1
|
El Messaoudi S, Brichler S, Fougerou-Leurent C, Gordien E, Gerber A, Kortebi A, Lagadic G, Subic-Levrero M, Metivier S, Pol S, Minello A, Ratziu V, Leroy V, Mathurin P, Alric L, Coulibaly F, Pawlotsky JM, Zoulim F, de Lédinghen V, Guedj J. Effect of Peg-IFN on the viral kinetics of patients with HDV infection treated with bulevirtide. JHEP Rep 2024; 6:101070. [PMID: 39100818 PMCID: PMC11295569 DOI: 10.1016/j.jhepr.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 08/06/2024] Open
Abstract
Background & Aims Bulevirtide is a first-in-class entry inhibitor antiviral treatment for chronic hepatitis D. The viral kinetics during bulevirtide therapy and the effect of combining bulevirtide with pegylated-interferon (Peg-IFN) are unknown. Methods We used mathematical modelling to analyze the viral kinetics in two French observational cohorts of 183 patients receiving bulevirtide with or without Peg-IFN for 48 weeks. Results The efficacy of bulevirtide in blocking cell infection was estimated to 90.3%, whereas Peg-IFN blocked viral production with an efficacy of 92.4%, albeit with large inter-individual variabilities. The addition of Peg-IFN to bulevirtide was associated with a more rapid virological decline, with a rate of virological response (>2 log of decline or undetectability) at week 48 of 86.9% (95% prediction interval [PI] = [79.7-95.0]), compared with 56.1% (95% PI = [46.4-66.7]) with bulevirtide only. The model was also used to predict the probability to achieve a cure of viral infection, with a rate of 8.8% (95% PI = [3.5-13.2]) with bulevirtide compared with 18.8% (95% PI = [11.6-29.0]) with bulevirtide + Peg-IFN. Mathematical modelling suggests that after 144 weeks of treatment, the rates of viral cure could be 42.1% (95% PI = [33.3-52.6]) with bulevirtide and 66.7% (95% PI = [56.5-76.8]) with bulevirtide + Peg-IFN. Conclusions In this analysis of real-world data, Peg-IFN strongly enhanced the kinetics of viral decline in patients treated with bulevirtide. Randomized clinical trials are warranted to assess the virological and clinical benefit of this combination, and to identify predictors of poor response to treatment. Impact and implications Bulevirtide has been approved for chronic HDV infection by regulatory agencies in Europe based on its good safety profile and rapid virological response after treatment initiation, but the optimal duration of treatment and the chance to achieve a sustained virological response remain unknown. The results presented in this study have a high impact for clinicians and investigators as they provide important knowledge on the long-term virological benefits of a combination of Peg-IFN and bulevirtide in patients with CHD. Clinical trials are now warranted to confirm those predictions.
