1
|
Deng B, Zhang G, Zeng Y, Li N, Hu C, Pang M, Lu S, Gu Y, Chen G, Zhou Y, Liu Y, Hua Y. Gualou Xiebai Banxia Decoction suppresses cardiomyocyte apoptosis in mice after myocardial infarction through activation of acetaldehyde dehydrogenase 2. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119143. [PMID: 39577675 DOI: 10.1016/j.jep.2024.119143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac apoptosis has been reported to be involved in the development of Heart failure (HF) after Myocardial infarction (MI). As a traditional Chinese medicine with cardioprotective properties, Gualou Xiebai Banxia Decoction (GXBD) is therapeutically effective in treating MI. However, whether GXBD regulates cardiac apoptosis in HF after MI remains unknown, and the underlying mechanisms still unclear. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of GXBD on cardiac apoptosis after MI. MATERIALS AND METHODS The MI model was constructed by ligating the left anterior descending coronary artery (LAD) in mice. The cardioprotective effects of GXBD were determined by echocardiography, masson staining, and haematoxylin and eosin (HE) staining. Bioinformatics analysis and network Pharmacology were used to explore the underlying molecular mechanisms of GXBD in MI. The effects of GXBD on cardiomyocyte apoptosis as well as the ALDH2 were examined by TUNEL staining, Immunohistochemistry (IHC), and Western blot (WB). Additionally, the effects of GXBD on oxidative stress, apoptosis and the ALDH2 in H9c2 cells were investigated using reactive oxygen species (ROS) detection, Hoechst33342/PI stainingand and WB. Moreover, the effects of suppressing and overexpressing ALDH2 in H9c2 cells were further examined. RESULTS Target prediction analysis showed that ALDH2 was a key target of GXBD which could ameliorate myocardial infarction. GXBD dose-dependently reduced cardiomyocyte apoptosis and ventricular dysfunction. In vivo experiments, GXBD activated ALDH2 enzymatic activity and inhibited the expression levels of Bax, Bcl-2, Cleaved Caspase 3, and Caspase 9. In vitro experiments, GXBD inhibited apoptosis in H9c2 cells. The inhibitory effects of GXBD on these were at least partially attributed to ALDH2 activation while silencing of ALDH2 significantly reversed these inhibitory effects of GXBD. CONCLUSION GXBD exerts inhibitory effects on cardiomyocyte apoptosis in mice after MI and suppresses H9c2 cells oxidative stress and apoptosis through activation of the enzyme activity of ALDH2.
Collapse
Affiliation(s)
- Bingying Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yixuan Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Nireng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sifan Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yufeng Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Klaymook S, Tirawanchai N, Wichitwiengrat S, Chuaynarong P, Thongbopit S, Chareancholvanich K, Phermthai T. MSC secretome from amniotic fluid halts IL-1β and TNF-α inflammation via the ERK/MAPK pathway, promoting cartilage regeneration in OA in vitro. J Stem Cells Regen Med 2024; 20:3-13. [PMID: 39044810 PMCID: PMC11262849 DOI: 10.46582/jsrm.2001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 07/25/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that causes chronic pain and disability worldwide. This disease is mainly caused by IL-1β and TNF-α, which lead to cartilage degradation and inhibit the repair capacity of damaged cartilage. Recent studies have shown that amniotic fluid mesenchymal stem cells (AF-MSCs) secrete proteins that can effectively help in the treatment of cartilage damaged by OA. However, the underlying mechanism is still unclear. Therefore, the aim of this study was to investigate the effects and mechanisms behind the healing properties of the AF-MSC secretome (AFS-se) under OA conditions. This study involved growing chondrocyte progenitor cells (CPCs) and traumatized cartilage tissues in the presence of the cytokines IL-1β and TNF-α, which mimic OA conditions. AFS-se was then added to the culture medium to determine its effect on the CPCs and cartilage. Cell migration, endogenous cell outgrowth, the expression of chondrogenic and anabolic genes, and the mechanism of proteins in the NF-κB and MAPK signaling pathways were examined in this study. AFS-se inhibited the inflammatory effects of IL-1β and TNF-α by significantly reducing ERK phosphorylation in the MAPK signaling pathway and decreasing downstream proinflammatory COX2 products. The impaired CPCs recovered their ability to migrate, and endogenous CPCs in injured osteoarthritic cartilage were able to regrow in response to inflammatory stimuli. Additionally, the expression of anabolic genes such as Col I, Col II, and IGF1 was restored in defective CPCs. In conclusion, this study demonstrated that AFS-se has therapeutic effects on OA by inhibiting the inflammatory functions of IL-1β and TNF-α through protein phosphorylation in the MAPK pathway while also promoting the regenerative and self-repair functions of CPCs in traumatized cartilage.
