1
|
Poursadeghfard M, Shiati S, Salehi MS, Khani A, Vafaeian S, Bayat M, Hooshmandi E. Hematological markers as prognostic indicators in multiple sclerosis progression. Biomark Med 2025; 19:5-12. [PMID: 39686852 DOI: 10.1080/17520363.2024.2441106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
AIMS To evaluate routine blood count parameters as diagnostic and prognostic markers in Multiple Sclerosis (MS) progression. PATIENTS/METHODS 182 patients with Relapsing-Remitting MS (RRMS) and 60 with Secondary Progressive MS (SPMS) were analyzed for blood parameters. RESULTS In RRMS, the Expanded Disability Status Scale (EDSS) score correlated positively with Red Cell Distribution Width (RDW). In SPMS, the EDSS score correlated positively with White Blood Cell count (WBC) and Mean Platelet Volume (MPV). RDW predicted higher EDSS scores in RRMS, while MPV was a predictor in SPMS. Elevated MPV levels characterized the increased risk of transitioning from RRMS to SPMS. CONCLUSIONS Elevated MPV may serve as a significant indicator of disease progression from RRMS to SPMS, emphasizing its potential clinical relevance.
Collapse
Affiliation(s)
- Maryam Poursadeghfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samin Shiati
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aryan Khani
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Vafaeian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Selmaj K, Roth K, Höfler J, Vitzithum K, Derlacz R, von Richter O, Hornuss C, Poetzl J, Singer B, Jacobs L. Introducing the Biosimilar Paradigm to Neurology: The Totality of Evidence for the First Biosimilar Natalizumab. BioDrugs 2024; 38:755-767. [PMID: 39343860 PMCID: PMC11530514 DOI: 10.1007/s40259-024-00671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 10/01/2024]
Abstract
A biosimilar medicine is a successor to a reference ('originator'/'original-brand') biologic medicine brought to market once the patent and exclusive marketing rights for the reference have expired. Biosimilar natalizumab (PB006 [biosim-NTZ]; developed by Polpharma Biologics S.A. and marketed globally as Tyruko®; Sandoz) has been developed as a successor to reference natalizumab (Tysabri® [ref-NTZ]; Biogen) and is the first US Food and Drug Administration (FDA)-approved and European Medicines Agency (EMA)-approved biosimilar in neurology. As per the FDA and EMA indications for ref-NTZ, biosim-NTZ is approved to treat relapsing forms of multiple sclerosis (USA, EU) and Crohn's disease (USA only). Approval of biosim-NTZ was based on the 'totality of evidence', a comprehensive body of data collected during the development process, demonstrating similarity to its reference medicine. The foundational step of demonstrating structural and functional similarity between biosim-NTZ and ref-NTZ confirmed identical primary and indistinguishable higher order structures, as well as matching binding affinity to α4β1/α4β7 integrins. Following the confirmation of matching structure and function, pharmacokinetic/pharmacodynamic similarity of biosim-NTZ to ref-NTZ in healthy subjects was demonstrated, with no clinically meaningful differences identified in safety and immunogenicity. A comparative, double-blind, randomized study (Antelope) was also conducted in patients with relapsing-remitting multiple sclerosis and demonstrated matching efficacy, safety, and immunogenicity with no clinically meaningful differences between biosim-NTZ and ref-NTZ. This review presents the totality of evidence that confirmed the biosimilarity of biosimilar natalizumab to its reference medicine, which supported its approval by the FDA and the EMA. [Graphical plain language summary available].
Collapse
Affiliation(s)
- Krzysztof Selmaj
- Department of Neurology, Center of Neurology, University of Warmia & Mazury, Olsztyn, Lodz, Poland
| | | | | | | | | | | | | | | | - Barry Singer
- The MS Center for Innovations in Care, Missouri Baptist Medical Center, St Louis, MO, USA
| | - Laura Jacobs
- Hexal AG (a Sandoz company), Holzkirchen, Germany.