Collapse
Affiliation(s)
| | - Ségolène Brichler
- National Reference Center for Viral Hepatitis B, C, and D, Department of Clinical Microbiology, Hôpital Avicenne AP-HP, Université Sorbonne Paris Nord, Bobigny, INSERM U955, Créteil, France
| | - Claire Fougerou-Leurent
- Clinical Pharmacology Department, CHU Rennes, Rennes, France
- CIC 1414 (Clinical Investigation Center), INSERM, Rennes, France
| | - Emmanuel Gordien
- National Reference Center for Viral Hepatitis B, C, and D, Department of Clinical Microbiology, Hôpital Avicenne AP-HP, Université Sorbonne Paris Nord, Bobigny, INSERM U955, Créteil, France
| | - Athenaïs Gerber
- National Reference Center for Viral Hepatitis B, C, and D, Department of Clinical Microbiology, Hôpital Avicenne AP-HP, Université Sorbonne Paris Nord, Bobigny, INSERM U955, Créteil, France
| | - Amal Kortebi
- Clinical Pharmacology Department, CHU Rennes, Rennes, France
- CIC 1414 (Clinical Investigation Center), INSERM, Rennes, France
| | - Garance Lagadic
- Clinical Pharmacology Department, CHU Rennes, Rennes, France
- CIC 1414 (Clinical Investigation Center), INSERM, Rennes, France
| | - Miroslava Subic-Levrero
- Department of Hepatology, Hospices Civils de Lyon, INSERM Unit 1052, Université Claude Bernard Lyon 1, France
| | | | - Stanislas Pol
- Department of Hepatology, Hôpital Cochin, AP-HP, Université Paris-René Descartes, INSERM U1016, Paris, France
| | - Anne Minello
- Department of Hepatology and Gastroenterology, University hospital Dijon, INSERM UMR 1231, France
| | - Vlad Ratziu
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Vincent Leroy
- Department of Hepatology and Gastroenterology, Centre Hospitalo-Universitaire, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Philippe Mathurin
- Service des maladies de l’appareil digestif, Université Lille 2 and Inserm U795, Lille, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, UMR-152, Toulouse III University, Toulouse, France
| | - Fatoumata Coulibaly
- Clinical research department, ANRS Maladies infectieuses émergentes, Paris, France
| | - Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C, and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Inserm U955, Créteil, France
| | - Fabien Zoulim
- Department of Hepatology, Hospices Civils de Lyon, INSERM Unit 1052, Université Claude Bernard Lyon 1, France
| | - Victor de Lédinghen
- Centre d'Investigation de la Fibrose Hépatique, Bordeaux University Hospital, Pessac, France; INSERM U1312, Bordeaux University, Bordeaux, France
| | | | - the ANRS HD EP01 BULEDELTA Study Group
- Université Paris Cité, IAME, Inserm, Paris, France
- National Reference Center for Viral Hepatitis B, C, and D, Department of Clinical Microbiology, Hôpital Avicenne AP-HP, Université Sorbonne Paris Nord, Bobigny, INSERM U955, Créteil, France
- Clinical Pharmacology Department, CHU Rennes, Rennes, France
- CIC 1414 (Clinical Investigation Center), INSERM, Rennes, France
- Department of Hepatology, Hospices Civils de Lyon, INSERM Unit 1052, Université Claude Bernard Lyon 1, France
- Department of Hepatology, CHU Rangueil, Toulouse, France
- Department of Hepatology, Hôpital Cochin, AP-HP, Université Paris-René Descartes, INSERM U1016, Paris, France
- Department of Hepatology and Gastroenterology, University hospital Dijon, INSERM UMR 1231, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Department of Hepatology and Gastroenterology, Centre Hospitalo-Universitaire, INSERM U1209, Université Grenoble Alpes, Grenoble, France
- Service des maladies de l’appareil digestif, Université Lille 2 and Inserm U795, Lille, France
- Department of Internal Medicine and Digestive Diseases, UMR-152, Toulouse III University, Toulouse, France
- Clinical research department, ANRS Maladies infectieuses émergentes, Paris, France
- National Reference Center for Viral Hepatitis B, C, and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Inserm U955, Créteil, France
- Centre d'Investigation de la Fibrose Hépatique, Bordeaux University Hospital, Pessac, France; INSERM U1312, Bordeaux University, Bordeaux, France
| |
Collapse
|
2
|
Ciupe SM, Conway JM. Incorporating Intracellular Processes in Virus Dynamics Models. Microorganisms 2024; 12:900. [PMID: 38792730 PMCID: PMC11124127 DOI: 10.3390/microorganisms12050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.