Collapse
Affiliation(s)
- Supatra Klaymook
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Stem Cell Research and Development Unit, Department of Obstetrics & Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Napatara Tirawanchai
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suparat Wichitwiengrat
- Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Stem Cell Research and Development Unit, Department of Obstetrics & Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Puttachart Chuaynarong
- Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Stem Cell Research and Development Unit, Department of Obstetrics & Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sasiprapa Thongbopit
- Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Stem Cell Research and Development Unit, Department of Obstetrics & Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Keerati Chareancholvanich
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tatsanee Phermthai
- Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Stem Cell Research and Development Unit, Department of Obstetrics & Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Wu ZX, Chen SS, Lu DY, Xue WN, Sun J, Zheng L, Wang YL, Li C, Li YJ, Liu T. Shenxiong glucose injection inhibits oxidative stress and apoptosis to ameliorate isoproterenol-induced myocardial ischemia in rats and improve the function of HUVECs exposed to CoCl 2. Front Pharmacol 2023; 13:931811. [PMID: 36686658 PMCID: PMC9849394 DOI: 10.3389/fphar.2022.931811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Shenxiong Glucose Injection (SGI) is a traditional Chinese medicine formula composed of ligustrazine hydrochloride and Danshen (Radix et rhizoma Salviae miltiorrhizae; Salvia miltiorrhiza Bunge, Lamiaceae). Our previous studies and others have shown that SGI has excellent therapeutic effects on myocardial ischemia (MI). However, the potential mechanisms of action have yet to be elucidated. This study aimed to explore the molecular mechanism of SGI in MI treatment. Methods: Sprague-Dawley rats were treated with isoproterenol (ISO) to establish the MI model. Electrocardiograms, hemodynamic parameters, echocardiograms, reactive oxygen species (ROS) levels, and serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were analyzed to explore the protective effect of SGI on MI. In addition, a model of oxidative damage and apoptosis in human umbilical vein endothelial cells (HUVECs) was established using CoCl2. Cell viability, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, intracellular ROS, and cell cycle parameters were detected in the HUVEC model. The expression of apoptosis-related proteins (Bcl-2, Caspase-3, PARP, cytoplasmic and mitochondrial Cyt-c and Bax, and p-ERK1/2) was determined by western blotting, and the expression of cleaved caspase-3 was analyzed by immunofluorescence. Results: SGI significantly reduced ROS production and serum concentrations of cTnI and cTnT, reversed ST-segment elevation, and attenuated the deterioration of left ventricular function in ISO-induced MI rats. In vitro, SGI treatment significantly inhibited intracellular ROS overexpression, Ca2+ influx, MMP disruption, and G2/M arrest in the cell cycle. Additionally, SGI treatment markedly upregulated the expression of anti-apoptotic protein Bcl-2 and downregulated the expression of pro-apoptotic proteins p-ERK1/2, mitochondrial Bax, cytoplasmic Cyt-c, cleaved caspase-3, and PARP. Conclusion: SGI could improve MI by inhibiting the oxidative stress and apoptosis signaling pathways. These findings provide evidence to explain the pharmacological action and underlying molecular mechanisms of SGI in the treatment of MI.