| |
Collapse
|
3
|
Kupor D, Felder ML, Kodikalla S, Chu X, Eniola-Adefeso O. Nanoparticle-neutrophils interactions for autoimmune regulation. Adv Drug Deliv Rev 2024; 209:115316. [PMID: 38663550 PMCID: PMC11246615 DOI: 10.1016/j.addr.2024.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Neutrophils play an essential role as 'first responders' in the immune response, necessitating many immune-modulating capabilities. Chronic, unresolved inflammation is heavily implicated in the progression and tissue-degrading effects of autoimmune disease. Neutrophils modulate disease pathogenesis by interacting with the inflammatory and autoreactive cells through effector functions, including signaling, degranulation, and neutrophil extracellular traps (NETs) release. Since the current gold standard systemic glucocorticoid administration has many drawbacks and side effects, targeting neutrophils in autoimmunity provides a new approach to developing therapeutics. Nanoparticles enable targeting of specific cell types and controlled release of a loaded drug cargo. Thus, leveraging nanoparticle properties and interactions with neutrophils provides an exciting new direction toward novel therapies for autoimmune diseases. Additionally, recent work has utilized neutrophil properties to design novel targeted particles for delivery into previously inaccessible areas. Here, we outline nanoparticle-based strategies to modulate neutrophil activity in autoimmunity, including various nanoparticle formulations and neutrophil-derived targeting.
Collapse
Affiliation(s)
- Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Felder
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shivanie Kodikalla
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueqi Chu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Chen L, Zhu LF, Zhang LY, Chu YH, Dong MH, Pang XW, Yang S, Zhou LQ, Shang K, Xiao J, Wang W, Qin C, Tian DS. Causal association between the peripheral immunity and the risk and disease severity of multiple sclerosis. Front Immunol 2024; 15:1325938. [PMID: 38390334 PMCID: PMC10881847 DOI: 10.3389/fimmu.2024.1325938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background Growing evidence links immunological responses to Multiple sclerosis (MS), but specific immune factors are still unclear. Methods Mendelian randomization (MR) was performed to investigate the association between peripheral hematological traits, MS risk, and its severity. Then, further subgroup analysis of immune counts and circulating cytokines and growth factors were performed. Results MR revealed higher white blood cell count (OR [95%CI] = 1.26 [1.10,1.44], P = 1.12E-03, P adjust = 3.35E-03) and lymphocyte count (OR [95%CI] = 1.31 [1.15,1.50], P = 5.37E-05, P adjust = 3.22E-04) increased the risk of MS. In further analysis, higher T cell absolute count (OR [95%CI] = 2.04 [1.36,3.08], P = 6.37E-04, P adjust = 2.19E-02) and CD4+ T cell absolute count (OR [95%CI] = 2.11 [1.37,3.24], P = 6.37E-04, P adjust = 2.19E-02), could increase MS risk. While increasing CD25++CD4+ T cell absolute count (OR [95%CI] = 0.75 [0.66,0.86], P = 2.12E-05, P adjust = 1.72E-03), CD25++CD4+ T cell in T cell (OR [95%CI] = 0.79[0.70,0.89], P = 8.54E-05, P adjust = 5.29E-03), CD25++CD4+ T cell in CD4+ T cell (OR [95%CI] = 0.80[0.72,0.89], P = 1.85E-05, P adjust = 1.72E-03), and CD25++CD8+ T cell in T cell (OR [95%CI] = 0.68[0.57,0.81], P = 2.22E-05, P adjust = 1.72E-03), were proved to be causally defensive for MS. For the disease severity, the suggestive association between some traits related to CD4+ T cell, Tregs and MS severity were demonstrated. Moreover, elevated levels of IL-2Ra had a detrimental effect on the risk of MS (OR [95%CI] = 1.22 [1.12,1.32], P = 3.20E-06, P adjust = 1.34E-04). Conclusions This study demonstrated a genetically predicted causal relationship between elevated peripheral immune cell counts and MS. Subgroup analysis revealed a specific contribution of peripheral immune cells, holding potential for further investigations into the underlying mechanisms of MS and its severity.
