1
|
Beck C, Killeen CT, Johnson SC, Kunze A. Nanomagnetic Guidance Shapes the Structure-Function Relationship of Developing Cortical Networks. NANO LETTERS 2024; 24:13564-13573. [PMID: 39432086 PMCID: PMC11529602 DOI: 10.1021/acs.nanolett.4c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
In this study, we implement large-scale nanomagnetic guidance on cortical neurons to guide dissociated neuronal networks during development. Cortical networks cultured over microelectrode arrays were exposed to functionalized magnetic nanoparticles, followed by magnetic field exposure to guide neurites over 14 days in vitro. Immunofluorescence of the axonal protein Tau revealed a greater number of neurites that were longer and aligned with the nanomagnetic force relative to nonguided networks. This was further confirmed through brightfield imaging on the microelectrode arrays during development. Spontaneous electrophysiological recordings revealed that the guided networks exhibited increased firing rates and frequency in force-aligned connectivity identified through Granger Causality. Applying this methodology across networks with nonuniform force directions increased local activity in target regions, identified as regions in the direction of the nanomagnetic force. Altogether, these results demonstrate that nanomagnetic forces guide the structure and function of dissociated cortical neuron networks at the millimeter scale.
Collapse
Affiliation(s)
- Connor
L. Beck
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Conner T. Killeen
- Department
of Microbiology, Montana State University, Bozeman, Montana 59717, United States
| | - Sara C. Johnson
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Anja Kunze
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
- Optical
Technology Center, Montana State University, Bozeman, Montana 59717, United States
- Montana
Nanotechnology Center, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
2
|
Neusch A, Wiedwald U, Novoselova IP, Kuckla DA, Tetos N, Sadik S, Hagemann P, Farle M, Monzel C. Semisynthetic ferritin-based nanoparticles with high magnetic anisotropy for spatial magnetic manipulation and inductive heating. NANOSCALE 2024; 16:15113-15127. [PMID: 39054876 DOI: 10.1039/d4nr01652a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The human iron storage protein ferritin represents an appealing template to obtain a semisynthetic magnetic nanoparticle (MNP) for spatial manipulation or inductive heating applications on a nanoscale. Ferritin consists of a protein cage of well-defined size (12 nm), which is genetically modifiable and biocompatible, and into which a magnetic core is synthesised. Here, we probed the magnetic response and hence the MNP's suitability for (bio-)nanotechnological or nanomedical applications when the core is doped with 7% cobalt or 7% zinc in comparison with the undoped iron oxide MNP. The samples exhibit almost identical core and hydrodynamic sizes, along with their tunable magnetic core characteristics as verified by structural and magnetic characterisation. Cobalt doping significantly increased the MNP's anisotropy and hence the heating power in comparison with other magnetic cores with potential application as a mild heat mediator. Spatial magnetic manipulation was performed with MNPs inside droplets, the cell cytoplasm, or the cell nucleus, where the MNP surface conjugation with mEGFP and poly(ethylene glycol) gave rise to excellent intracellular stability and traceability within the complex biological environment. A magnetic stimulus (smaller than fN forces) results in the quick and reversible redistribution of the MNPs. The obtained data suggest that semisynthetic ferritin MNPs are highly versatile nanoagents and promising candidates for theranostic or (bio-)nanotechnological applications.