Collapse
Affiliation(s)
- Zhong-Xiu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shuai-Shuai Chen
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ding-Yan Lu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Wei-Na Xue
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong-Lin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Chun Li
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China,*Correspondence: Yong-Jun Li, ; Ting Liu,
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China,*Correspondence: Yong-Jun Li, ; Ting Liu,
| |
Collapse
|
4
|
An L, Li J, Liu B, Hui J, Zhang Q, Zhang X, Wang Q. Amniotic fluid stem cell attenuated necrotizing enterocolitis progression by promoting Rspo3/AMPKα axis. Immunobiology 2023:152336. [PMID: 37173190 DOI: 10.1016/j.imbio.2023.152336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
R-spondin 3 (Rspo3) is involved in various cellular processes. The alteration of Rspo3 participates in the differentiation of intestinal epithelial cells which are the crucial effector cells during necrotizing enterocolitis (NEC) development. Amniotic fluid stem cells (AFSCs) were recently indicated as a potential approach for NEC therapy. This study aimed to illustrate the regulatory role and mechanism of Rspo3 in the pathogenesis of NEC and whether AFSCs therapy would impact NEC by mediating Rspo3. First, the alteration of Rspo3 was investigated in the serum and tissues of NEC patients, and an in vitro cell model induced by LPS. A gain-of-function assay was conducted to explore the function of Rspo3 in NEC. Through the analysis of adenosine 5'-monophosphate-activated protein kinase α (AMPKα) activation, the mechanism of Rspo3-mediated NEC progression was demonstrated. Finally, AFSCs were used to coculture human intestinal epithelial cells (HIECs) and the impacts on NEC development were also explored. The results found that Rspo3 was dramatically depressed during NEC progression and reversing Rspo3 expression ameliorated LPS-induced injury, inflammation, oxidative stress and tight junction dysregulation in HIECs. Besides, Rspo3 overexpression reversed AMPKα inactivation induced by NEC and an AMPKα inhibitor, Compound C, blocked the effect of Rspo3 overexpression on NEC. AFSCs treatment was beneficial for NEC therapy by restoring Rspo3 expression which was counteracted by exosome inhibitor. Generally, AFSCs attenuated NEC progression by promoting the Rspo3/AMPKα axis which might exert via the secretion of exosomes. Our conclusions might be valuable for NEC diagnosis and therapy.
Collapse
|
5
|
Bonavida V, Ghassemi K, Ung G, Inouye K, Thankam FG, Agrawal DK. Novel Approaches to Program Cells to Differentiate into Cardiomyocytes in Myocardial Regeneration. Rev Cardiovasc Med 2022; 23:392. [PMID: 39076655 PMCID: PMC11270456 DOI: 10.31083/j.rcm2312392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/31/2024] Open
Abstract
With heart failure (HF) being one of the leading causes of hospitalization and death worldwide, multiple stem cell therapies have been attempted to accelerate the regeneration of the infarct zone. Versatile strategies have emerged to establish the cell candidates of cardiomyocyte lineage for regenerative cardiology. This article illustrates critical insights into the emerging technologies, current approaches, and translational promises on the programming of diverse cell types for cardiac regeneration.
Collapse
Affiliation(s)
- Victor Bonavida
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kaitlyn Ghassemi
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Gwendolyn Ung
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Keiko Inouye
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
6
|
Yuan A, Gu Y, Bian Q, Wang R, Xu Y, Ma X, Zhou Y, Gao J. Conditioned media-integrated microneedles for hair regeneration through perifollicular angiogenesis. J Control Release 2022; 350:204-214. [PMID: 35961471 DOI: 10.1016/j.jconrel.2022.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Androgenetic alopecia (AGA), the most prevalent type of hair loss in clinic, is induced partly by insufficient perifollicular vascularization. Here we designed a dissolvable microneedles (MNs) patch that was loaded with conditioned media (CM) derived from hypoxia-pretreated mesenchymal stem cells, which contained elevated HIF-1α. The CM-integrated MNs patch (designated as CM-MNs) can puncture the stratum corneum and deliver the pro-angiogenic factors directly into skin in a one-step and minimally invasive manner. Meanwhile, the administration of CM-MNs induced a certain mechanical stimulation on the skin, which can also promote neovascularization. With the combined effects of the pro-angiogenic factors in CM and the mechanical stimulation induced by MNs, CM-MNs successfully boosted perifollicular vascularization, and activated hair follicle stem cells, thereby inducing notably faster hair regeneration at a lower administration frequency on AGA mouse model compared with minoxidil. Furthermore, we proved that the inhibition of perifollicular angiogenesis restrained the awakening of hair follicle stem cells, elucidating the tight correlation between perifollicular angiogenesis and the activation of hair follicle stem cells. The innovative integration of CM and MNs holds great promise for clinical AGA treatment and indicates that boosting angiogenesis around hair follicles is an effective strategy against AGA.
Collapse
Affiliation(s)
- Anran Yuan
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; College of Pharmacy, Inner Mongolia Medical University, Hohhot 010000, PR China
| | - Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, PR China
| | - Jianqing Gao
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, PR China.
