1
|
Chen R, Peng C, Wang Z, Xiao Y, Tang S. Effects of vaginal microbiota on human papillomavirus infection and its related diseases. Microb Pathog 2024; 193:106761. [PMID: 38925345 DOI: 10.1016/j.micpath.2024.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
With the knowledge of female reproductive tract microbiota gradually increasing, the connection between vaginal microbiota (VMB) and its related diseases is increasingly highlighted. Manifestation of VMB keeps changing with various dominated bacteria, which can affect the immune response of mucosal barrier and the entrance of pathogens. Human papillomavirus (HPV), as an oncogenic virus, is closely related to viral-associated cancer, such as cervical cancer. According to HPV infection status, VMB can transform into different types, and result in accelerating or restraining the progression of diseases, which have exposed the inner link between VMB and HPV. Therefore, probiotics therapy promises to be a new complementary therapy to rebuild a healthy VMB for patients, but there's still a long way to go before its ready for the clinic. This review focuses on composition, immune response, and application of VMB in HPV and its associated diseases and aims to provide the new ideas and directions for the research on VMB.
Collapse
Affiliation(s)
- Ranzhong Chen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| | - Changmin Peng
- School of Public Health, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China.
| | - Zhenlei Wang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| | - Yuanyuan Xiao
- School of Public Health, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China.
| | - Shuangyang Tang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Zeber-Lubecka N, Kulecka M, Dabrowska M, Baginska-Drabiuk K, Glowienka-Stodolak M, Nowakowski A, Slabuszewska-Jozwiak A, Bednorz B, Jędrzejewska I, Piasecka M, Pawelec J, Wojciechowska-Lampka E, Ostrowski J. Cervical microbiota dysbiosis associated with high-risk Human Papillomavirus infection. PLoS One 2024; 19:e0302270. [PMID: 38669258 PMCID: PMC11051640 DOI: 10.1371/journal.pone.0302270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
High-risk Human Papillomavirus (HR-HPV) genotypes, specifically HPV16 and HPV18, pose a significant risk for the development of cervical intraepithelial neoplasia and cervical cancer. In the multifaceted cervical microenvironment, consisting of immune cells and diverse microbiota, Lactobacillus emerges as a pivotal factor, wielding significant influence in both stabilizing and disrupting the microbiome of the reproductive tract. To analyze the distinction between the cervical microbiota and Lactobacillus-dominant/non-dominant status of HR-HPV and non-infected healthy women, sixty-nine cervical swab samples were analyzed, included 44 with HR-HPV infection and healthy controls. All samples were recruited from Human Papillomavirus-based cervical cancer screening program and subjected to 16s rRNA sequencing analysis. Alpha and beta diversity analyses reveal no significant differences in the cervical microbiota of HR-HPV-infected women, including 16 and 18 HPV genotypes, and those with squamous intraepithelial lesion (SIL), compared to a control group. In this study we identified significantly lower abundance of Lactobacillus mucosae in women with HR-HPV infection compared to the control group. Furthermore, changes in bacterial diversity were noted in Lactobacillus non-dominant (LND) samples compared to Lactobacillus-dominant (LD) in both HR-HPV-infected and control groups. LND samples in HR-HPV-infected women exhibited a cervical dysbiotic state, characterized by Lactobacillus deficiency. In turn, the LD HR-HPV group showed an overrepresentation of Lactobacillus helveticus. In summary, our study highlighted the distinctive roles of L. mucosae and L. helveticus in HR-HPV infections, signaling a need for further research to demonstrate potential clinical implications of cervical microbiota dysbiosis.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Maria Glowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrzej Nowakowski
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Bożena Bednorz
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ilona Jędrzejewska
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piasecka
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Pawelec
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
3
|
Głowienka-Stodolak M, Bagińska-Drabiuk K, Szubert S, Hennig EE, Horala A, Dąbrowska M, Micek M, Ciebiera M, Zeber-Lubecka N. Human Papillomavirus Infections and the Role Played by Cervical and Cervico-Vaginal Microbiota-Evidence from Next-Generation Sequencing Studies. Cancers (Basel) 2024; 16:399. [PMID: 38254888 PMCID: PMC10814012 DOI: 10.3390/cancers16020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review encompasses studies examining changes in the cervical and cervico-vaginal microbiota (CM and CVM) in relation to human papillomavirus (HPV) using next-generation sequencing (NGS) technology. HPV infection remains a prominent global health concern, with a spectrum of manifestations, from benign lesions to life-threatening cervical cancers. The CM and CVM, a unique collection of microorganisms inhabiting the cervix/vagina, has emerged as a critical player in cervical health. Recent research has indicated that disruptions in the CM and CVM, characterized by a decrease in Lactobacillus and the overgrowth of other bacteria, might increase the risk of HPV persistence and the progression of cervical abnormalities. This alteration in the CM or CVM has been linked to a higher likelihood of HPV infection and cervical dysplasia. NGS technology has revolutionized the study of the cervical microbiome, providing insights into microbial diversity, dynamics, and taxonomic classifications. Bacterial 16S rRNA gene sequencing, has proven invaluable in characterizing the cervical microbiome, shedding light on its role in HPV infections and paving the way for more tailored strategies to combat cervical diseases. NGS-based studies offer personalized insights into an individual's cervical microbiome. This knowledge holds promise for the development of novel diagnostic tools, targeted therapies, and preventive interventions for cervix-related conditions, including cervical cancer.