Collapse
Affiliation(s)
- Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
6
|
Chhabra S, Mehan S, Khan Z, Gupta GD, Narula AS. Matrine mediated neuroprotective potential in experimental multiple sclerosis: Evidence from CSF, blood markers, brain samples and in-silico investigations. J Neuroimmunol 2023; 384:578200. [PMID: 37774554 DOI: 10.1016/j.jneuroim.2023.578200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS) is a debilitating, inflammatory, and demyelinating disease of the central nervous system influenced by environmental and genetic factors. Around 2.8 million people worldwide are affected by MS due to its challenging diagnosis and treatment. Our study investigates the role of the JAK/STAT and PPAR-gamma signaling pathways in the progression of multiple sclerosis. Inflammation and demyelination can be caused by dysregulation of these pathways. Modulating the STAT-3, mTOR, and PPAR-gamma signaling pathways may offer therapeutic potential for multiple sclerosis. Matrine (40 and 80 mg/kg, i.p.), a quinolizidine alkaloid derived from Sophora flavescens, has been investigated for its therapeutic potential in our laboratory. Matrine has been studied for its neuroprotective effect in neurodegenerative diseases. It inhibits inflammatory responses and promotes regeneration of damaged myelin sheaths, indicating its potential efficacy in treating multiple sclerosis. Matrine exerts its neuroprotective effect by inhibiting STAT-3 and mTOR and promoting PPAR-gamma expression.GW9662, a PPAR-gamma antagonist (2 mg/kg, i.p.), was administered to evaluate the involvement of PPAR-gamma and to compare the efficacy of matrine's potential neuroprotective effect. Matrine's interaction with the STAT-3, mTOR, and PPAR-gamma pathways in multiple Sclerosis was also validated and confirmed through insilico investigation. In addition, matrine altered the CBC profile, intensifying the clinical presentation of multiple sclerosis. In addition, we evaluated the diagnostic potential of various biological samples, including CSF, blood plasma, and brain homogenates (striatum, cortex, hippocampus, and midbrain). These samples were used to evaluate the neurochemical changes caused by neurobehavioral alterations during the progression of multiple sclerosis. These results indicate that matrine treatment ameliorated multiple sclerosis and that the mechanism underlying these effects may be closely related to the modulation of the STAT-3/mTOR/PPAR-gamma signaling pathway.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
7
|
Riaz B, Sohn S. Neutrophils in Inflammatory Diseases: Unraveling the Impact of Their Derived Molecules and Heterogeneity. Cells 2023; 12:2621. [PMID: 37998356 PMCID: PMC10670008 DOI: 10.3390/cells12222621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory diseases involve numerous disorders and medical conditions defined by an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process through which environmental variables play a crucial role in the emergence of aberrant innate and adaptive immunological responses. According to experimental data accumulated over the past decade, neutrophils play a significant role as effector cells in innate immunity. However, neutrophils are also involved in the progression of numerous diseases through participation in the onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally, neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional therapies due to their multifaceted role in a number of diseases. Several approaches have been developed to therapeutically target neutrophils, involving strategies to improve neutrophil function, with various compounds and inhibitors currently undergoing clinical trials, although challenges and contradictions in the field persist. This review outlines the current literature on roles of neutrophils, neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and inflammatory diseases with potential future therapeutic strategies.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
8
|
Vaivade A, Wiberg A, Khoonsari PE, Carlsson H, Herman S, Al-Grety A, Freyhult E, Olsson-Strömberg U, Burman J, Kultima K. Autologous hematopoietic stem cell transplantation significantly alters circulating ceramides in peripheral blood of relapsing-remitting multiple sclerosis patients. Lipids Health Dis 2023; 22:97. [PMID: 37420217 DOI: 10.1186/s12944-023-01863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND The common inflammatory disease multiple sclerosis (MS) is a disease of the central nervous system. For more than 25 years autologous hematopoietic stem cell transplantation (AHSCT) has been used to treat MS. It has been shown to be highly effective in suppressing inflammatory activity in relapsing-remitting MS (RRMS) patients. This treatment is thought to lead to an immune system reset, inducing a new, more tolerant system; however, the precise mechanism behind the treatment effect in MS patients is unknown. In this study, the effect of AHSCT on the metabolome and lipidome in peripheral blood from RRMS patients was investigated. METHODS Peripheral blood samples were collected from 16 patients with RRMS at ten-time points over the five months course of AHSCT and 16 MS patients not treated with AHSCT. Metabolomics and lipidomics analysis were performed using liquid-chromatography high-resolution mass spectrometry. Mixed linear models, differential expression analysis, and cluster analysis were used to identify differentially expressed features and groups of features that could be of interest. Finally, in-house and in-silico libraries were used for feature identification, and enrichment analysis was performed. RESULTS Differential expression analysis found 657 features in the lipidomics dataset and 34 in the metabolomics dataset to be differentially expressed throughout AHSCT. The administration of cyclophosphamide during mobilization and conditioning was associated with decreased concentrations in glycerophosphoinositol species. Thymoglobuline administration was associated with an increase in ceramide and glycerophosphoethanolamine species. After the conditioning regimen, a decrease in glycerosphingoidlipids concentration was observed, and following hematopoietic stem cell reinfusion glycerophosphocholine concentrations decreased for a short period of time. Ceramide concentrations were strongly associated with leukocyte levels during the procedure. The ceramides Cer(d19:1/14:0) and Cer(d20:1/12:0) were found to be increased (P < .05) in concentration at the three-month follow-up compared to baseline. C16 ceramide, Cer(D18:2/16:0), and CerPE(d16:2(4E,6E)/22:0) were found to be significantly increased in concentration after AHSCT compared to prior to treatment as well as compared to newly diagnosed RRMS patients. CONCLUSION AHSCT had a larger impact on the lipids in peripheral blood compared to metabolites. The variation in lipid concentration reflects the transient changes in the peripheral blood milieu during the treatment, rather than the changes in the immune system that are assumed to be the cause of clinical improvement within RRMS patients treated with AHSCT. Ceramide concentrations were affected by AHSCT and associated with leukocyte counts and were altered three months after treatment, suggesting a long-lasting effect.