| |
Collapse
|
7
|
Lee YS, Javan H, Reems JA, Li L, Lusty Beech J, Schaaf CI, Pierce J, Phillips JD, Selzman CH. Acellular human amniotic fluid protects the ischemic/reperfused rat myocardium. Am J Physiol Heart Circ Physiol 2022; 322:H406-H416. [DOI: 10.1152/ajpheart.00331.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amniotic products are potent immunomodulators utilized clinically to repair tissue injury. Little information exists regarding the potential of cell-free human amniotic fluid (hAF) to treat cardiovascular disease. Herein, we sought to determine the influence and efficacy of acellular hAF on myocardial ischemia/reperfusion injury. Processed hAF was obtained from volunteer donors at the time of elective caesarean section and manufactured using proprietary methods. Left anterior descending coronary artery ligation was performed on rats for 60 minutes. Thirty minutes after release and reperfusion, either saline or hAF was injected intramyocardially. Serial echocardiography revealed that compared to saline injected rats, hAF animals maintained their ejection fraction and did not adversely remodel through the 4-week period. This preserved ventricular function correlated with decreased infarct size, less fibrosis, and reduced expression of cytokines and infiltrating inflammatory cells. Comparative arrays of different donor hAF lots confirmed the presence of a wide array of immunomodulatory and host-defense proteins. The observed functional cardioprotection was furthermore evident when given intravenously and across multiple hAF donors. In conclusion, our data demonstrate, for the first time, the cardioprotective effect of acellular hAF on myocardial injury. These observations spanned across diverse donors and likely result from the mixture of a plethora of naturally produced cytokines, chemokines, and immune-modulating proteins rather than a single, defined mechanistic culprit. The ubiquitous availability of hAF as a cell-free solution further suggests its potential for widespread adoption as a therapy for myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Young Sook Lee
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Hadi Javan
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jo-Anna Reems
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ling Li
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jessica Lusty Beech
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Christine I. Schaaf
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jan Pierce
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - John D. Phillips
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Craig H. Selzman
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
9
|
Li S, Ma W, Cai B. Targeting cardiomyocyte proliferation as a key approach of promoting heart repair after injury. MOLECULAR BIOMEDICINE 2021; 2:34. [PMID: 35006441 PMCID: PMC8607366 DOI: 10.1186/s43556-021-00047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases such as myocardial infarction (MI) is a major contributor to human mortality and morbidity. The mammalian adult heart almost loses its plasticity to appreciably regenerate new cardiomyocytes after injuries, such as MI and heart failure. The neonatal heart exhibits robust proliferative capacity when exposed to varying forms of myocardial damage. The ability of the neonatal heart to repair the injury and prevent pathological left ventricular remodeling leads to preserved or improved cardiac function. Therefore, promoting cardiomyocyte proliferation after injuries to reinitiate the process of cardiomyocyte regeneration, and suppress heart failure and other serious cardiovascular problems have become the primary goal of many researchers. Here, we review recent studies in this field and summarize the factors that act upon the proliferation of cardiomyocytes and cardiac repair after injury and discuss the new possibilities for potential clinical treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuainan Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Wenya Ma
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Benzhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China. .,Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, 150086, China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150086, China.
| |
Collapse
|
10
|
Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, Berardinelli P, Dainese E, Cimini A, Barboni B. Insight into Hypoxia Stemness Control. Cells 2021; 10:cells10082161. [PMID: 34440930 PMCID: PMC8394199 DOI: 10.3390/cells10082161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
- Correspondence: ; Tel.: +39-086-1426-6888; Fax: +39-08-6126-6860
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center of Advanced Studies and Technology (CAST), 66100 Chieti, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Enrico Dainese
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| |
Collapse
|
11
|
Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Metabolic Profile and Neurogenic Potential of Human Amniotic Fluid Stem Cells From Normal vs. Fetus-Affected Gestations. Front Cell Dev Biol 2021; 9:700634. [PMID: 34336852 PMCID: PMC8322743 DOI: 10.3389/fcell.2021.700634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) possess some characteristics with mesenchymal stem cells (MSCs) and embryonic stem cells and have a broader differentiation potential compared to MSCs derived from other sources. Although hAFSCs are widely researched, their analysis mainly involves stem cells (SCs) obtained from normal, fetus-unaffected gestations. However, in clinical settings, knowledge about hAFSCs from normal gestations could be poorly translational, as hAFSCs from healthy and fetus-diseased gestations may differ in their differentiation and metabolic potential. Therefore, a more thorough investigation of hAFSCs derived from pathological gestations would provide researchers with the knowledge about the general characteristics of these cells that could be valuable for further scientific investigations and possible future clinical applicability. The goal of this study was to look into the neurogenic and metabolic potential of hAFSCs derived from diseased fetuses, when gestations were concomitant with polyhydramnios and compare them to hAFSCs derived from normal fetuses. Results demonstrated that these cells are similar in gene expression levels of stemness markers (SOX2, NANOG, LIN28A, etc.). However, they differ in expression of CD13, CD73, CD90, and CD105, as flow cytometry analysis revealed higher expression in hAFSCs from unaffected gestations. Furthermore, hAFSCs from “Normal” and “Pathology” groups were different in oxidative phosphorylation rate, as well as level of ATP and reactive oxygen species production. Although the secretion of neurotrophic factors BDNF and VEGF was of comparable degree, as evaluated with enzyme-linked immunosorbent assay (ELISA) test, hAFSCs from normal gestations were found to be more prone to neurogenic differentiation, compared to hAFSCs from polyhydramnios. Furthermore, hAFSCs from polyhydramnios were distinguished by higher secretion of pro-inflammatory cytokine TNFα, which was significantly downregulated in differentiated cells. Overall, these observations show that hAFSCs from pathological gestations with polyhydramnios differ in metabolic and inflammatory status and also possess lower neurogenic potential compared to hAFSCs from normal gestations. Therefore, further in vitro and in vivo studies are necessary to dissect the potential of hAFSCs from polyhydramnios in stem cell-based therapies. Future studies should also search for strategies that could improve the characteristics of hAFSCs derived from diseased fetuses in order for those cells to be successfully applied for regenerative medicine purposes.