Collapse
Affiliation(s)
- Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Iuliia P Novoselova
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Daniel A Kuckla
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Nikolaos Tetos
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Sarah Sadik
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Philipp Hagemann
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Blümler P, Raudzus F, Schmid F. A comprehensive approach to characterize navigation instruments for magnetic guidance in biological systems. Sci Rep 2024; 14:7879. [PMID: 38570608 PMCID: PMC10991419 DOI: 10.1038/s41598-024-58091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Achieving non-invasive spatiotemporal control over cellular functions, tissue organization, and behavior is a desirable aim for advanced therapies. Magnetic fields, due to their negligible interaction with biological matter, are promising for in vitro and in vivo applications, even in deep tissues. Particularly, the remote manipulation of paramagnetic (including superparamagnetic and ferromagnetic, all with a positive magnetic susceptibility) entities through magnetic instruments has emerged as a promising approach across various biological contexts. However, variations in the properties and descriptions of these instruments have led to a lack of reproducibility and comparability among studies. This article addresses the need for standardizing the characterization of magnetic instruments, with a specific focus on their ability to control the movement of paramagnetic objects within organisms. While it is well known that the force exerted on magnetic particles depends on the spatial variation (gradient) of the magnetic field, the magnitude of the field is often overlooked in the literature. Therefore, we comprehensively analyze and discuss both actors and propose a novel descriptor, termed 'effective gradient', which combines both dependencies. To illustrate the importance of both factors, we characterize different magnet systems and relate them to experiments involving superparamagnetic nanoparticles. This standardization effort aims to enhance the reproducibility and comparability of studies utilizing magnetic instruments for biological applications.
Collapse
Affiliation(s)
- Peter Blümler
- Institute of Physics, University of Mainz, 55128, Mainz, Germany.
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Neuronal Signaling and Regeneration Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Medical Education Center/International Education Section, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
4
|
Delille F, Balloul E, Hajj B, Hanafi M, Morand C, Xu XZ, Dumas S, Coulon A, Lequeux N, Pons T. Sulfobetaine-Phosphonate Block Copolymer Coated Iron Oxide Nanoparticles for Genomic Locus Targeting and Magnetic Micromanipulation in the Nucleus of Living Cells. NANO LETTERS 2023. [PMID: 37390368 DOI: 10.1021/acs.nanolett.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Exerting forces on biomolecules inside living cells would allow us to probe their dynamic interactions in their native environment. Magnetic iron oxide nanoparticles represent a unique tool capable of pulling on biomolecules with the application of an external magnetic field gradient; however, their use has been restricted to biomolecules accessible from the extracellular medium. Targeting intracellular biomolecules represents an additional challenge due to potential nonspecific interactions with cytoplasmic or nuclear components. We present the synthesis of sulfobetaine-phosphonate block copolymer ligands, which provide magnetic nanoparticles that are stealthy and targetable in living cells. We demonstrate, for the first time, their efficient targeting in the nucleus and their use for magnetic micromanipulation of a specific genomic locus in living cells. We believe that these stable and sensitive magnetic nanoprobes represent a promising tool to manipulate specific biomolecules in living cells and probe the mechanical properties of living matter at the molecular scale.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Elie Balloul
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
| | - Bassam Hajj
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
| | - Mohamed Hanafi
- Sciences et Ingénierie de la Matière Molle, UMR 7615, ESPCI Paris PSL-CNRS-Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France
| | - Colin Morand
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
- Laboratoire Dynamique du Noyau, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, 75005 Paris, France
| | - Xiang Zhen Xu
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Simon Dumas
- Institut Pierre-Gilles de Gennes, Institut Curie, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Antoine Coulon
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
- Laboratoire Dynamique du Noyau, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Thomas Pons
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| |
Collapse
|
5
|
Dhillon K, Aizel K, Broomhall TJ, Secret E, Goodman T, Rotherham M, Telling N, Siaugue JM, Ménager C, Fresnais J, Coppey M, El Haj AJ, Gates MA. Directional control of neurite outgrowth: emerging technologies for Parkinson's disease using magnetic nanoparticles and magnetic field gradients. J R Soc Interface 2022; 19:20220576. [PMID: 36349444 PMCID: PMC9653228 DOI: 10.1098/rsif.2022.0576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
A challenge in current stem cell therapies for Parkinson's disease (PD) is controlling neuronal outgrowth from the substantia nigra towards the targeted area where connectivity is required in the striatum. Here we present progress towards controlling directional neurite extensions through the application of iron-oxide magnetic nanoparticles (MNPs) labelled neuronal cells combined with a magnetic array generating large spatially variant field gradients (greater than 20 T m-1). We investigated the viability of this approach in both two-dimensional and organotypic brain slice models and validated the observed changes in neurite directionality using mathematical models. Results showed that MNP-labelled cells exhibited a shift in directional neurite outgrowth when cultured in a magnetic field gradient, which broadly agreed with mathematical modelling of the magnetic force gradients and predicted MNP force direction. We translated our approach to an ex vivo rat brain slice where we observed directional neurite outgrowth of transplanted MNP-labelled cells from the substantia nigra towards the striatum. The improved directionality highlights the viability of this approach as a remote-control methodology for the control and manipulation of cellular growth for regenerative medicine applications. This study presents a new tool to overcome challenges faced in the development of new therapies for PD.