Collapse
Affiliation(s)
- Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Penn State University, State College, PA 16802, USA
| |
Collapse
|
3
|
Ciupe SM, Dahari H, Ploss A. Mathematical Models of Early Hepatitis B Virus Dynamics in Humanized Mice. Bull Math Biol 2024; 86:53. [PMID: 38594319 PMCID: PMC11003933 DOI: 10.1007/s11538-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP). Moreover, we validated the immune models against sHBV and HBsAg experimental data from mice engrafted with HEP and human immune system (HEP/HIS). As expected, the model that does not include adaptive immune responses matches the observed high sHBV and HBsAg concentrations in all HEP mice. By contrast, while all immune response models predict reduction in sHBV and HBsAg concentrations in HEP/HIS mice, the Akaike Information Criterion cannot discriminate between non-cytolytic cure (resulting in a class of cells refractory to reinfection) and antiviral block functions (of up to 99 % viral production 1-3 weeks following peak viral load). We can, however, reject cytolytic killing, as it can only match the sHBV and HBsAg data when we predict unrealistic levels of hepatocyte loss.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Harel Dahari
- Division of Hepatology, Department of Medicine, Loyola University, Chicago, IL, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Kitagawa K, Kim KS, Iwamoto M, Hayashi S, Park H, Nishiyama T, Nakamura N, Fujita Y, Nakaoka S, Aihara K, Perelson AS, Allweiss L, Dandri M, Watashi K, Tanaka Y, Iwami S. Multiscale modeling of HBV infection integrating intra- and intercellular viral propagation to analyze extracellular viral markers. PLoS Comput Biol 2024; 20:e1011238. [PMID: 38466770 PMCID: PMC10957078 DOI: 10.1371/journal.pcbi.1011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, United States of America
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
- Institute of Mathematics for Industry, Kyushu University; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University; Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Japan
- Science Groove Inc., Fukuoka, Japan
| |
Collapse
|
5
|
Shekhtman L, Cotler SJ, Degasperi E, Anolli MP, Uceda Renteria SC, Sambarino D, Borghi M, Perbellini R, Facchetti F, Ceriotti F, Lampertico P, Dahari H. Modelling HDV kinetics under the entry inhibitor bulevirtide suggests the existence of two HDV-infected cell populations. JHEP Rep 2024; 6:100966. [PMID: 38274491 PMCID: PMC10808955 DOI: 10.1016/j.jhepr.2023.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024] Open
Abstract
Background & Aims Bulevirtide (BLV) was approved for the treatment of compensated chronic hepatitis D virus (HDV) infection in Europe in 2020. However, research into the effects of the entry inhibitor BLV on HDV-host dynamics is in its infancy. Methods Eighteen patients with HDV under nucleos(t)ide analogue treatment for hepatitis B, with compensated cirrhosis and clinically significant portal hypertension, received BLV 2 mg/day. HDV RNA, alanine aminotransferase (ALT), and hepatitis B surface antigen (HBsAg) were measured at baseline, weeks 4, 8 and every 8 weeks thereafter. A mathematical model was developed to account for HDV, HBsAg and ALT dynamics during BLV treatment. Results Median baseline HDV RNA, HBsAg, and ALT were 4.9 log IU/ml [IQR: 4.4-5.8], 3.7 log IU/ml [IQR: 3.4-3.9] and 106 U/L [IQR: 81-142], respectively. During therapy, patients fit into four main HDV kinetic patterns: monophasic (n = 2), biphasic (n = 10), flat-partial response (n = 4), and non-responder (n = 2). ALT normalization was achieved in 14 (78%) patients at a median of 8 weeks (range: 4-16). HBsAg remained at pre-treatment levels. Assuming that BLV completely (∼100%) blocks HDV entry, modeling indicated that two HDV-infected cell populations exist: fast HDV clearing (median t1/2 = 13 days) and slow HDV clearing (median t1/2 = 44 days), where the slow HDV-clearing population consisted of ∼1% of total HDV-infected cells, which could explain why most patients exhibited a non-monophasic pattern of HDV decline. Moreover, modeling explained ALT normalization without a change in HBsAg based on a non-cytolytic loss of HDV from infected cells, resulting in HDV-free HBsAg-producing cells that release ALT upon death at a substantially lower rate compared to HDV-infected cells. Conclusion The entry inhibitor BLV provides a unique opportunity to understand HDV, HBsAg, ALT, and host dynamics. Impact and implications Mathematical modeling of hepatitis D virus (HDV) treatment with the entry inhibitor bulevirtide (BLV) provides a novel window into the dynamics of HDV RNA and alanine aminotransferase. Kinetic data from patients treated with BLV monotherapy can be explained by hepatocyte populations with different basal HDV clearance rates and non-cytolytic clearance of infected cells. While further studies are needed to test and refine the kinetic characterization described here, this study provides a new perspective on viral dynamics, which could inform evolving treatment strategies for HDV.
