1
|
Sparling AC, Ward JM, Sarkar K, Schiffenbauer A, Farhadi PN, Smith MA, Rahman S, Zerrouki K, Miller FW, Li JL, Casey KA, Rider LG. Neutrophil and mononuclear leukocyte pathways and upstream regulators revealed by serum proteomics of adult and juvenile dermatomyositis. Arthritis Res Ther 2024; 26:196. [PMID: 39529136 PMCID: PMC11552237 DOI: 10.1186/s13075-024-03421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Serum protein abundance was assessed in adult and juvenile dermatomyositis (DM and JDM) patients to determine differentially regulated proteins, altered pathways, and candidate disease activity biomarkers. METHODS Serum protein expression from 17 active adult DM and JDM patients each was compared to matched, healthy control subjects by a multiplex immunoassay. Pathway analysis and protein clustering of the differentially regulated proteins were examined to assess underlying mechanisms. Candidate disease activity biomarkers were identified by correlating protein expression with disease activity measures. RESULTS Seventy-eight of 172 proteins were differentially expressed in the sera of DM and JDM patients compared to healthy controls. Forty-eight proteins were differentially expressed in DM, 32 proteins in JDM, and 14 proteins in both DM and JDM. Twelve additional differentially expressed proteins were identified after combining the DM and JDM cohorts. C-X-C motif chemokine ligand 10 (CXCL10) was the most strongly upregulated protein in both DM and JDM sera. Other highly upregulated proteins in DM included S100 calcium binding protein A12 (S100A12), CXCL9, and nicotinamide phosphoribosyltransferase (NAMPT), while highly upregulated proteins in JDM included matrix metallopeptidase 3 (MMP3), growth differentiation factor 15 (GDF15), and von Willebrand factor (vWF). Pathway analysis indicated that phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and toll-like receptor 7 (TLR7) signaling were activated in DM and JDM. Additional pathways specific to DM or JDM were identified. A protein cluster associated with neutrophils and mononuclear leukocytes and a cluster of interferon-associated proteins were observed in both DM and JDM. Twenty-two proteins in DM and 24 proteins in JDM sera correlated with global, muscle, and/or skin disease activity. Seven proteins correlated with disease activity measures in both DM and JDM sera. IL-1 receptor like 1 (IL1RL1) emerged as a candidate global disease activity biomarker in DM and JDM. CONCLUSION Coordinate analysis of protein expression in DM and JDM patient sera by a multiplex immunoassay validated previous gene expression studies and identified novel dysregulated proteins, altered signaling pathways, and candidate disease activity biomarkers. These findings may further inform the assessment of DM and JDM patients and aid in the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- A Clare Sparling
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Kakali Sarkar
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - Payam Noroozi Farhadi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | | | - Saifur Rahman
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Frederick W Miller
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Kerry A Casey
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA.
| |
Collapse
|
2
|
Sevim Bayrak C, Forst CV, Jones DR, Gresham DJ, Pushalkar S, Wu S, Vogel C, Mahal LK, Ghedin E, Ross T, García-Sastre A, Zhang B. Patient subtyping analysis of baseline multi-omic data reveals distinct pre-immune states associated with antibody response to seasonal influenza vaccination. Clin Immunol 2024; 266:110333. [PMID: 39089348 PMCID: PMC11340208 DOI: 10.1016/j.clim.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Understanding the molecular mechanisms underpinning diverse vaccination responses is critical for developing efficient vaccines. Molecular subtyping can offer insights into heterogeneous nature of responses and aid in vaccine design. We analyzed multi-omic data from 62 haemagglutinin seasonal influenza vaccine recipients (2019-2020), including transcriptomics, proteomics, glycomics, and metabolomics data collected pre-vaccination. We performed a subtyping analysis on the integrated data revealing five subtypes with distinct molecular signatures. These subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining the effectiveness of seasonal vaccines. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.
Collapse
Affiliation(s)
- Cigdem Sevim Bayrak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, NY, New York, USA
| | - David J Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Smruti Pushalkar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Shaohuan Wu
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Ted Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Veldkamp SR, van Wijk F, van Royen-Kerkhof A, Jansen MH. Personalised medicine in juvenile dermatomyositis: From novel insights in disease mechanisms to changes in clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101976. [PMID: 39174374 DOI: 10.1016/j.berh.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Juvenile dermatomyositis is characterized by childhood-onset chronic inflammation of the muscles and skin, with potential involvement of other organs. Patients are at risk for long-term morbidity due to insufficient disease control and steroid-related toxicity. Personalised treatment is challenged by a lack of validated tools that can reliably predict treatment response and monitor ongoing (subclinical) inflammation, and by a lack of evidence regarding the best choice of medication for individual patients. A better understanding of the involved disease mechanisms could reveal potential biomarkers and novel therapeutic targets. In this review, we highlight the most relevant immune and non-immune mechanisms, elucidating the effects of interferon overexpression on tissue alongside the interplay between the interferon signature, mitochondrial function, and immune cells. We review mechanism-based biomarkers that are promising for clinical implementation, and the latest advances in targeted therapy development. Finally, we discuss key steps needed for translating these discoveries into clinical practice.