Collapse
Affiliation(s)
- Maria Głowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Katarzyna Bagińska-Drabiuk
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Sebastian Szubert
- Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (S.S.); (A.H.)
| | - Ewa E. Hennig
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Agnieszka Horala
- Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (S.S.); (A.H.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Martyna Micek
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; (M.M.); (M.C.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; (M.M.); (M.C.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| |
Collapse
|
4
|
Sharifi N, Bouzari M, Keyvani H, Mehdi Ranjbar M. The effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia Patients-Clinical cohort study. Int Immunopharmacol 2024; 126:111296. [PMID: 38041958 DOI: 10.1016/j.intimp.2023.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Cervical cancer is one of the most common malignancies in women, and its treatment has many side effects. Therefore, in this research, the effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia (CIN) patients were investigated. METHODS 15 patients who met the inclusion criteria and diagnosed as CIN II and CIN III were included in the study. The vaccine was injected inside the cervix (neoplasia site) at increasing doses during 21 days, and they were evaluated for adverse events. NDV antibody titer was measured in 90 days and the levels of ki-67 and p16 proteins were studied by immunohistochemistry. Also, the levels of some important inflammatory cytokines in the serum of CIN patients were measured and finally the patients were evaluated according to the final outcomes and the reduction of tumor lesions. RESULTS Only in the first dose of vaccine some patients showed flu-like symptoms. The accumulation of NDV antibodies started on the 7th day of the study and increased until the 90th day. Administration of LaSota vaccine had no significant effect on the expressions of Ki-67 and p16 proteins. Nevertheless, a decrease in the serum levels of Il-1β was observed in patients after the administration of the vaccine, but the serum levels of both Il-2 and INF-γ upregulated significantly. Also, vaccine administration had no significant effect in reducing CIN grades and lesions. CONCLUSIONS In general, we concluded that LaSota strain of NDV vaccine has no therapeutic effectiveness in CIN patients.
Collapse
Affiliation(s)
- Neda Sharifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Majid Bouzari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
5
|
Cui X, Li Y, Zhang C, Qi Y, Sun Y, Li W. Multiple HPV integration mode in the cell lines based on long-reads sequencing. Front Microbiol 2023; 14:1294146. [PMID: 38169727 PMCID: PMC10758443 DOI: 10.3389/fmicb.2023.1294146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background The integration of human papillomavirus (HPV) is closely related to the occurrence of cervical cancer. However, little is known about the complete state of HPV integration into the host genome. Methods In this study, three HPV-positive cell lines, HeLa, SiHa, and CaSki, were subjected to NANOPORE long-read sequencing to detect HPV integration. Analysis of viral integration patterns using independently developed software (HPV-TSD) yielded multiple complete integration patterns for the three HPV cell lines. Results We found distinct differences between the integration patterns of HPV18 and HPV16. Furthermore, the integration characteristics of the viruses were significantly different, even though they all belonged to HPV16 integration. The HPV integration in the CaSki cells was relatively complex. The HPV18 integration status in HeLa cells was the dominant, whereas the percentage of integrated HPV 16 in SiHa and CaSki cells was significantly lower. In addition, the virus sequences in the HeLa cells were incomplete and existed in an integrated state. We also identified a large number of tandem repeats in HPV16 and HPV18 integration. Our study not only clarified the feasibility of high-throughput long-read sequencing in the study of HPV integration, but also explored a variety of HPV integration models, and confirmed that viral integration is an important form of HPV in cell lines. Conclusion Elucidating HPV integration patterns will provide critical guidance for developing a detection algorithm for HPV integration, as well as the application of virus integration in clinical practice and drug research and development.