Collapse
Affiliation(s)
- Louis Shekhtman
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
- Department of Information Science, Bar-Ilan University, Ramat Gan, Israel
| | - Scott J. Cotler
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Elisabetta Degasperi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Paola Anolli
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Dana Sambarino
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Borghi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Perbellini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Floriana Facchetti
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ferruccio Ceriotti
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Virology Unit, Milan, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- CRC “A. M. and A. Migliavacca” Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
6
|
Kasianchuk N, Dobrowolska K, Harkava S, Bretcan A, Zarębska-Michaluk D, Jaroszewicz J, Flisiak R, Rzymski P. Gene-Editing and RNA Interference in Treating Hepatitis B: A Review. Viruses 2023; 15:2395. [PMID: 38140636 PMCID: PMC10747710 DOI: 10.3390/v15122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis B virus (HBV) continues to cause substantial health and economic burdens, and its target of elimination may not be reached in 2030 without further efforts in diagnostics, non-pharmaceutical prevention measures, vaccination, and treatment. Current therapeutic options in chronic HBV, based on interferons and/or nucleos(t)ide analogs, suppress the virus replication but do not eliminate the pathogen and suffer from several constraints. This paper reviews the progress on biotechnological approaches in functional and definitive HBV treatments, including gene-editing tools, i.e., zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9, as well as therapeutics based on RNA interference. The advantages and challenges of these approaches are also discussed. Although the safety and efficacy of gene-editing tools in HBV therapies are yet to be demonstrated, they show promise for the revitalization of a much-needed advance in the field and offer viral eradication. Particular hopes are related to CRISPR/Cas9; however, therapeutics employing this system are yet to enter the clinical testing phases. In contrast, a number of candidates based on RNA interference, intending to confer a functional cure, have already been introduced to human studies. However, larger and longer trials are required to assess their efficacy and safety. Considering that prevention is always superior to treatment, it is essential to pursue global efforts in HBV vaccination.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Sofiia Harkava
- Junior Academy of Sciences of Ukraine, Regional Branch in Dnipro, 49000 Dnipro, Ukraine;
| | - Andreea Bretcan
- National College “Ienăchiță Văcărescu”, 130016 Târgoviște, Romania;
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
7
|
Zhuang AQ, Chen Y, Chen SM, Liu WC, Li Y, Zhang WJ, Wu YH. Current Status and Challenges in Anti-Hepatitis B Virus Agents Based on Inactivation/Inhibition or Elimination of Hepatitis B Virus Covalently Closed Circular DNA. Viruses 2023; 15:2315. [PMID: 38140556 PMCID: PMC10747957 DOI: 10.3390/v15122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Hang Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
8
|
El Messaoudi S, Lemenuel-Diot A, Gonçalves A, Guedj J. A Semi-mechanistic Model to Characterize the Long-Term Dynamics of Hepatitis B Virus Markers During Treatment With Lamivudine and Pegylated Interferon. Clin Pharmacol Ther 2023; 113:390-400. [PMID: 36408671 DOI: 10.1002/cpt.2798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Antiviral treatments against hepatitis B virus (HBV) suppress viral replication but do not eradicate the virus, and need therefore to be taken lifelong to avoid relapse. Mathematical models can be useful to support the development of curative anti-HBV agents; however, they mostly focus on short-term HBV DNA data and neglect the complex host-pathogen interaction. This work aimed to characterize the effect of treatment with lamivudine and/or pegylated interferon (Peg-IFN) in 1,300 patients (hepatitis B envelope antigen (HBeAg)-positive and HBeAg-negative) treated for 1 year. A mathematical model was developed incorporating two populations of infected cells, namely I 1 , with a high transcriptional