1
|
Bergamo A, Sava G. Lysozyme: A Natural Product with Multiple and Useful Antiviral Properties. Molecules 2024; 29:652. [PMID: 38338396 PMCID: PMC10856218 DOI: 10.3390/molecules29030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Lysozyme, especially the one obtained from hen's egg white, continues to show new pharmacological properties. The fact that only a few of these properties can be translated into therapeutic applications is due to the lack of suitable clinical studies. However, this lack cannot hide the evidence that is emerging from scientific research. This review for the first time examines, from a pharmacological point of view, all the relevant studies on the antiviral properties of lysozyme, analyzing its possible mechanism of action and its ability to block viral infections and, in some cases, inhibit viral replication. Lysozyme can interact with nucleic acids and alter their function, but this effect is uncoupled from the catalytic activity that determines its antibacterial activity; it is present in intact lysozyme but is equally potent in a heat-degraded lysozyme or in a nonapeptide isolated by proteolytic digestion. An analysis of the literature shows that lysozyme can be used both as a disinfectant for raw and processed foods and as a drug to combat viral infections in animals and humans. To summarize, it can be said that lysozyme has important antiviral properties, as already suspected in the initial studies conducted over 50 years ago, and it should be explored in suitable clinical studies on humans.
Collapse
|
2
|
Onodera T, Sakudo A, Sugiura K, Haritani M, Furusaki K, Kirisawa R. Antiviral agents and disinfectants for foot‑and‑mouth disease (Review). Biomed Rep 2023; 19:57. [PMID: 37614986 PMCID: PMC10442741 DOI: 10.3892/br.2023.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
Fluorouracil, 5-azacytidine, 6-azauridine, ribavirin, favipiravir (T-705) and its derivative (T-1105) exhibit anti-foot-and-mouth disease virus (FMDV) effects. In particular, T-1105 exhibits promising results when administered to guinea pigs orally, and pigs in their feed. FMDV is excreted in the early stages of infection in aerosols and oral or nasal droplets from animals. T-1105 along with the FMDV vaccine can be used to combat foot-and-mouth disease (FMD) epidemics. Several studies have shown that sodium hypochlorous solutions are widely used to inactivate viruses, including FMDV. However, these solutions must be stored under cool and dark conditions to maintain their virucidal effects. Interestingly, a study indicated that the virucidal activity of a calcium bicarbonate solution with a mesoscopic structure (CAC-717) did not decrease after storage at room temperature for at least four years outside direct sunlight. Numerous lessons acquired from the 2010 FMD outbreak in Japan are relevant for the control of COVID-19. However, the widespread use of chlorite can cause environmental issues. Chlorite can be combined with nitrogen to produce chloramine or N-nitrosodimethylamine, which plays a role in carcinogenesis. Therefore, risk assessments should be conducted in aquatic environments. Moreover, there is a need to develop nonchlorine disinfectants that can be used during epidemics, including FMD. The approach of 'One Health' should be shared between the public health and veterinary fields to improve the management of viral outbreaks, including those due to FMD.
Collapse
Affiliation(s)
- Takashi Onodera
- Laboratory of Environmental Science for Sustainable Development, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Research Center for Food Safety, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akikazu Sakudo
- Department of Food Safety, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Katsuaki Sugiura
- Laboratory of Environmental Science for Sustainable Development, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Haritani
- Laboratory of Environmental Science for Sustainable Development, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koichi Furusaki
- Mineral Activation Research Institute, Kumamoto 865-0023, Japan
| | - Rikio Kirisawa
- Laboratory of Environmental Science for Sustainable Development, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|