1
|
Zhou G, Li R, Sheng S, Huang J, Zhou F, Wei Y, Liu H, Su J. Organoids and organoid extracellular vesicles-based disease treatment strategies. J Nanobiotechnology 2024; 22:679. [PMID: 39506799 PMCID: PMC11542470 DOI: 10.1186/s12951-024-02917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Organoids are "mini-organs" that self-organize and differentiate from stem cells under in vitro 3D culture conditions, mimicking the spatial structure and function of tissues in vivo. Extracellular vesicles (EVs) are nanoscale phospholipid bilayer vesicles secreted by living cells, rich in bioactive molecules, with excellent biocompatibility and low immunogenicity. Compared to EVs, organoid-derived EVs (OEVs) exhibit higher yield and enhanced biological functions. Organoids possess stem cell characteristics, and OEVs are capable of delivering active substances, making both highly promising for medical applications. In this review, we provide an overview of the fundamental biological principles of organoids and OEVs, and discuss their current applications in disease treatment. We then focus on the differences between OEVs and traditional EVs. Subsequently, we present methods for the engineering modification of OEVs. Finally, we critically summarize the advantages and challenges of organoids and OEVs. In conclusion, we believe that a deeper understanding of organoids and OEVs will provide innovative solutions to complex diseases.
Collapse
Affiliation(s)
- Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jingtao Huang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Forero A, Pipicelli F, Moser S, Baumann N, Grätz C, Gonzalez Pisfil M, Pfaffl MW, Pütz B, Kielkowski P, Cernilogar FM, Maccarrone G, Di Giaimo R, Cappello S. Extracellular vesicle-mediated trafficking of molecular cues during human brain development. Cell Rep 2024; 43:114755. [PMID: 39302835 DOI: 10.1016/j.celrep.2024.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Cellular crosstalk is an essential process influenced by numerous factors, including secreted vesicles that transfer nucleic acids, lipids, and proteins between cells. Extracellular vesicles (EVs) have been the center of many studies focusing on neurodegenerative disorders, but whether EVs display cell-type-specific features for cellular crosstalk during neurodevelopment is unknown. Here, using human-induced pluripotent stem cell-derived cerebral organoids, neural progenitors, neurons, and astrocytes, we identify heterogeneity in EV protein content and dynamics in a cell-type-specific and time-dependent manner. Our results support the trafficking of key molecules via EVs in neurodevelopment, such as the transcription factor YAP1, and their localization to differing cell compartments depending on the EV recipient cell type. This study sheds new light on the biology of EVs during human brain development.
Collapse
Affiliation(s)
- Andrea Forero
- Max Planck Institute of Psychiatry, Munich, Germany; Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Sylvain Moser
- Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Grätz
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig Maximilian University, Munich, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Ludwig Maximilian University, Munich, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University, Munich, Germany; Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | | | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany; Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Munich, Germany; Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
3
|
Yang T, Wang W, Xie L, Chen S, Ye X, Shen S, Chen H, Qi L, Cui Z, Xiong W, Guo Y, Chen J. Investigating retinal explant models cultured in static and perfused systems to test the performance of exosomes secreted from retinal organoids. J Neurosci Methods 2024; 408:110181. [PMID: 38823594 DOI: 10.1016/j.jneumeth.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Ex vivo cultures of retinal explants are appropriate models for translational research. However, one of the difficult problems of retinal explants ex vivo culture is that their nutrient supply needs cannot be constantly met. NEW METHOD This study evaluated the effect of perfused culture on the survival of retinal explants, addressing the challenge of insufficient nutrition in static culture. Furthermore, exosomes secreted from retinal organoids (RO-Exos) were stained with PKH26 to track their uptake in retinal explants to mimic the efficacy of exosomal drugs in vivo. RESULTS We found that the retinal explants cultured with perfusion exhibited significantly higher viability, increased NeuN+ cells, and reduced apoptosis compared to the static culture group at Days Ex Vivo (DEV) 4, 7, and 14. The perfusion-cultured retinal explants exhibited reduced mRNA markers for gliosis and microglial activation, along with lower expression of GFAP and Iba1, as revealed by immunostaining. Additionally, RNA-sequencing analysis showed that perfusion culture mainly upregulated genes associated with visual perception and photoreceptor cell maintenance while downregulating the immune system process and immune response. RO-Exos promoted the uptake of PKH26-labelled exosomes and the growth of retinal explants in perfusion culture. COMPARISON WITH EXISTING METHODS Our perfusion culture system can provide a continuous supply of culture medium to achieve steady-state equilibrium in retinal explant culture. Compared to traditional static culture, it better preserves the vitality, provides better neuroprotection, and reduces glial activation. CONCLUSIONS This study provides a promising ex vivo model for further studies on degenerative retinal diseases and drug screening.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China; Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Wenxuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Linyao Xie