activity, that progressively evolve into I 2 , at a rate δ tr , representing cells with integrated HBV DNA that have a lower transcriptional activity. Parameters of the model were estimated in patients treated with lamivudine or Peg-IFN alone (N = 894), and the model was then validated in patients treated with lamivudine plus Peg-IFN (N = 436) to predict the virological response after a year of combination treatment. Lamivudine had a larger effect in blocking viral production than Peg-IFN (99.4-99.9% vs. 91.8-95.1%); however, Peg-IFN had a significant immunomodulatory effect, leading to an enhancement of the loss rates of I 1 (×1.7 in HBeAg-positive patients), I 2 (> ×7 irrespective of HBeAg status), and δ tr (×4.6 and ×2.0 in HBeAg-positive and HBeAg-negative patients, respectively). Using this model, we were able to describe the synergy of the different effects occurring during treatment with combination and predicted an effect of 99.99% on blocking viral production. This framework can therefore support the optimization of combination therapy with new anti-HBV agents.
Collapse
Affiliation(s)
- Selma El Messaoudi
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, Infection, Antimicrobials, Modelling, Evolution, Paris, France
| | - Annabelle Lemenuel-Diot
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Antonio Gonçalves
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, Infection, Antimicrobials, Modelling, Evolution, Paris, France
| | - Jérémie Guedj
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, Infection, Antimicrobials, Modelling, Evolution, Paris, France
| |
Collapse
|
9
|
Mhlanga A, Zakh R, Churkin A, Reinharz V, Glenn JS, Etzion O, Cotler SJ, Yurdaydin C, Barash D, Dahari H. Modeling the Interplay between HDV and HBV in Chronic HDV/HBV Patients. MATHEMATICS (BASEL, SWITZERLAND) 2022; 10:3917. [PMID: 36540372 PMCID: PMC9762680 DOI: 10.3390/math10203917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hepatitis D virus is an infectious subviral agent that can only propagate in people infected with hepatitis B virus. In this study, we modified and further developed a recent model for early hepatitis D virus and hepatitis B virus kinetics to better reproduce hepatitis D virus and hepatitis B virus kinetics measured in infected patients during anti-hepatitis D virus treatment. The analytical solutions were provided to highlight the new features of the modified model. The improved model offered significantly better prospects for modeling hepatitis D virus and hepatitis B virus interactions.
Collapse
Affiliation(s)
- Adequate Mhlanga
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 84101, USA
| | - Rami Zakh
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
- Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 84108, Israel
| | - Alexander Churkin
- Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 84108, Israel
| | - Vladimir Reinharz
- Department of Computer Science, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ohad Etzion
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Scott J. Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 84101, USA
| | - Cihan Yurdaydin
- Department of Gastroenterology and Hepatology, Koç University Medical School, Istanbul 34450, Turkey
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 84101, USA
| |
Collapse
|
10
|
Hall SAL, Burns GS, Anagnostou D, Vogrin S, Sundararajan V, Ratnam D, Levy MT, Lubel JS, Nicoll AJ, Strasser SI, Sievert W, Desmond PV, Ngu MC, Angus P, Sinclair M, Meredith C, Matthews G, Revill PA, Jackson K, Littlejohn M, Bowden DS, Locarnini SA, Visvanathan K, Thompson AJ. Stopping nucleot(s)ide analogues in non-cirrhotic HBeAg-negative chronic hepatitis B patients: HBsAg loss at 96 weeks is associated with low baseline HBsAg levels. Aliment Pharmacol Ther 2022; 56:310-320. [PMID: 35521992 DOI: 10.1111/apt.16968] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/06/2022] [Accepted: 04/28/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Current guidelines recommend long-term nucleot(s)ide analogue (NA) therapy for patients with HBeAg-negative chronic hepatitis B (CHB). However, disease remission has been described after stopping NA therapy, as well as HBsAg loss. METHODS We performed a prospective multi-centre cohort study of stopping NA therapy. Inclusion criteria were HBeAg-negative CHB, the absence of cirrhosis and