Collapse
Affiliation(s)
- Aina Vaivade
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| | - Anna Wiberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Payam Emami Khoonsari
- Department of Biochemistry and Biophysics, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Henrik Carlsson
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| | - Stephanie Herman
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| | - Asma Al-Grety
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ulla Olsson-Strömberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Division of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Joachim Burman
- Department of Medical Science, Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| |
Collapse
|
9
|
Baek SI, Ro S, Chung YH, Ju H, Kwon S, Park KA, Min JH. Novel index, neutrophil percentage (%) is a useful marker for disease activity in MOG antibody-associated disease. Mult Scler Relat Disord 2023; 76:104796. [PMID: 37320937 DOI: 10.1016/j.msard.2023.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a CNS autoimmune disease affecting the brain, spinal cord, and optic nerve. The neutrophil-to-lymphocyte ratio (NLR) is related to autoimmune disease activity. However, the clinical implication of index ratios such as the NLR is unclear in patients with MOGAD. OBJECTIVES We investigated the relationship between index ratios such as the NLR and disease activity and disability to discover the index that best correlates with an attack in MOGAD. METHODS Using a CNS demyelinating disease cohort, we reviewed 39 patients with MOGAD (age 37.4 ± 12.0 years; F:M = 20:19) who had 390 blood samples available for cell count analysis. We calculated the NLR, eosinophil-to-lymphocyte-ratio (ELR), platelet-to-lymphocyte-ratio (PLR), monocyte-to-lymphocyte ratio (MLR), basophil-to-lymphocyte ratio (BLR), and neutrophil percentage (N%) [neutrophil count (/mm3) / WBC (/mm3) x 100 (%)]. We investigated the associations between each index ratio and disease activity and disability using the receiver operating characteristic (ROC) curve, machine learning program (kNN algorithm), and generalized estimating equations (GEE) analysis. RESULTS In patients with MOGAD, the NLR, PLR, and N% were higher and ELR was lower during an attack than in remission (all p<0.001). The areas under the ROC curve for the NLR, ELR, PLR, and N% were 0.68, 0.69, 0.61, and 0.68, respectively, with the highest sensitivity of 76.0% in the ELR and the highest specificity of 76.3% in the N%. The classification accuracy scores of the kNN machine learning algorithm were 71% for the NLR, 62% for the ELR, 63% for the PLR, and 72% for the N%. In the GEE analysis of attack samples, both the NLR and treatment-naive had positive associations with the Expanded Disability Status Scale (EDSS) score (β=0.137, p = 0.008 and β=1.142, p = 0.003, respectively), and the PLR was negatively associated with the EDSS score (β=-0.004, p = 0.022). DISCUSSION Our study suggests that the novel index, neutrophil% is the simplest and the most useful marker to differentiate between attack and remission and shows comparable reliability with NLR in MOGAD. Moreover, the NLR and PLR could be used as supportive biomarkers for disease disability during an attack in patients with MOGAD.