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Sihui Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiuhong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shuhao Shen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Qi
- Central Laboratory, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Jiansu Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
4
|
Park HS, Bang JH, Jung WH, Yang JY, Shin HJ, Son JH, Han JW, Lee SH, Chung KH, Kim K, Chang HS, Park TK. Development of Non-Invasive miRNA Markers for Assessing the Quality of Human Induced Pluripotent Stem Cell-Derived Retinal Organoids. Int J Mol Sci 2024; 25:8011. [PMID: 39125582 PMCID: PMC11312389 DOI: 10.3390/ijms25158011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Human retinal organoids (ROs) have emerged as valuable tools for studying retinal development, modeling human retinal diseases, and screening drugs. However, their application is limited primarily due to time-intensive generation, high costs, and low reproducibility. Quality assessment of RO differentiation is crucial for their application in research. However, traditional methods such as morphological evaluation and immunohistochemical analysis have limitations due to their lack of precision and invasiveness, respectively. This study aims to identify non-invasive biomarkers for RO differentiation quality using exosomal microRNAs (miRNAs), which are known to reflect cell-specific functions and development in the retina. We differentiated ROs from human induced pluripotent stem cells (hiPSCs) and classified them into 'superior' and 'inferior' groups based on morphological and immunohistochemical criteria. Exosomes from the conditioned media were isolated and analyzed for miRNA content. Our findings revealed distinct miRNA profiles between superior and inferior ROs, with superior ROs exhibiting higher miRNA diversity and specifically up- or down-regulated miRNAs. Gene ontology and pathway enrichment analyses indicated that the target genes of these miRNAs are involved in neuron proliferation and differentiation. The study suggests the potential of exosomal hsa-miR-654-3p and hsa-miR-451a as non-invasive biomarkers for real-time monitoring of RO quality, facilitating the development of standardized, efficient, and cost-effective culture methods.
Collapse
Affiliation(s)
- Hyo Song Park
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Ji-Hong Bang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
| | - Wook Hyun Jung
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Hee Jeong Shin
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Ji-Hye Son
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea;
| | - Jung Woo Han
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Si Hyung Lee
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Kyung Hwun Chung
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Kyunggon Kim
- Department of Digital Medicine, Brain Korea 21 plus, College of Medicine, University of Ulsan and Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea;
| | - Tae Kwann Park
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| |
Collapse
|
5
|
Huang S, Zeng Y, Guo Q, Zou T, Yin ZQ. Small extracellular vesicles of organoid-derived human retinal stem cells remodel Müller cell fate via miRNA: A novel remedy for retinal degeneration. J Control Release 2024; 370:405-420. [PMID: 38663753 DOI: 10.1016/j.jconrel.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Remodeling retinal Müller glial fate, including gliosis inhibition and pro-reprogramming, represents a crucial avenue for treating degenerative retinal diseases. Stem cell transplantation exerts effects on modulating retinal Müller glial fate. However, the optimized stem cell products and the underlying therapeutic mechanisms need to be investigated. In the present study, we found that retinal progenitor cells from human embryonic stem cell-derived retinal organoids (hERO-RPCs) transferred extracellular vesicles (EVs) into Müller cells following subretinal transplantation into RCS rats. Small EVs from hERO-RPCs (hERO-RPC-sEVs) were collected and were found to delay photoreceptor degeneration and protect retinal function in RCS rats. hERO-RPC-sEVs were taken up by Müller cells both in vivo and in vitro, and inhibited gliosis while promoting early dedifferentiation of Müller cells. We further explored the miRNA profiles of hERO-RPC-sEVs, which suggested a functional signature associated with neuroprotection and development, as well as the regulation of stem cell and glial fate. Mechanistically, hERO-RPC-sEVs might regulate the fate of Müller cells by miRNA-mediated nuclear factor I transcription factors B (NFIB) downregulation. Collectively, our findings offer novel mechanistic insights into stem cell therapy and promote the development of EV-centered therapeutic strategies.