Collapse
Affiliation(s)
- K. Dhillon
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - K. Aizel
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - T. J. Broomhall
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - E. Secret
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - T. Goodman
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - M. Rotherham
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - N. Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - J. M. Siaugue
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - C. Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - J. Fresnais
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - M. Coppey
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - A. J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - M. A. Gates
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
- School of Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
6
|
Rotherham M, Nahar T, Broomhall TJ, Telling ND, El Haj AJ. Remote magnetic actuation of cell signalling for tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Le Jeune M, Secret E, Trichet M, Michel A, Ravault D, Illien F, Siaugue JM, Sagan S, Burlina F, Ménager C. Conjugation of Oligo-His Peptides to Magnetic γ-Fe 2O 3@SiO 2 Core-Shell Nanoparticles Promotes Their Access to the Cytosol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15021-15034. [PMID: 35319860 DOI: 10.1021/acsami.2c01346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The endosomal entrapment of functional nanoparticles is a severe limitation to their use for biomedical applications. In the case of magnetic nanoparticles (MNPs), this entrapment leads to poor heating efficiency for magnetic hyperthermia and suppresses the possibility to manipulate them in the cytosol. Current strategies to limit their entrapment include functionalization with cell-penetrating peptides to promote translocation directly across the cell membrane or facilitate endosomal escape. However, these strategies suffer from the potential release of free peptides in the cell, and to the best of our knowledge, there is currently a lack of effective methods for the cytosolic delivery of MNPs after incubation with cells. Herein, we report the conjugation of fluorescently labeled cationic peptides to γ-Fe2O3@SiO2 core-shell nanoparticles by click chemistry to improve MNP access to the cytosol. We compare the effect of Arg9 and His4 peptides. On the one hand, Arg9 is a classical cell-penetrating peptide able to enter cells by direct translocation, and on the other hand, it has been demonstrated that sequences rich in histidine residues can promote endosomal escape, possibly by the proton sponge effect. The methodology developed here allows a high colocalization of the peptides and core-shell nanoparticles in cells and confirms that grafting peptides rich in histidine residues onto nanoparticles promotes NPs' access to the cytosol. Endosomal escape was confirmed by a calcein leakage assay and by ultrastructural analysis in transmission electron microscopy. No toxicity was observed for the peptide-nanoparticles conjugates. We also show that our conjugation strategy is compatible with the addition of multiple substrates and can thus be used for the delivery of cytoplasm-targeted therapeutics.
Collapse
Affiliation(s)
- Mathilde Le Jeune
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Emilie Secret
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), 9 quai Saint Bernard, F-75005 Paris, France
| | - Aude Michel
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Delphine Ravault
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Jean-Michel Siaugue
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Fabienne Burlina
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Christine Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| |
Collapse
|
8
|
Del Sol-Fernández S, Martínez-Vicente P, Gomollón-Zueco P, Castro-Hinojosa C, Gutiérrez L, Fratila RM, Moros M. Magnetogenetics: remote activation of cellular functions triggered by magnetic switches. NANOSCALE 2022; 14:2091-2118. [PMID: 35103278 PMCID: PMC8830762 DOI: 10.1039/d1nr06303k] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/13/2021] [Indexed: 05/03/2023]
Abstract
During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years.
Collapse
Affiliation(s)
- Susel Del Sol-Fernández
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pablo Martínez-Vicente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pilar Gomollón-Zueco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Christian Castro-Hinojosa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Analítica, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
9
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|