Collapse
Affiliation(s)
- Song-Ik Baek
- Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Suho Ro
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Neurology, Graduate School of Medicine, Sungkyunkwan University, South Korea
| | - Yeon Hak Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Hyunjin Ju
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Soonwook Kwon
- Department of Neurology, Inha university Hospital, Inchon, South Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
10
|
Akaishi T, Misu T, Fujihara K, Nakaya K, Nakaya N, Nakamura T, Kogure M, Hatanaka R, Itabashi F, Kanno I, Kaneko K, Takahashi T, Fujimori J, Takai Y, Nishiyama S, Ishii T, Aoki M, Nakashima I, Hozawa A. White blood cell count profiles in anti-aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder and anti-myelin oligodendrocyte glycoprotein antibody-associated disease. Sci Rep 2023; 13:6481. [PMID: 37081126 PMCID: PMC10119079 DOI: 10.1038/s41598-023-33827-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/19/2023] [Indexed: 04/22/2023] Open
Abstract
White blood cell (WBC) count profiles in anti-aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) and anti-myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are still unknown. This study evaluated the total WBC count, differential WBC counts, monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte ratio (NLR) in patients with these diseases within three months from an attack before acute treatment or relapse prevention and compared the profiles with those in matched volunteers or in multiple sclerosis (MS) patients. AQP4-NMOSD patients (n = 13) had a higher neutrophil count (p = 0.0247), monocyte count (p = 0.0359), MLR (p = 0.0004), and NLR (p = 0.0037) and lower eosinophil (p = 0.0111) and basophil (p = 0.0283) counts than those of AQP4-NMOSD-matched volunteers (n = 65). Moreover, patients with MOGAD (n = 26) had a higher overall WBC count (p = 0.0001), neutrophil count (p < 0.0001), monocyte count (p = 0.0191), MLR (p = 0.0320), and NLR (p = 0.0002) than those of MOGAD-matched volunteers (n = 130). The three demyelinating diseases showed similar levels of the total and differential WBC counts; however, MOGAD and MS showed different structures in the hierarchical clustering and distributions on a two-dimensional canonical plot using differential WBC counts from the other three groups. WBC count profiles were similar in patients with MOGAD and MS but differed from profiles in matched volunteers or patients with AQP4-NMOSD.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Kumi Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mana Kogure
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Rieko Hatanaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumi Itabashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ikumi Kanno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kimihiko Kaneko
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
- Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Japan
| | - Juichi Fujimori
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Shuhei Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Vaitinadin NS, Stein CM, Mosley JD, Kawai VK. Genetic susceptibility for autoimmune diseases and white blood cell count. Sci Rep 2023; 13:5852. [PMID: 37041293 PMCID: PMC10090175 DOI: 10.1038/s41598-023-32799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023] Open
Abstract
Some autoimmune (AI) conditions affect white blood cell (WBC) counts. Whether a genetic predisposition to AI disease associates with WBC counts in populations expected to have low numbers of AI cases is not known. We developed genetic instruments for 7 AI diseases using genome-wide association study summary statistics. Two-sample inverse variance weighted regression (IVWR) was used to determine associations between each instrument and WBC counts. Effect size represents change in transformed WBC counts per change in log odds-ratio of the disease. For AI diseases with significant associations by IVWR, polygenic risk scores (PRS) were used to test for associations with measured WBC counts in individuals of European ancestry in a community-based (ARIC, n = 8926), and a medical-center derived cohort (BioVU, n = 40,461). The IVWR analyses revealed significant associations between 3 AI diseases and WBC counts: systemic lupus erythematous (Beta = - 0.05 [95% CI, - 0.06, - 0.03]), multiple sclerosis (Beta = - 0.06 [- 0.10, - 0.03]), and rheumatoid arthritis (Beta = 0.02 [0.01, 0.03]). PRS for these diseases showed associations with measured WBC counts in ARIC and BioVU. Effect sizes tended to be larger among females, consistent with the known higher prevalence of these diseases among this group. This study shows that genetic predisposition to systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis was associated with WBC counts, even in populations expected to have very low numbers of disease cases.