Collapse
Affiliation(s)
- Shudong Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiang Guo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China; Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
6
|
Kwak S, Song CL, Lee J, Kim S, Nam S, Park YJ, Lee J. Development of pluripotent stem cell-derived epidermal organoids that generate effective extracellular vesicles in skin regeneration. Biomaterials 2024; 307:122522. [PMID: 38428092 DOI: 10.1016/j.biomaterials.2024.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Cellular skin substitutes such as epidermal constructs have been developed for various applications, including wound healing and skin regeneration. These cellular models are mostly derived from primary cells such as keratinocytes and fibroblasts in a two-dimensional (2D) state, and further development of three-dimensional (3D) cultured organoids is needed to provide insight into the in vivo epidermal phenotype and physiology. Here, we report the development of epidermal organoids (EpiOs) generated from induced pluripotent stem cells (iPSCs) as a novel epidermal construct and its application as a source of secreted biomolecules recovered by extracellular vesicles (EVs) that can be utilized for cell-free therapy of regenerative medicine. Differentiated iPSC-derived epidermal organoids (iEpiOs) are easily cultured and expanded through multiple organoid passages, while retaining molecular and functional features similar to in vivo epidermis. These mature iEpiOs contain epidermal stem cell populations and retain the ability to further differentiate into other skin compartment lineages, such as hair follicle stem cells. By closely recapitulating the epidermal structure, iEpiOs are expected to provide a more relevant microenvironment to influence cellular processes and therapeutic response. Indeed, iEpiOs can generate high-performance EVs containing high levels of the angiogenic growth factor VEGF and miRNAs predicted to regulate cellular processes such as proliferation, migration, differentiation, and angiogenesis. These EVs contribute to target cell proliferation, migration, and angiogenesis, providing a promising therapeutic tool for in vivo wound healing. Overall, the newly developed iEpiOs strategy as an organoid-based approach provides a powerful model for studying basic and translational skin research and may also lead to future therapeutic applications using iEpiOs-secreted EVs.
Collapse
Affiliation(s)
- Sojung Kwak
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cho Lok Song
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Young-Jun Park
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jungwoon Lee
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
7
|
Royo F, Garcia-Vallicrosa C, Azparren-Angulo M, Bordanaba-Florit G, Lopez-Sarrio S, Falcon-Perez JM. Three-Dimensional Hepatocyte Spheroids: Model for Assessing Chemotherapy in Hepatocellular Carcinoma. Biomedicines 2024; 12:1200. [PMID: 38927406 PMCID: PMC11201042 DOI: 10.3390/biomedicines12061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Three-dimensional cellular models provide a more comprehensive representation of in vivo cell properties, encompassing physiological characteristics and drug susceptibility. METHODS Primary hepatocytes were seeded in ultra-low attachment plates to form spheroids, with or without tumoral cells. Spheroid structure, cell proliferation, and apoptosis were analyzed using histological staining techniques. In addition, extracellular vesicles were isolated from conditioned media by differential ultracentrifugation. Spheroids were exposed to cytotoxic drugs, and both spheroid growth and cell death were measured by microscopic imaging and flow cytometry with vital staining, respectively. RESULTS Concerning spheroid structure, an active outer layer forms a boundary with the media, while the inner core comprises a mass of cell debris. Hepatocyte-formed spheroids release vesicles into the extracellular media, and a decrease in the concentration of vesicles in the culture media can be observed over time. When co-cultured with tumoral cells, a distinct distribution pattern emerges over the primary hepatocytes, resulting in different spheroid conformations. Tumoral cell growth was compromised upon antitumoral drug challenges. CONCLUSIONS Treatment of mixed spheroids with different cytotoxic drugs enables the characterization of drug effects on both hepatocytes and tumoral cells, determining drug specificity effects on these cell types.
