Arnaud de Villeneuve, 371, avenue du Doyen Gaston Giraud, Montpellier 34295, France
| | - Anne Prevotat
- Service de pneumologie, CHR - Hôpital Calmette, Boulevard du Pr. Leclercq, Lille 59037, France
| | - Isabelle Fajac
- APHP.Centre - Université de Paris, 27 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Dominique Hubert
- APHP.Centre - Université de Paris, 27 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Marlène Murris-Espin
- CHU Toulouse, CRCM adulte, Service de Pneumologie, Clinique des Voies Respiratoires. Hôpital Larrey, 24 chemin de Pouvourville, Toulouse 31059, France
| | - Sandrine Huge
- Centre Hospitalier Bretagne Atlantique, CRCM Mixte 56, 20 Boulevard du général Maurice Guillaudot, Vannes cedex 56017, France
| | - Isabelle Danner-Boucher
- CHU de Nantes, Service de Pneumologie, Hôpital Nord Laennec, Boulevard Jacques-Monod, Nantes 44093, Saint-Herblain, France
| | - Bruno Ravoninjatovo
- Centre de Ressources et de Compétences de la Mucoviscidose, Maladies Respiratoires et Allergiques, Hôpital Maison Blanche - CHU Reims, 45 rue Cognacq-Jay, 51100 Reims, France
| | - Sylvie Leroy
- CHU de Nice, Hôpital Pasteur, Service de Pneumologie, Oncologie Thoracique et Soins Intensifs Respiratoires, 30 Voie Romaine, CS 51069, Nice cedex 1 06001, France
| | - Julie Macey
- CHU Bordeaux, Hôpital Haut-Lévêque, Service de Pneumologie, Avenue de Magellan, Pessac cedex 33604, France
| | - Thierry Urban
- Département de Pneumologie, CHU Angers, Site de Larrey, 4 rue de Larrey, Angers cedex 49933, France
| | - Gilles Rault
- Fondation Ildys, Centre de Perharidy, Roscoff cedex 29684, France
| | - Dominique Mottier
- Département de Biochimie et Pharmaco-Toxicologie, CHRU Brest, Brest cedex 29609, France
| | - Rozenn Le Berre
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest 29200, France; Département de Médecine Interne et Pneumologie, CHRU Brest, Brest cedex 29609, France
| |
Collapse
|
13
|
Gur M, Bar-Yoseph R, Toukan Y, Hanna M, Masarweh K, Bentur L. Twelve years of progressive Mycobacterium abscessus lung disease in CF-Response to Trikafta. Pediatr Pulmonol 2021; 56:4048-4050. [PMID: 34432957 DOI: 10.1002/ppul.25637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Michal Gur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Bar-Yoseph
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yazeed Toukan
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moneera Hanna
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Kamal Masarweh
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Lea Bentur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Fraser-Pitt DJ, Dolan SK, Toledo-Aparicio D, Hunt JG, Smith DW, Lacy-Roberts N, Nupe Hewage PS, Stoyanova TN, Manson E, McClean K, Inglis NF, Mercer DK, O’Neil DA. Cysteamine Inhibits Glycine Utilisation and Disrupts Virulence in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:718213. [PMID: 34631600 PMCID: PMC8494450 DOI: 10.3389/fcimb.2021.718213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic human pathogen which employs a myriad of virulence factors. In people with cystic fibrosis (CF) P. aeruginosa frequently colonises the lungs and becomes a chronic infection that evolves to become less virulent over time, but often adapts to favour persistence in the host with alginate-producing mucoid, slow-growing, and antibiotic resistant phenotypes emerging. Cysteamine is an endogenous aminothiol which has been shown to prevent biofilm formation, reduce phenazine production, and potentiate antibiotic activity against P. aeruginosa, and has been investigated in clinical trials as an adjunct therapy for pulmonary exacerbations of CF. Here we demonstrate (for the first time in a prokaryote) that cysteamine prevents glycine utilisation by P. aeruginosa in common with previously reported activity blocking the glycine cleavage system in human cells. Despite the clear inhibition of glycine metabolism, cysteamine also inhibits hydrogen cyanide (HCN) production by P. aeruginosa, suggesting a direct interference in the regulation of virulence factor synthesis. Cysteamine impaired chemotaxis, lowered pyocyanin, pyoverdine and exopolysaccharide production, and reduced the toxicity of P. aeruginosa secreted factors in a Galleria mellonella infection model. Thus, cysteamine has additional potent anti-virulence properties targeting P. aeruginosa, further supporting its therapeutic potential in CF and other infections.
Collapse
Affiliation(s)
| | - Stephen K. Dolan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Piumi Sara Nupe Hewage
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Teodora N. Stoyanova
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Erin Manson
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin McClean
- Proteomics Facility Services, Moredun Research Institute, Penicuik, United Kingdom
| | - Neil F. Inglis
- Proteomics Facility Services, Moredun Research Institute, Penicuik, United Kingdom
| | | | | |
Collapse
|
15
|
Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E, Buroni S. Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics (Basel) 2021; 10:863. [PMID: 34356783 PMCID: PMC8300704 DOI: 10.3390/antibiotics10070863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Elena Perrin
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| |
Collapse
|
16
|
Flores-León M, Alcaraz N, Pérez-Domínguez M, Torres-Arciga K, Rebollar-Vega R, De la Rosa-Velázquez IA, Arriaga-Canon C, Herrera LA, Arias C, González-Barrios R. Transcriptional Profiles Reveal Deregulation of Lipid Metabolism and Inflammatory Pathways in Neurons Exposed to Palmitic Acid. Mol Neurobiol 2021; 58:4639-4651. [PMID: 34155583 DOI: 10.1007/s12035-021-02434-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
The effects of the consumption of high-fat diets (HFD) have been studied to unravel the molecular pathways they are altering in order to understand the link between increased caloric intake, metabolic diseases, and the risk of cognitive dysfunction. The saturated fatty acid, palmitic acid (PA), is the main component of HFD and it has been found increased in the circulation of obese and diabetic people. In the central nervous system, PA has been associated with inflammatory responses in astrocytes, but the effects on neurons exposed to it have not been largely investigated. Given that PA affects a variety of metabolic pathways, we aimed to analyze the transcriptomic profile activated by this fatty acid to shed light on the mechanisms of neuronal dysfunction. In the current study, we profiled the transcriptome response after PA exposition at non-toxic doses in primary hippocampal neurons. Gene ontology and Reactome pathway analysis revealed a pattern of gene expression which is associated with inflammatory pathways, and importantly, with the activation of lipid metabolism that is considered not very active in neurons. Validation by quantitative RT-PCR (qRT-PCR) of Hmgcs2, Angptl4, Ugt8, and Rnf145 support the results obtained by RNAseq. Overall, these findings suggest that neurons are able to respond to saturated fatty acids changing the expression pattern of genes associated with inflammatory response and lipid utilization that may be involved in the neuronal damage associated with metabolic diseases.
Collapse
Affiliation(s)
- M Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - N Alcaraz
- The Bioinformatics Centre. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico
| | - M Pérez-Domínguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - K Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - R Rebollar-Vega
- Genomics Laboratory, Red de Apoyo a La Investigación - CIC, Universidad Nacional Autónoma de México, INMCNSZ, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, Mexico City, Mexico
| | - I A De la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a La Investigación - CIC, Universidad Nacional Autónoma de México, INMCNSZ, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - C Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - L A Herrera
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico.
| |
Collapse
|
17
|
Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22041952. [PMID: 33669352 PMCID: PMC7920244 DOI: 10.3390/ijms22041952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.
Collapse
|