Collapse
Affiliation(s)
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan D Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian K Kawai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Clinical Pharmacology, 536 RRB, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
12
|
Sharifian A, Varshosaz J, Aliomrani M, Kazemi M. Nose to brain delivery of ibudilast micelles for treatment of multiple sclerosis in an experimental autoimmune encephalomyelitis animal model. Int J Pharm 2023; 638:122936. [PMID: 37030640 DOI: 10.1016/j.ijpharm.2023.122936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system ultimate to neurodegeneration and demyelination. Ibudilast is a phosphodiesterase inhibitor, effective on the function of glial cells and lymphocytes, and inhibits the release of TNF-α by inflammatory cells. Dysregulation of glia is one of the most important pathological causes of MS. Therefore, ibudilast as a glial attenuator can be a useful treatment. The objective of the present study was to investigate the effect of nasal spray of polydopamine coated micelles of surfactin, a biosurfactant, loaded with ibudilast on its brain targeted delivery and effectiveness in remylination and neuroprotection in animal model of MS. In animal studies the micelles were administrated intranasally in different doses of 10, 25 and 50 mg/kg/day in C57/BL6 mice immunized by experimental autoimmune encephalomyelitis (EAE) model. The results of Luxol fast blue staining indicated increment in myelin fiber percent more significantly (p<0.05) in the groups treated with the polydopamine coated micelles (PDAM) compared to nasal spray of free drug or oral administration. These formulations also increased expression of Mbp, Olig2 and Mog genes in the corpus callosum. These results suggest a positive outcome of polydopamine coated micelles loaded with ibudilast in active MS as an anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Akram Sharifian
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kazemi
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Elgenidy A, Atef M, Nassar A, Cheema HA, Emad A, Salah I, Sonbol Y, Afifi AM, Ghozy S, Hassan A. Neutrophil-to-Lymphocyte Ratio: a Marker of Neuro-inflammation in Multiple Sclerosis Patients: a Meta-analysis and Systematic Review. SN COMPREHENSIVE CLINICAL MEDICINE 2023; 5:68. [DOI: 10.1007/s42399-022-01383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 09/01/2023]
|
14
|
Fang X, Sun S, Yang T, Liu X. Predictive role of blood-based indicators in neuromyelitis optica spectrum disorders. Front Neurosci 2023; 17:1097490. [PMID: 37090792 PMCID: PMC10115963 DOI: 10.3389/fnins.2023.1097490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction This study aimed to assess the predictive role of blood markers in neuromyelitis optica spectrum disorders (NMOSD). Methods Data from patients with NMOSD, multiple sclerosis (MS), and healthy individuals were retrospectively collected in a 1:1:1 ratio. The expanded disability status scale (EDSS) score was used to assess the severity of the NMOSD upon admission. Receiver operating characteristic (ROC) curve analysis was used to distinguish NMOSD patients from healthy individuals, and active NMOSD from remitting NMOSD patients. Binary logistic regression analysis was used to evaluate risk factors that could be used to predict disease recurrence. Finally, Wilcoxon signed-rank test or matched-sample t-test was used to analyze the differences between the indicators in the remission and active phases in the same NMOSD patient. Results Among the 54 NMOSD patients, neutrophil count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII) (platelet × NLR) were significantly higher than those of MS patients and healthy individuals and positively correlated with the EDSS score of NMOSD patients at admission. PLR can be used to simultaneously distinguish between NMOSD patients in the active and remission phase. Eleven (20.4%) of the 54 patients had recurrence within 12 months. We found that monocyte-to-lymphocyte ratio (MLR) (AUC = 0.76, cut-off value = 0.34) could effectively predict NMOSD recurrence. Binary logistic regression analysis showed that a higher MLR at first admission was the only risk factor for recurrence (p = 0.027; OR = 1.173; 95% CI = 1.018-1.351). In patients in the relapsing phase, no significant changes in monocyte and lymphocyte count was observed from the first admission, whereas patients in remission had significantly higher levels than when they were first admitted. Conclusion High PLR is a characteristic marker of active NMOSD, while high MLR is a risk factor for disease recurrence. These inexpensive indicators should be widely used in the diagnosis, prognosis, and judgment of treatment efficacy in NMOSD.
Collapse
Affiliation(s)
- Xiqin Fang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
- Department of Neurology, Institute of Epilepsy, Shandong University, Jinan, China
| | - Sujuan Sun
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
- Department of Neurology, Institute of Epilepsy, Shandong University, Jinan, China
| | - Tingting Yang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
- Department of Neurology, Institute of Epilepsy, Shandong University, Jinan, China
| | - Xuewu Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
- Department of Neurology, Institute of Epilepsy, Shandong University, Jinan, China
- *Correspondence: Xuewu Liu,
| |
Collapse
|
15
|
Orton SM, Sangha A, Gupta M, Martens K, Metz LM, de Koning APJ, Pfeffer G. Expression of risk genes linked to vitamin D receptor super-enhancer regions and their association with phenotype severity in multiple sclerosis. Front Neurol 2022; 13:1064008. [PMID: 36644209 PMCID: PMC9832371 DOI: 10.3389/fneur.2022.1064008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating neurological condition with a wide range of phenotype variability. A complex interplay of genetic and environmental factors contributes to disease onset and progression in MS patients. Vitamin D deficiency is a known susceptibility factor for MS, however the underlying mechanism of vitamin D-gene interactions in MS etiology is still poorly understood. Vitamin D receptor super-enhancers (VSEs) are enriched in MS risk variants and may modulate these environment-gene interactions. mRNA expression in total of 64 patients with contrasting MS severity was quantified in select genes. First, RNA-seq was performed on a discovery cohort (10 mild, 10 severe MS phenotype) and ten genes regulated by VSEs that have been linked to MS risk were analyzed. Four candidates showed a significant positive association (GRINA, PLEC, PARP10, and LRG1) in the discovery cohort and were then quantified using digital droplet PCR (ddPCR) in a validation cohort (33 mild, 11 severe MS phenotype). A significant differential expression persisted in the validation cohort for three of the VSE-MS genes: GRINA (p = 0.0138), LRG1 (p = 0.0157), and PLEC (p = 0.0391). In summary, genes regulated by VSE regions that contain known MS risk variants were shown to have differential expression based on disease severity (p<0.05). The findings implicate a role for vitamin D super-enhancers in modulating disease activity. In addition, expression levels may have some utility as prognostic biomarkers in the future.