Collapse
Affiliation(s)
- Xiaofang Cui
- Jining Medical University, Jining, Shandong, China
- Department of Bioinformatics, School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | | | - Chuanpeng Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yanwei Qi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | | | - Weiyang Li
- Jining Medical University, Jining, Shandong, China
- Department of Bioinformatics, School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
6
|
Wu S, Cheng L, Pennhag AAL, Seifert M, Guðnadóttir U, Engstrand L, Mints M, Andersson S, Du J. The salivary microbiota is altered in cervical dysplasia patients and influenced by conization. IMETA 2023; 2:e108. [PMID: 38867925 PMCID: PMC10989756 DOI: 10.1002/imt2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 06/14/2024]
Abstract
This study supports the correlation between the salivary microbiota and cervical dysplasia and suggests that smoking influences the salivary microbiota.
Collapse
Affiliation(s)
- Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Alexandra A. L. Pennhag
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Maike Seifert
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Unnur Guðnadóttir
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- Science for Life LaboratoryKarolinska InstituteStockholmSweden
| | - Miriam Mints
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Sonia Andersson
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| |
Collapse
|
7
|
Gao Q, Fan T, Luo S, Zheng J, Zhang L, Cao L, Zhang Z, Li L, Huang Z, Zhang H, Huang L, Xiao Q, Qiu F. Lactobacillus gasseri LGV03 isolated from the cervico-vagina of HPV-cleared women modulates epithelial innate immune responses and suppresses the growth of HPV-positive human cervical cancer cells. Transl Oncol 2023; 35:101714. [PMID: 37331103 PMCID: PMC10366645 DOI: 10.1016/j.tranon.2023.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/24/2022] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Persistent human papillomavirus (HPV) infections is necessary for the development of cervical cancers. An increasing number of retrospective studies have found the depletion of Lactobacillus microbiota in the cervico-vagina facilitate HPV infection and might be involved in viral persistence and cancer development. However, there have been no reports confirming the immunomodulatory effects of Lactobacillus microbiota isolated from cervico-vaginal samples of HPV clearance in women. Using cervico-vaginal samples from HPV persistent infection and clearance in women, this study investigated the local immune properties in cervical mucosa. As expected, type I interferons, such as IFN-α and IFN-β, and TLR3 globally downregulated in HPV+ persistence group. Luminex cytokine/chemokine panel analysis revealed that L. jannaschii LJV03, L. vaginalis LVV03, L. reuteri LRV03, and L. gasseri LGV03 isolated from cervicovaginal samples of HPV clearance in women altered the host's epithelial immune response, particularly L. gasseri LGV03. Furthermore, L. gasseri LGV03 enhanced the poly (I:C)-induced production of IFN by modulating the IRF3 pathway and attenuating poly (I:C)-induced production of proinflammatory mediators by regulating the NF-κB pathway in Ect1/E6E7 cells, indicating that L. gasseri LGV03 keeps the innate system alert to potential pathogens and reduces the inflammatory effects during persistent pathogen infection. L. gasseri LGV03 also markedly inhibited the proliferation of Ect1/E6E7 cells in a zebrafish xenograft model, which may be attributed to an increased immune response mediated by L. gasseri LGV03.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Tao Fan
- Department of Obstetrics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Siying Luo
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Jieting Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Longbing Cao
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China
| | - Zikang Zhang
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China
| | - Li Li
- Department of Gynecology, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), Shenzhen, 518000, China
| | - Zhu Huang
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Huifen Zhang
- Department of Obstetrics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Liuxuan Huang
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Qing Xiao
- Department of Gynecology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China.