Collapse
Affiliation(s)
- Felix Royo
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (M.A.-A.); (G.B.-F.); (S.L.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Clara Garcia-Vallicrosa
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (M.A.-A.); (G.B.-F.); (S.L.-S.)
| | - Maria Azparren-Angulo
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (M.A.-A.); (G.B.-F.); (S.L.-S.)
| | - Guillermo Bordanaba-Florit
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (M.A.-A.); (G.B.-F.); (S.L.-S.)
| | - Silvia Lopez-Sarrio
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (M.A.-A.); (G.B.-F.); (S.L.-S.)
| | - Juan Manuel Falcon-Perez
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (M.A.-A.); (G.B.-F.); (S.L.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
8
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
10
|
Muok L, Sun L, Esmonde C, Worden H, Vied C, Duke L, Ma S, Zeng O, Driscoll T, Jung S, Li Y. Extracellular vesicle biogenesis of three-dimensional human pluripotent stem cells in a novel Vertical-Wheel bioreactor. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e133. [PMID: 38938678 PMCID: PMC11080838 DOI: 10.1002/jex2.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) secreted by human-induced pluripotent stem cells (hiPSCs) have great potential as cell-free therapies in various diseases, including prevention of blood-brain barrier senescence and stroke. However, there are still challenges in pre-clinical and clinical use of hiPSC-EVs due to the need for large-scale production of a large quantity. Vertical-Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC-EVs using a scalable aggregate or microcarrier-based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3-D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA-seq, respectively. The in vitro functional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3-D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA-seq. The microcarrier cultures had at least 17-23 fold higher EV secretion, and EV collection in mTeSR had 2.7-3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA-seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt-related pathways). hiPSC-EVs demonstrated the ability of stimulating proliferation and M2 polarization of microglia in vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti-aging study.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Cynthia Vied
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Leanne Duke
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Shaoyang Ma
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Olivia Zeng
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
11
|
Gao H, Zeng Y, Huang X, A L, Liang Q, Xie J, Lin X, Gong J, Fan X, Zou T, Xu H. Extracellular vesicles from organoid-derived human retinal progenitor cells prevent lipid overload-induced retinal pigment epithelium injury by regulating fatty acid metabolism. J Extracell Vesicles 2024; 13:e12401. [PMID: 38151470 PMCID: PMC10752800 DOI: 10.1002/jev2.12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
Retinal degeneration (RD), a group of diseases leading to irreversible vision loss, is characterised by retinal pigment epithelium (RPE) or retinal neuron damage and loss. With fewer risks of immune rejection and tumorigenesis, stem cell-secreted extracellular vesicles (EVs) offer a new cell-free therapeutic paradigm for RD, which remains to be investigated. Human retinal organoid-derived retinal progenitor cells (hERO-RPCs) are an easily accessible and advanced cell source for RD treatment. However, hERO-RPCs-derived EVs require further characterisation. Here, we compared the characteristics of EVs from hERO-RPCs (hRPC-EVs) with those of human embryonic stem cell (hESC)-derived EVs (hESC-EVs) as controls. Based on in-depth proteomic analysis, we revealed remarkable differences between hRPC-EVs and hESC-EVs. A comparison between EVs and their respective cells of origin demonstrated that the protein loading of hRPC-EVs was more selective than that of hESC-EVs. In particular, hESC-EVs were enriched with proteins related to angiogenesis and cell cycle, whereas hRPC-EVs were enriched with proteins associated with immune modulation and retinal development. More importantly, compared with that of hESC-EVs, hRPC-EVs exhibited a lower correlation with cell proliferation and a unique capacity to regulate lipid metabolism. It was further confirmed that hRPC-EVs potentially eliminated lipid deposits, inhibited lipotoxicity and oxidative stress, and enhanced phagocytosis and survival of oleic acid-treated ARPE-19 cells. Mechanistically, hRPC-EVs are integrated into the mitochondrial network of oleic acid-treated ARPE-19 cells, and increased the level of mitochondrial fatty acid β-oxidation-related proteins. Thus, organoid-derived hRPC-EVs represent a promising source of cell-free therapy for RD, especially for blinding diseases related to abnormal lipid metabolism in RPE cells.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Yuxiao Zeng
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Luodan A
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Qingle Liang
- Department of Clinical Laboratory Medicine, First Affiliated HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jing Xie