Collapse
Affiliation(s)
- Sarah M. Orton
- Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada,*Correspondence: Sarah M. Orton ✉
| | - Amarpreet Sangha
- Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Mehul Gupta
- Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kristina Martens
- Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - A. P. J. de Koning
- Department of Medical Genetics, Alberta Child Health Research Institute, Cumming of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald Pfeffer
- Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Medical Genetics, Alberta Child Health Research Institute, Cumming of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Correlation between the Neutrophil-to-Lymphocyte Ratio and Multiple Sclerosis: Recent Understanding and Potential Application Perspectives. Neurol Res Int 2022; 2022:3265029. [PMID: 36340639 PMCID: PMC9629953 DOI: 10.1155/2022/3265029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/28/2022] [Accepted: 10/15/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating immune-mediated disease of the central nervous system, which causes demyelination and neuroaxonal damage. Low-grade systemic inflammation has been considered to lead to pathogenesis owing to the amplification of pathogenic immune response activation. However, there is a shortage of reliable systemic inflammatory biomarkers to predict the disease activity and progression of MS. In MS patients, a series of cytokines and chemokines promote the proliferation of neutrophils and lymphocytes and their transfer to the central nervous system. The neutrophil-to-lymphocyte ratio (NLR), which combines the information of the inherent and adaptive parts of the immune system, represents a reliable measure of the inflammatory burden. In this review, we aimed to discuss the inflammatory response in MS, mainly the function of lymphocytes and neutrophils, which can be implemented in the utility of NLR as a diagnostic tool in MS patients. The underlying pathophysiology is highlighted to identify new potential targets for neuroprotection and to develop novel therapeutic strategies.
Collapse
|
17
|
Mahe J, Wang L, Guo K, Liu X, Zeng X, Jing L. High leukocyte-to-lymphocyte ratio is associated with acute relapse in multiple sclerosis patients. Neurol Res 2022; 44:1044-1051. [PMID: 35946921 DOI: 10.1080/01616412.2022.2110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated chronic disease characterized by inflammatory demyelination in the central nervous system (CNS).As there is limited evidence on whether leukocyte-to-lymphocyte ratios (LLRs) are associated with MS, we carried out an investigation on the association between LLRs and MS as favorable markers and aimed to determine the cut-off LLR for the identification of early-stage MS patients. METHODS A matched case-control study enrolled a total of 120 MS inpatients and 120 age- and sex-matched non-MS inpatients from January 2013 to June 2018. LLRs were tested from peripheral venous blood routinely during hospitalization. Conditional logistic regression analyses were used to explore differences in LLRs between cases and controls. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic ability of LLRs and determine the best cut-off value. Disease disability was assessed using the Expanded Disability Status Scale (EDSS). RESULTS The LLR was significantly associated with MS in hospitalized patients (OR: 2.372, 95% CI: 1.282 to 4.387, p < 0.001) after adjusting for potential confounders. The area under the curve (AUC) value was 0.793 (95% CI: 0.736 to 0.851). The cut-off value for LLR was 3.18, with sensitivity and specificity values of 62.5% (95% CI: 53.2% to 71.2%) and 88.3% (95% CI: 81.2% to 93.5%), respectively. The EDSS scores of the higher LLR group were significantly higher than the lower group. CONCLUSION Systemic inflammation measured using LLRs may be an inflammatory marker among MS inpatients. LLRs may serve as favorable inflammatory markers with which to discriminate MS among Chinese subjects.
