1
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Masone A, Zucchelli C, Caruso E, Lavigna G, Eraña H, Giachin G, Tapella L, Comerio L, Restelli E, Raimondi I, Elezgarai SR, De Leo F, Quilici G, Taiarol L, Oldrati M, Lorenzo NL, García-Martínez S, Cagnotto A, Lucchetti J, Gobbi M, Vanni I, Nonno R, Di Bari MA, Tully MD, Cecatiello V, Ciossani G, Pasqualato S, Van Anken E, Salmona M, Castilla J, Requena JR, Banfi S, Musco G, Chiesa R. A tetracationic porphyrin with dual anti-prion activity. iScience 2023; 26:107480. [PMID: 37636075 PMCID: PMC10448035 DOI: 10.1016/j.isci.2023.107480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Prions are deadly infectious agents made of PrPSc, a misfolded variant of the cellular prion protein (PrPC) which self-propagates by inducing misfolding of native PrPC. PrPSc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, hampering the development of effective therapies. We identified Zn(II)-BnPyP, a tetracationic porphyrin that binds to distinct domains of native PrPC, eliciting a dual anti-prion effect. Zn(II)-BnPyP binding to a C-terminal pocket destabilizes the native PrPC fold, hindering conversion to PrPSc; Zn(II)-BnPyP binding to the flexible N-terminal tail disrupts N- to C-terminal interactions, triggering PrPC endocytosis and lysosomal degradation, thus reducing the substrate for PrPSc generation. Zn(II)-BnPyP inhibits propagation of different prion strains in vitro, in neuronal cells and organotypic brain cultures. These results identify a PrPC-targeting compound with an unprecedented dual mechanism of action which might be exploited to achieve anti-prion effects without engendering drug resistance.
Collapse
Affiliation(s)
- Antonio Masone
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giada Lavigna
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Hasier Eraña
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, 35131 Padua, Italy
| | - Laura Tapella
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Liliana Comerio
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Elena Restelli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Ilaria Raimondi
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Saioa R. Elezgarai
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Federica De Leo
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lorenzo Taiarol
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Marvin Oldrati
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Nuria L. Lorenzo
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain
| | - Sandra García-Martínez
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Alfredo Cagnotto
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Jacopo Lucchetti
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michele A. Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Mark D. Tully
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Giuseppe Ciossani
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Eelco Van Anken
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Mario Salmona
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Joaquín Castilla
- Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Bizkaia, Spain
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782 Santiago de Compostela, Spain
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Roberto Chiesa
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
3
|
Gielnik M, Szymańska A, Dong X, Jarvet J, Svedružić ŽM, Gräslund A, Kozak M, Wärmländer SKTS. Prion Protein Octarepeat Domain Forms Transient β-Sheet Structures upon Residue-Specific Binding to Cu(II) and Zn(II) Ions. Biochemistry 2023. [PMID: 37163663 DOI: 10.1021/acs.biochem.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in PrPC misfolding. PrPC is a combined Cu(II) and Zn(II) metal-binding protein, where the main metal-binding site is located in the octarepeat (OR) region. Thus, the biological function of PrPC may involve the transport of divalent metal ions across membranes or buffering concentrations of divalent metal ions in the synaptic cleft. Recent studies have shown that an excess of Cu(II) ions can result in PrPC instability, oligomerization, and/or neuroinflammation. Here, we have used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region of PrPC. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Binding of the first metal ion results in a structural transition from the polyproline II helix to the β-turn structure, while the binding of additional metal ions induces the formation of β-sheet structures. Fluorescence spectroscopy data indicate that the OR region can bind both Cu(II) and Zn(II) ions at neutral pH, but under acidic conditions, it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of either metal ion to the OR region results in the formation of β-hairpin structures. As the formation of β-sheet structures can be a first step toward amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSE diseases.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, PL 61-614 Poznań, Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, Gdańsk University, PL 80-308 Gdańsk, Poland
| | - Xiaolin Dong
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Željko M Svedružić
- Department of Biotechnology, University of Rijeka, HR 51000 Rijeka, Croatia
| | - Astrid Gräslund
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, PL 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, PL 30-392 Kraków, Poland
| | | |
Collapse
|
5
|
Funari R, Bhalla N, Gentile L. Measuring the Radius of Gyration and Intrinsic Flexibility of Viral Proteins in Buffer Solution Using Small-Angle X-ray Scattering. ACS MEASUREMENT SCIENCE AU 2022; 2:547-552. [PMID: 36573077 PMCID: PMC9783065 DOI: 10.1021/acsmeasuresciau.2c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/17/2023]
Abstract
Measuring structural features of proteins dispersed in buffer solution, in contrast to crystal form, is indispensable in understanding morphological characteristics of the biomolecule in a native environment. We report on the structure and apparent viscosity of unfolded α and β variants of SARS-CoV-2 spike proteins dispersed in buffer solutions. The radius of gyration of the β variant is found to be larger than that of the α variant, while the ab initio computation of one of the possible particle-like bodies is consistent with the small-angle X-ray scattering (SAXS) profiles resembling a conformation similar to the three-dimensional structure of the folded state of the corresponding α and β spike variant. However, a smaller radius of gyration with respect to the predicted folded state of 2.4 and 2.7 is observed for both α and β variants, respectively. Our work complements the structural characterization of spike proteins using cryo-electron microscopy techniques. The measurement/analysis discussed here might be useful for quick and cost-effective evaluation of several protein structures, let alone mutated viral proteins, which is useful for drug discovery/development applications.
Collapse
Affiliation(s)
- Riccardo Funari
- Department
of Physics “M. Merlin”, University
of Bari Aldo Moro, Via Amendola, 173, Bari 70125, Italy
- Institute
for Photonics and Nanotechnologies, CNR, Via Amendola, 173, Bari, 70125, Italy
| | - Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown, Shore Road, Northern Ireland BT37 0QB, United Kingdom
- Healthcare
Technology Hub, Ulster University, Jordanstown Shore Road, Northern Ireland BT37 0QB, United Kingdom
| | - Luigi Gentile
- Department
of Chemistry, University of Bari Aldo Moro, Edoardo Orabona 4, Bari 70125, Italy
- Bari
unit,
Center for Colloid and Surface Science (CSGI), via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
6
|
Koski L, Ronnevi C, Berntsson E, Wärmländer SKTS, Roos PM. Metals in ALS TDP-43 Pathology. Int J Mol Sci 2021; 22:12193. [PMID: 34830074 PMCID: PMC8622279 DOI: 10.3390/ijms222212193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and similar neurodegenerative disorders take their toll on patients, caregivers and society. A common denominator for these disorders is the accumulation of aggregated proteins in nerve cells, yet the triggers for these aggregation processes are currently unknown. In ALS, protein aggregation has been described for the SOD1, C9orf72, FUS and TDP-43 proteins. The latter is a nuclear protein normally binding to both DNA and RNA, contributing to gene expression and mRNA life cycle regulation. TDP-43 seems to have a specific role in ALS pathogenesis, and ubiquitinated and hyperphosphorylated cytoplasmic inclusions of aggregated TDP-43 are present in nerve cells in almost all sporadic ALS cases. ALS pathology appears to include metal imbalances, and environmental metal exposure is a known risk factor in ALS. However, studies on metal-to-TDP-43 interactions are scarce, even though this protein seems to have the capacity to bind to metals. This review discusses the possible role of metals in TDP-43 aggregation, with respect to ALS pathology.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | | | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | | | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Capio St. Göran Hospital, 112 19 Stockholm, Sweden;
| |
Collapse
|