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Xi Lin
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Jing Gong
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of PsychologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Ting Zou
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
- Department of OphthalmologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| |
Collapse
|
12
|
Han JW, Chang HS, Yang JY, Choi HS, Park HS, Jun HO, Choi JH, Paik SS, Chung KH, Shin HJ, Nam S, Son JH, Lee SH, Lee EJ, Seo KY, Lyu J, Kim JW, Kim IB, Park TK. Intravitreal Administration of Retinal Organoids-Derived Exosomes Alleviates Photoreceptor Degeneration in Royal College of Surgeons Rats by Targeting the Mitogen-Activated Protein Kinase Pathway. Int J Mol Sci 2023; 24:12068. [PMID: 37569444 PMCID: PMC10419150 DOI: 10.3390/ijms241512068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Increasing evidence suggests that exosomes are involved in retinal cell degeneration, including their insufficient release; hence, they have become important indicators of retinopathies. The exosomal microRNA (miRNA), in particular, play important roles in regulating ocular and retinal cell functions, including photoreceptor maturation, maintenance, and visual function. Here, we generated retinal organoids (ROs) from human induced pluripotent stem cells that differentiated in a conditioned medium for 60 days, after which exosomes were extracted from ROs (Exo-ROs). Subsequently, we intravitreally injected the Exo-RO solution into the eyes of the Royal College of Surgeons (RCS) rats. Intravitreal Exo-RO administration reduced photoreceptor apoptosis, prevented outer nuclear layer thinning, and preserved visual function in RCS rats. RNA sequencing and miRNA profiling showed that exosomal miRNAs are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, the expression of MAPK-related genes and proteins was significantly decreased in the Exo-RO-treated group. These results suggest that Exo-ROs may be a potentially novel strategy for delaying retinal degeneration by targeting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jung Woo Han
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hun Soo Chang
- Department of Microbiolo and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan 31538, Republic of Korea; (H.S.C.); (J.-H.S.)
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Han Sol Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hyo Song Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hyoung Oh Jun
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Ji Hye Choi
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea; (S.-S.P.); (I.-B.K.)
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Kyung Hwun Chung
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Hee Jeong Shin
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea;
| | - Seungyeon Nam
- Department of Neuroscience and Behavior, University of Notre Dame College of Science, Notre Dame, IN 46556, USA;
| | - Ji-Hye Son
- Department of Microbiolo and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan 31538, Republic of Korea; (H.S.C.); (J.-H.S.)
| | - Si Hyung Lee
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Eun Jung Lee
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (E.J.L.); (J.W.K.)
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejun 32992, Republic of Korea;
| | - Jin Woo Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (E.J.L.); (J.W.K.)
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea; (S.-S.P.); (I.-B.K.)
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea;
- oligoNgene Pharmaceutical Co., Ltd., Bucheon 31538, Republic of Korea
| |
Collapse
|
13
|
Chatterjee A, Singh R. Extracellular vesicles: an emerging player in retinal homeostasis. Front Cell Dev Biol 2023; 11:1059141. [PMID: 37181750 PMCID: PMC10166895 DOI: 10.3389/fcell.2023.1059141] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Extracellular vesicles (EVs) encompass secreted membrane vesicles of varied sizes, including exosomes (-30-200 nm) and microvesicles (MVs) that are ∼100-1,000 nm in size. EVs play an important role in autocrine, paracrine, and endocrine signaling and are implicated in myriad human disorders including prominent retinal degenerative diseases, like age related macular degeneration (AMD) and diabetic retinopathy (DR). Studies of EVs in vitro using transformed cell lines, primary cultures, and more recently, induced pluripotent stem cell derived retinal cell type(s) (e.g., retinal pigment epithelium) have provided insights into the composition and function of EVs in the retina. Furthermore, consistent with a causal role of EVs in retinal degenerative diseases, altering EV composition has promoted pro-retinopathy cellular and molecular events in both in vitro and in vivo models. In this review, we summarize the current understanding of the role of EVs in retinal (patho)physiology. Specifically, we will focus on disease-associated EV alterations in specific retinal diseases. Furthermore, we discuss the potential utility of EVs in diagnostic and therapeutic strategies for targeting retinal diseases.