Collapse
Affiliation(s)
- Giedrė Valiulienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elizabet Beržanskytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Costa A, Ceresa D, De Palma A, Rossi R, Turturo S, Santamaria S, Balbi C, Villa F, Reverberi D, Cortese K, De Biasio P, Paladini D, Coviello D, Ravera S, Malatesta P, Mauri P, Quarto R, Bollini S. Comprehensive Profiling of Secretome Formulations from Fetal- and Perinatal Human Amniotic Fluid Stem Cells. Int J Mol Sci 2021; 22:ijms22073713. [PMID: 33918297 PMCID: PMC8038201 DOI: 10.3390/ijms22073713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
We previously reported that c-KIT+ human amniotic-fluid derived stem cells obtained from leftover samples of routine II trimester prenatal diagnosis (fetal hAFS) are endowed with regenerative paracrine potential driving pro-survival, anti-fibrotic and proliferative effects. hAFS may also be isolated from III trimester clinical waste samples during scheduled C-sections (perinatal hAFS), thus offering a more easily accessible alternative when compared to fetal hAFS. Nonetheless, little is known about the paracrine profile of perinatal hAFS. Here we provide a detailed characterization of the hAFS total secretome (i.e., the entirety of soluble paracrine factors released by cells in the conditioned medium, hAFS-CM) and the extracellular vesicles (hAFS-EVs) within it, from II trimester fetal- versus III trimester perinatal cells. Fetal- and perinatal hAFS were characterized and subject to hypoxic preconditioning to enhance their paracrine potential. hAFS-CM and hAFS-EV formulations were analyzed for protein and chemokine/cytokine content, and the EV cargo was further investigated by RNA sequencing. The phenotype of fetal- and perinatal hAFS, along with their corresponding secretome formulations, overlapped; yet, fetal hAFS showed immature oxidative phosphorylation activity when compared to perinatal ones. The profiling of their paracrine cargo revealed some differences according to gestational stage and hypoxic preconditioning. Both cell sources provided formulations enriched with neurotrophic, immunomodulatory, anti-fibrotic and endothelial stimulating factors, and the immature fetal hAFS secretome was defined by a more pronounced pro-vasculogenic, regenerative, pro-resolving and anti-aging profile. Small RNA profiling showed microRNA enrichment in both fetal- and perinatal hAFS-EV cargo, with a stably- expressed pro-resolving core as a reference molecular signature. Here we confirm that hAFS represents an appealing source of regenerative paracrine factors; the selection of either fetal or perinatal hAFS secretome formulations for future paracrine therapy should be evaluated considering the specific clinical scenario.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
| | - Davide Ceresa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Sara Turturo
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
| | - Sara Santamaria
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
- Center for Molecular Cardiology, University of Zurich, 8952 Zurich, Switzerland
| | - Federico Villa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico, San Martino, 16132 Genova, Italy;
| | - Katia Cortese
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Pierangela De Biasio
- Prenatal Diagnosis and Perinatal Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Silvia Ravera
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Paolo Malatesta
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: (R.Q.); (S.B.); Tel.: +39-010-5558-257 (S.B.)
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Correspondence: (R.Q.); (S.B.); Tel.: +39-010-5558-257 (S.B.)
| |
Collapse
|