Collapse
Affiliation(s)
- Jinli Mahe
- School of Public Health, Institute of Epidemiology and Health Statistics, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lei Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Kai Guo
- School of Public Health, Institute of Epidemiology and Health Statistics, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoming Liu
- School of Public Health, Institute of Epidemiology and Health Statistics, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xuejiao Zeng
- School of Public Health, Institute of Epidemiology and Health Statistics, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lipeng Jing
- School of Public Health, Institute of Epidemiology and Health Statistics, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
18
|
Mao-Draayer Y, Cohen JA, Bar-Or A, Han MH, Singer B, Williams IM, Meng X, Elam C, Weiss JL, Cox GM, Ziehn M, Cree BAC. Immune cell subset profiling in multiple sclerosis after fingolimod initiation and continued treatment: The FLUENT study. Mult Scler J Exp Transl Clin 2022; 8:20552173221115023. [PMID: 35936922 PMCID: PMC9346260 DOI: 10.1177/20552173221115023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Fingolimod is a sphingosine 1-phosphate receptor modulator approved for
relapsing MS. Long-term effects on the immunological profile are not fully
understood. Objective Investigate fingolimod's temporal effects on immune cell subsets, and safety
outcomes. Methods In FLUENT, a 12-month, prospective, non-randomized, open-label, phase IV
study, adult participants received fingolimod 0.5 mg/day. Changes in immune
cell subsets, anti-John Cunningham virus (JCV) antibody index, and serum
neurofilament levels were assessed. Results 165 fingolimod-naive and 217 participants treated for 2–12 years in routine
clinical practice were enrolled. Levels of all monitored peripheral
lymphocyte subsets were reduced from month 3 in fingolimod-naive
participants. Greatest reductions occurred in naive and central memory
CD4+ and CD8+ T cells, and in naive and memory B cells. Most lymphocyte
subset levels remained stable in the continuous fingolimod group. Components
of the innate immune system remained within reference ranges. No increase in
JCV seropositivity was observed. No single cellular subset correlated with
anti-JCV antibody index at any time point. Neurofilament levels remained
within healthy adult reference limits throughout. No opportunistic
infections were reported; no new or unexpected safety signals were
observed. Conclusion FLUENT provides insights into the utility of immunological profiling to
evaluate therapy response and potential infection risk.
Collapse
Affiliation(s)
- Yang Mao-Draayer
- Autoimmunity Center of Excellence, Multiple Sclerosis Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - May H Han
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Barry Singer
- Missouri Baptist Medical Center, St Louis, MO, USA
| | | | | | | | | | | | - Marina Ziehn
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Bruce AC Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
19
|
Akaishi T, Ishii T, Nakaya N, Nakamura T, Kogure M, Hatanaka R, Itabashi F, Kanno I, Aoki M, Hozawa A. White blood cell count profile in patients with physical complaints without known causes. SAGE Open Med 2022; 10:20503121221105328. [PMID: 36505970 PMCID: PMC9726839 DOI: 10.1177/20503121221105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives The aim of this study was to search for routine blood test biomarkers in patients with physical symptoms but without a diagnosis after comprehensive routine screening diagnostic examinations. Methods A total of 228 adults aged < 65 years who presented with physical complaints without known causes after comprehensive screening diagnostic examinations and 228 age- and sex-matched healthy controls without physical complaints were enrolled. The blood cell count data at the first hospital visit were compared between these groups. Results Total white blood cell (p = 0.2143), red blood cell (p = 0.8954), and platelet (p = 0.7716) counts did not differ between the groups. The monocyte count (p = 0.0014) and resultant monocyte-to-lymphocyte ratio (p < 0.0001) were higher in the symptomatic group, while the other white blood cell subtypes did not differ significantly between the two groups. In the symptomatic group, patients with a monocyte-to-lymphocyte ratio > 0.25 were likely to have unexplained nonfocal physical symptoms (p < 0.0001). The characteristic findings included fatigability (p < 0.0001), prolonged slight fever (p = 0.0005), and widespread pain (p < 0.0001). The monocyte-to-lymphocyte ratio level was correlated with the proportion of patients with unexplained nonfocal symptoms. Conclusion The blood cell count profile was largely the same between healthy individuals and patients with unexplained physical symptoms. However, patients with unexplained nonfocal physical complaints were likely to show an elevated monocyte-to-lymphocyte ratio, typically > 0.25.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan,Tetsuya Akaishi, Department of Education and Support for Regional Medicine, Tohoku University Hospital, Seiryo-machi 1-1, Aoba-ku, Sendai 980-8574, Miyagi, Japan.
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mana Kogure
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Rieko Hatanaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumi Itabashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ikumi Kanno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|