Collapse
Affiliation(s)
- Amit Chatterjee
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
- UR Stem Cell and Regenerative Medicine Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
14
|
Yu J, Yin Y, Leng Y, Zhang J, Wang C, Chen Y, Li X, Wang X, Liu H, Liao Y, Jin Y, Zhang Y, Lu K, Wang K, Wang X, Wang L, Zheng F, Gu Z, Li Y, Fan Y. Emerging strategies of engineering retinal organoids and organoid-on-a-chip in modeling intraocular drug delivery: current progress and future perspectives. Adv Drug Deliv Rev 2023; 197:114842. [PMID: 37105398 DOI: 10.1016/j.addr.2023.114842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Retinal diseases are a rising concern as major causes of blindness in an aging society; therapeutic options are limited, and the precise pathogenesis of these diseases remains largely unknown. Intraocular drug delivery and nanomedicines offering targeted, sustained, and controllable delivery are the most challenging and popular topics in ocular drug development and toxicological evaluation. Retinal organoids (ROs) and organoid-on-a-chip (ROoC) are both emerging as promising in-vitro models to faithfully recapitulate human eyes for retinal research in the replacement of experimental animals and primary cells. In this study, we review the generation and application of ROs resembling the human retina in cell subtypes and laminated structures and introduce the emerging engineered ROoC as a technological opportunity to address critical issues. On-chip vascularization, perfusion, and close inter-tissue interactions recreate physiological environments in vitro, whilst integrating with biosensors facilitates real-time analysis and monitoring during organogenesis of the retina representing engineering efforts in ROoC models. We also emphasize that ROs and ROoCs hold the potential for applications in modeling intraocular drug delivery in vitro and developing next-generation retinal drug delivery strategies.
Collapse
Affiliation(s)
- Jiaheng Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqi Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubing Leng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jingcheng Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yanyun Chen
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaorui Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xudong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yishan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yihan Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Keyu Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kehao Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Xiaofei Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| |
Collapse
|
15
|
Zhu Z, Hu E, Shen H, Tan J, Zeng S. The functional and clinical roles of liquid biopsy in patient-derived models. J Hematol Oncol 2023; 16:36. [PMID: 37031172 PMCID: PMC10082989 DOI: 10.1186/s13045-023-01433-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The liquid biopsy includes the detection of circulating tumor cells (CTCs) and CTC clusters in blood, as well as the detection of, cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) and extracellular vesicles (EVs) in the patient's body fluid. Liquid biopsy has important roles in translational research. But its clinical utility is still under investigation. Newly emerged patient-derived xenograft (PDX) and CTC-derived xenograft (CDX) faithfully recapitulate the genetic and morphological features of the donor patients' tumor and patient-derived organoid (PDO) can mostly mimic tumor growth, tumor microenvironment and its response to drugs. In this review, we describe how the development of these patient-derived models has assisted the studies of CTCs and CTC clusters in terms of tumor biological behavior exploration, genomic analysis, and drug testing, with the help of the latest technology. We then summarize the studies of EVs and cfDNA/ctDNA in PDX and PDO models in early cancer diagnosis, tumor burden monitoring, drug test and response monitoring, and molecular profiling. The challenges faced and future perspectives of research related to liquid biopsy using patient-derived models are also discussed.