HBVDNA<lower limit of quantification for ≥18 months. We assessed virological and biochemical outcomes including HBsAg loss, as well as NA restart rates, over 96 weeks. RESULTS In total, 110 patients [62% entecavir (ETV); 28% tenofovir (TDF), 10% other] were enrolled. Median age was 56 years, 57% were male, 85% were Asian, median baseline HBsAg level was 705 (214-2325) IU/ml. Virological reactivation occurred in 109/110 patients, median time to detection was 8 (4-12) weeks, and occurred earlier after stopping TDF versus ETV (median 4 vs. 12 weeks p < 0.001). At week 96, 77 (70%) remained off-treatment, 65 (59%) had ALT <2× ULN, 31 (28%) patients were in disease remission with HBVDNA <2000 IU/ml plus ALT <2× ULN and 7 (6%) patients had lost HBsAg. Baseline HBsAg ≤10 IU/ml was associated with HBsAg loss (6/9 vs. 1/101 p < 0.001). ALT >5× ULN occurred in 35 (32%); ALT flares were not associated with HBsAg loss. There were no unexpected safety issues. CONCLUSION Virological reactivation was very common after stopping NA therapy and occurred earlier after stopping TDF versus ETV. The majority of patients had ALT <2× ULN at week 96, but only one-third achieved disease remission and HBsAg loss was rare. Very low HBsAg levels at baseline were uncommon but predicted for HBsAg loss and disease remission.
Collapse
Affiliation(s)
- Samuel A L Hall
- Gastroenterology Department of St Vincent's Hospital Melbourne, Melbourne, Australia.,Department of Infectious Disease and Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - Gareth S Burns
- Gastroenterology Department of St Vincent's Hospital Melbourne, Melbourne, Australia.,Department of Infectious Disease and Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - Despina Anagnostou
- Gastroenterology Department of St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Sara Vogrin
- Department of Infectious Disease and Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - Vijaya Sundararajan
- Department of Infectious Disease and Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia.,The Department of Public Health, La Trobe University, Melbourne, Australia
| | - Dilip Ratnam
- Gastroenterology & Hepatology Unit, Monash Health, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Miriam T Levy
- Gastroenterology Department of Liverpool Hospital, Sydney, Australia
| | - John S Lubel
- Department of Gastroenterology, Alfred Health, Melbourne, Australia.,Central Clinical School, Monash University, The Alfred Centre, Melbourne, Australia
| | - Amanda J Nicoll
- Gastroenterology Department of Eastern Health, Melbourne, Australia
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - William Sievert
- Gastroenterology & Hepatology Unit, Monash Health, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Paul V Desmond
- Gastroenterology Department of St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Meng C Ngu
- Gastroenterology Department of Concord Repatriation General Hospital, Sydney, Australia
| | - Peter Angus
- Department of Gastroenterology & Hepatology, Austin Health, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Marie Sinclair
- Department of Gastroenterology & Hepatology, Austin Health, Melbourne, Australia
| | | | - Gail Matthews
- Department of infectious Disease, St Vincent's Hospital Sydney, Sydney, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Doherty Institute, Melbourne, Australia
| | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Doherty Institute, Melbourne, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Doherty Institute, Melbourne, Australia
| | - D Scott Bowden
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Doherty Institute, Melbourne, Australia
| | - Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Doherty Institute, Melbourne, Australia
| | - Kumar Visvanathan
- Gastroenterology Department of St Vincent's Hospital Melbourne, Melbourne, Australia.,Department of Infectious Disease and Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - Alexander J Thompson
- Gastroenterology Department of St Vincent's Hospital Melbourne, Melbourne, Australia.,Department of Infectious Disease and Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
11
|