| |
Collapse
|
8
|
Asangba AE, Chen J, Goergen KM, Larson MC, Oberg AL, Casarin J, Multinu F, Kaufmann SH, Mariani A, Chia N, Walther-Antonio MRS. Diagnostic and prognostic potential of the microbiome in ovarian cancer treatment response. Sci Rep 2023; 13:730. [PMID: 36639731 PMCID: PMC9839674 DOI: 10.1038/s41598-023-27555-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Ovarian cancer (OC) is the second most common gynecological malignancy and the fifth leading cause of death due to cancer in women in the United States mainly due to the late-stage diagnosis of this cancer. It is, therefore, critical to identify potential indicators to aid in early detection and diagnosis of this disease. We investigated the microbiome associated with OC and its potential role in detection, progression as well as prognosis of the disease. We identified a distinct OC microbiome with general enrichment of several microbial taxa, including Dialister, Corynebacterium, Prevotella, and Peptoniphilus in the OC cohort in all body sites excluding stool and omentum which were not sampled from the benign cohort. These taxa were, however, depleted in the advanced-stage and high-grade OC patients compared to early-stage and low-grade OC patients suggestive of decrease accumulation in advanced disease and could serve as potential indicators for early detection of OC. Similarly, we also observed the accumulation of these mainly pathogenic taxa in OC patients with adverse treatment outcomes compared to those without events and could also serve as potential indicators for predicting patients' responses to treatment. These findings provide important insights into the potential use of the microbiome as indicators in (1) early detection of and screening for OC and (2) predicting patients' response to treatment. Given the limited number of patients enrolled in the study, these results would need to be further investigated and confirmed in a larger study.
Collapse
Affiliation(s)
- Abigail E Asangba
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Krista M Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jvan Casarin
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Francesco Multinu
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marina R S Walther-Antonio
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, Wang C, Li H, Qi W, Wang Y, Fan A, Han C, Xue F. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol 2023; 13:1124591. [PMID: 36909729 PMCID: PMC9998931 DOI: 10.3389/fcimb.2023.1124591] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
The female reproductive tract harbours hundreds of bacterial species and produces numerous metabolites. The uterine cervix is located between the upper and lower parts of the female genital tract. It allows sperm and birth passage and hinders the upward movement of microorganisms into a relatively sterile uterus. It is also the predicted site for sexually transmitted infection (STI), such as Chlamydia, human papilloma virus (HPV), and human immunodeficiency virus (HIV). The healthy cervicovaginal microbiota maintains cervical epithelial barrier integrity and modulates the mucosal immune system. Perturbations of the microbiota composition accompany changes in microbial metabolites that induce local inflammation, damage the cervical epithelial and immune barrier, and increase susceptibility to STI infection and relative disease progression. This review examined the intimate interactions between the cervicovaginal microbiota, relative metabolites, and the cervical epithelial-, immune-, and mucus barrier, and the potent effect of the host-microbiota interaction on specific STI infection. An improved understanding of cervicovaginal microbiota regulation on cervical microenvironment homeostasis might promote advances in diagnostic and therapeutic approaches for various STI diseases.
Collapse
Affiliation(s)
- Mengting Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalan Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junyi Bai
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Ma
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bijun Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhui Qi
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| | - Fengxia Xue
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| |
Collapse
|
10
|
Cervicovaginal Microbiome after Cervical Intraepithelial Neoplasia Treatment. A Protocol for Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179050. [PMID: 34501639 PMCID: PMC8431715 DOI: 10.3390/ijerph18179050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
(1) Background: The microbiome consists of microorganisms from various kingdoms with numerous physical and chemical properties Lactobacillus species constitute the highest percentage of healthy cervical and vaginal microbiota. Dysbiosis may cause adverse outcomes, e.g., bacterial vaginosis, pelvic inflammatory disease and pregnancy complications. The cervicovaginal microbiome might contribute to the development of a persistent HPV infection—the main risk factor of cervical cancer—and influence progression to malignancy The aim is to perform a systematic review of current literature and a meta-analysis regarding microbiome changes after cervical intraepithelial neoplasia treatment. (2) Methods: We will search PubMed, Scopus, Google Scholar and Embase Database and trace citations in the reference sections. Randomized and non-randomized controlled studies, case–control and cohort studies published between January 2000 and May 2021 will be included in the study protocol. The following keywords will be used: ‘microbiome’, ‘vaginal microbiome’, ‘cervical microbiome’, ‘cervical neoplasia treatment’, ’conization’, ‘electroconization’, and ‘electrosurgical treatment’. Statistical analyses will be performed using RevMan 5.4. (3) Results: The results will be published as a peer-reviewed article. (4) Conclusions: The study will show which forms of intraepithelial neoplasia treatment change the cervicovaginal microbiome. Finding the best form of treatment by studying the cervicovaginal microbiome after various forms of treatment is essential. Patients would benefit not only from the treatment of the initial disease but also the management of dysbiosis, which might underlie other pathologies.
Collapse
|