Collapse
Affiliation(s)
- Ziqing Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Erya Hu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Colvett I, Saternos H, Coughlan C, Vielle A, Ledreux A. Extracellular vesicles from the CNS play pivotal roles in neuroprotection and neurodegeneration: lessons from in vitro experiments. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:72-89. [PMID: 37859665 PMCID: PMC10586524 DOI: 10.20517/evcna.2023.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Intercellular communication between diverse cell types is crucial for the maintenance of the central nervous system, and exosomes have been shown to play an important role in this process. Exosomes are small extracellular vesicles (EVs) that are released by all cell types and carry cargoes that can elicit downstream effects in recipient cells. Exosomal communication in the central nervous system has been implicated in many neurodegenerative diseases, ranging from Alzheimer's disease to major depressive disorder. Though there remain many unknowns in the field of EV biology, in vitro experiments can provide many insights into their potential roles in health and disease. In this review, we discuss the findings of many in vitro EV experiments, with a focus on the potential roles in regulating cell viability, inflammation, oxidative stress, and neurite integrity in the central nervous system.
Collapse
Affiliation(s)
- Isaac Colvett
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| | - Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| | - Christina Coughlan
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| | - Anne Vielle
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus,12700 E 19th Ave Aurora, CO 80045, United States
| |
Collapse
|
17
|
Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina - putative roles in physiology and disease. Front Mol Neurosci 2023; 15:1042469. [PMID: 36710933 PMCID: PMC9877344 DOI: 10.3389/fnmol.2022.1042469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.
Collapse
Affiliation(s)
- Aikaterini A. Kalargyrou
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Siobhan E. Guilfoyle
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Alexander J. Smith
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Robin R. Ali
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Rachael A. Pearson
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| |
Collapse
|
18
|
Louie HH, Mugisho OO, Chamley LW, Rupenthal ID. Extracellular Vesicles as Biomarkers and Therapeutics for Inflammatory Eye Diseases. Mol Pharm 2023; 20:23-40. [PMID: 36332193 DOI: 10.1021/acs.molpharmaceut.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular vesicles (EVs) are a group of cell-derived membrane vesicles of varying sizes that can be secreted by most cells. Depending on the type of cell they are derived from, EVs may contain a variety of cargo including proteins, lipids, miRNA, and DNA. Functionally, EVs play important roles in physiological and pathological processes through intercellular communication. While there has already been significant literature on the involvement of EVs in neurological and cardiovascular disease as well as cancer, recent evidence suggests that EVs may also play a role in mediating inflammatory eye diseases. This paper summarizes current advancements in ocular EV research as well as new ways by which EVs may be utilized as novel biomarkers of or therapeutics for inflammatory eye diseases.
Collapse
Affiliation(s)
- Henry H Louie
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lawrence W Chamley
- Hub for Extracellular Vesicle Investigations, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Department of Obstetrics & Gynaecology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Cheng L, Kuehn MH. Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. Handb Exp Pharmacol 2023; 281:157-187. [PMID: 37608005 DOI: 10.1007/164_2023_691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Human embryonic stem cells (hESCs)- and induced pluripotent stem cells (hiPSCs)-derived retinal organoids (ROs) are three-dimensional laminar structures that recapitulate the developmental trajectory of the human retina. The ROs provide a fascinating tool for basic science research, eye disease modeling, treatment development, and biobanking for tissue/cell replacement. Here we review the previous studies that paved the way for RO technology, the two most widely accepted, standardized protocols to generate ROs, and the utilization of ROs in medical discovery. This review is conducted from the perspective of basic science research, transplantation for regenerative medicine, disease modeling, and therapeutic development for drug screening and gene therapy. ROs have opened avenues for new technologies such as assembloids, coculture with other organoids, vasculature or immune cells, microfluidic devices (organ-on-chip), extracellular vesicles for drug delivery, biomaterial engineering, advanced imaging techniques, and artificial intelligence (AI). Nevertheless, some shortcomings of ROs currently limit their translation for medical applications and pose a challenge for future research. Despite these limitations, ROs are a powerful tool for functional studies and therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA.
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
20
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
21
|
Arthur P, Muok L, Nathani A, Zeng EZ, Sun L, Li Y, Singh M. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells 2022; 11:3429. [PMID: 36359825 PMCID: PMC9653705 DOI: 10.3390/cells11213429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/24/2023] Open
Abstract
Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|