Zakh R, Churkin A, Bietsch W, Lachiany M, Cotler SJ, Ploss A, Dahari H, Barash D. A Mathematical Model for early HBV and -HDV Kinetics during Anti-HDV Treatment. MATHEMATICS (BASEL, SWITZERLAND) 2021; 9:3323. [PMID: 35282153 PMCID: PMC8916717 DOI: 10.3390/math9243323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hepatitis delta virus (HDV) is an infectious subviral agent that can only propagate in people infected with hepatitis B virus (HBV). HDV/HBV infection is considered to be the most severe form of chronic viral hepatitis. In this contribution, a mathematical model for the interplay between HDV and HBV under anti-HDV treatment is presented. Previous models were not designed to account for the observation that HBV rises when HDV declines with HDV-specific therapy. In the simple model presented here, HDV and HBV kinetics are coupled, giving rise to an improved viral kinetic model that simulates the early interplay of HDV and HBV during anti-HDV therapy.
Collapse
Affiliation(s)
- Rami Zakh
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel
| | - Alexander Churkin
- Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 8410501, Israel
| | - William Bietsch
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Scott J. Cotler
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Harel Dahari
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel
| |
Collapse
|
12
|
Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021; 175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Emerging evidences show that innate immune cells can display changes in their functional programs after infection or vaccination, which lead to immunomodulation (increased or reduced responsiveness) upon secondary activation to the same stimuli or even to a different one. Innate cells acquire features of immunological memory, nowadays using the new term of "trained immunity" or "innate immune memory", which is different from the specific memory immune response elicited by B and T lymphocytes. The review focused on the concept of trained immunity, mostly on myeloid cells. Special attention is dedicated to the pathogen recognition along the evolution (bacteria, plants, invertebrate and vertebrate animals), and to techniques used to study epigenetic reprogramming and metabolic rewiring. Nanomaterials can be recognized by immune cells offering a very promising way to learn about trained immunity. Nanomaterials could be modified in order to immunomodulate the responses ad hoc. Many therapeutic possibilities are opened, and they should be explored.
Collapse
|
13
|
Reinharz V, Ishida Y, Tsuge M, Durso-Cain K, Chung TL, Tateno C, Perelson AS, Uprichard SL, Chayama K, Dahari H. Understanding Hepatitis B Virus Dynamics and the Antiviral Effect of Interferon Alpha Treatment in Humanized Chimeric Mice. J Virol 2021; 95:e0049220. [PMID: 33910953 PMCID: PMC8223956 DOI: 10.1128/jvi.00492-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the mode of action of lamivudine (LAM) against hepatitis B virus (HBV) is well established, the inhibition mechanism(s) of interferon alpha (IFN-α) is less completely defined. To advance our understanding, we mathematically modeled HBV kinetics during 14-day pegylated IFN-α-2a (pegIFN), LAM, or pegIFN-plus-LAM (pegIFN+LAM) treatment of 39 chronically HBV-infected humanized uPA/SCID chimeric mice. Serum HBV DNA and intracellular HBV DNA were measured frequently. We developed a multicompartmental mathematical model and simultaneously fit it to the serum and intracellular HBV DNA data. Unexpectedly, even in the absence of an adaptive immune response, a biphasic decline in serum HBV DNA and intracellular HBV DNA was observed in response to all treatments. Kinetic analysis and modeling indicate that the first phase represents inhibition of intracellular HBV DNA synthesis and secretion, which was similar under all treatments with an overall mean efficacy of 98%. In contrast, there were distinct differences in HBV decline during the second phase, which was accounted for in the model by a time-dependent inhibition of intracellular HBV DNA synthesis, with the steepest decline observed during pegIFN+LAM treatment (1.28/day) and the slowest (0.1/day) during pegIFN monotherapy. Reminiscent of observations in patients treated with pegIFN and/or LAM, a biphasic HBV decline was observed in treated humanized mice in the absence of an adaptive immune response. Interestingly, combination treatment did not increase the initial inhibition of HBV production but rather enhanced second-phase decline, providing insight into the dynamics of HBV treatment response and the mode of action of IFN-α against HBV. IMPORTANCE Chronic hepatitis B virus (HBV) infection remains a global health care problem, as we lack sufficient curative treatment options. Elucidating the dynamics of HBV infection and treatment response at the molecular level could facilitate the development of novel, more effective HBV antivirals. Currently, the only well-established small animal HBV infection model available is the chimeric uPA/SCID mice with humanized livers; however, the HBV inhibition kinetics under pegylated IFN-α-2a (pegIFN) in this model system have not been determined in sufficient detail. In this study, viral kinetics in 39 humanized mice treated with pegIFN and/or lamivudine were monitored and analyzed using a mathematical modeling approach. We found that the main mode of action of IFN-α is blocking HBV DNA synthesis and that the majority of synthesized HBV DNA is secreted. Our study provides novel insights into HBV DNA dynamics within infected human hepatocytes.
Collapse
Affiliation(s)
- Vladimir Reinharz
- Department of Computer Science, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Yuji Ishida
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Hiroshima, Japan
| | - Masataka Tsuge
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Karina Durso-Cain
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Tje Lin Chung
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Institut für Biostatistik and Mathematische Modellierung, Fachbereich Medizin, Goethe Universität, Frankfurt, Germany
| | - Chise Tateno
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Hiroshima, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Susan L. Uprichard
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Kazuaki Chayama
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- Institute of Physical and Chemical Research (RIKEN) Center for Integrative Medical Sciences, Yokohama, Japan
- Collaborative Research Laboratory of Medical Innovation, Hiroshima University, Hiroshima, Japan
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
14
|
Wang R, Xie Z. A Simple and Rapid Method for Quantitative Detection of Hepatitis B Virus Drug-resistant Mutations. J Clin Transl Hepatol 2021; 9:139-140. [PMID: 34007793 PMCID: PMC8111115 DOI: 10.14218/jcth.2021.00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
15
|
Transaminase Elevations during Treatment of Chronic Hepatitis B Infection: Safety Considerations and Role in Achieving Functional Cure. Viruses 2021; 13:v13050745. [PMID: 33922828 PMCID: PMC8146791 DOI: 10.3390/v13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
While current therapies for chronic HBV infection work well to control viremia and stop the progression of liver disease, the preferred outcome of therapy is the restoration of immune control of HBV infection, allowing therapy to be removed while maintaining effective suppression of infection and reversal of liver damage. This “functional cure” of chronic HBV infection is characterized by the absence of detectable viremia (HBV DNA) and antigenemia (HBsAg) and normal liver function and is the goal of new therapies in development. Functional cure requires removal of the ability of infected cells in the liver to produce the hepatitis B surface antigen. The increased observation of transaminase elevations with new therapies makes understanding the safety and therapeutic impact of these flares an increasingly important issue. This review examines the factors driving the appearance of transaminase elevations during therapy of chronic HBV infection and the interplay of these factors in assessing the safety and beneficial nature of these flares.
Collapse
|
16
|
Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines (Basel) 2021; 9:359. [PMID: 33918072 PMCID: PMC8069344 DOI: 10.3390/vaccines9040359] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Estelle J. A. Suys
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Jung Seok Lee
- Biomedical Engineering, Malone Engineering Center 402A, Yale University, 55 Prospect St., New Haven, CT 06511, USA;
| | - Dai Hai Nguyen
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 100000, Vietnam;
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29 District 12, Ho Chi Minh City 700000, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Nghia P. Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| |
Collapse
|