Collapse
Affiliation(s)
- Saskia R Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annet van Royen-Kerkhof
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Ha Jansen
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Díaz-Pino R, Rice GI, San Felipe D, Pepanashvili T, Kasher PR, Briggs TA, López-Castejón G. Type I interferon regulates interleukin-1beta and IL-18 production and secretion in human macrophages. Life Sci Alliance 2024; 7:e202302399. [PMID: 38527803 DOI: 10.26508/lsa.202302399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Inflammasomes are immune complexes whose activation leads to the release of pro-inflammatory cytokines IL-18 and IL-1β. Type I IFNs play a role in fighting infection and stimulate the expression of IFN-stimulated genes (ISGs) involved in inflammation. Despite the importance of these cytokines in inflammation, the regulation of inflammasomes by type I IFNs remains poorly understood. Here, we analysed RNA-sequencing data from patients with monogenic interferonopathies and found an up-regulation of several inflammasome-related genes. To investigate the effect of type I IFN on the inflammasome, we treated human monocyte-derived macrophages with IFN-α and observed an increase in CASP1 and GSDMD mRNA levels over time, whereas IL1B and NLRP3 were not directly correlated to IFN-α exposure time. IFN-α treatment reduced the release of mature IL-1β and IL-18, but not caspase-1, in response to ATP-mediated NLRP3 inflammasome activation, suggesting regulation occurs at cytokine expression levels and not the inflammasome itself. However, more studies are required to investigate how regulation by IFN-α occurs and impacts NLRP3 and other inflammasomes at both transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Rodrigo Díaz-Pino
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Gillian I Rice
- Department of Genomic Medicine, St Marys Hospital, Manchester Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Diego San Felipe
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Tamar Pepanashvili
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Paul R Kasher
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance and The University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tracy A Briggs
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Department of Genomic Medicine, St Marys Hospital, Manchester Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Gloria López-Castejón
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Armignacco R, Carlier N, Jouinot A, Birtolo MF, de Murat D, Tubach F, Hausfater P, Simon T, Gorochov G, Pourcher V, Beurton A, Goulet H, Manivet P, Bertherat J, Assié G. Whole blood transcriptome signature predicts severe forms of COVID-19: Results from the COVIDeF cohort study. Funct Integr Genomics 2024; 24:107. [PMID: 38772950 PMCID: PMC11108918 DOI: 10.1007/s10142-024-01359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
COVID-19 is associated with heterogeneous outcome. Early identification of a severe progression of the disease is essential to properly manage the patients and improve their outcome. Biomarkers reflecting an increased inflammatory response, as well as individual features including advanced age, male gender, and pre-existing comorbidities, are risk factors of severe COVID-19. Yet, these features show limited accuracy for outcome prediction. The aim was to evaluate the prognostic value of whole blood transcriptome at an early stage of the disease. Blood transcriptome of patients with mild pneumonia was profiled. Patients with subsequent severe COVID-19 were compared to those with favourable outcome, and a molecular predictor based on gene expression was built. Unsupervised classification discriminated patients who would later develop a COVID-19-related severe pneumonia. The corresponding gene expression signature reflected the immune response to the viral infection dominated by a prominent type I interferon, with IFI27 among the most over-expressed genes. A 48-genes transcriptome signature predicting the risk of severe COVID-19 was built on a training cohort, then validated on an external independent cohort, showing an accuracy of 81% for predicting severe outcome. These results identify an early transcriptome signature of severe COVID-19 pneumonia, with a possible relevance to improve COVID-19 patient management.
Collapse
Affiliation(s)
- Roberta Armignacco
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France.
| | - Nicolas Carlier
- Service de Pneumologie, AP-HP, Hôpital Cochin, 75014, Paris, France
| | - Anne Jouinot
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, 75014, Paris, France
| | | | - Daniel de Murat
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie Et de Santé Publique, AP-HP, 1901, F-75013, Paris, France
| | - Pierre Hausfater
- Emergency Department, APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, GRC-14 BIOSFAST, CIMI, UMR 1135, Sorbonne Université, Paris, France
| | - Tabassome Simon
- Service de Pharmacologie, Plateforme de Recherche Clinique URC-CRC-CRB de L'Est Parisien, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Sorbonne Université, Paris, France
| | - Guy Gorochov
- Centre d'Immunologie Et Des Maladies Infectieuses (CIMI), Department of Immunology, Sorbonne Université, Inserm, Hôpital Pitié Salpêtrière, Groupe Hospitalo-Universitaire Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Valérie Pourcher
- Department of Infectious Diseases, Hôpital Pitié Salpêtrière, Groupe Hospitalo-Universitaire Assistance Publique - Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Alexandra Beurton
- Service de Médecine Intensive Réanimation EOLE - Département R3S - Sorbonne, Université - Hôpital Universitaire Pitié - Salpêtrière - Assistance Publique Hôpitaux de Paris - 83 Boulevard de L'Hôpital, 75013, Paris, France
- UMRS 1158 Inserm-Sorbonne Université "Neurophysiologie Respiratoire Expérimentale Et Clinique'' Intensive Care Unit, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hélène Goulet
- Emergency Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Manivet
- INSERM UMR 1141 "NeuroDiderot", Université Paris Cité, FHU I2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Jérôme Bertherat
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, 75014, Paris, France
| | - Guillaume Assié
- Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, F-75014, Paris, France.
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
6
|
Bayrak CS, Forst C, Jones DR, Gresham D, Pushalkar S, Wu S, Vogel C, Mahal L, Ghedin E, Ross T, García-Sastre A, Zhang B. Patient Subtyping Analysis of Baseline Multi-omic Data Reveals Distinct Pre-immune States Predictive of Vaccination Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576213. [PMID: 38328256 PMCID: PMC10849502 DOI: 10.1101/2024.01.18.576213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Understanding the molecular mechanisms that underpin diverse vaccination responses is a critical step toward developing efficient vaccines. Molecular subtyping approaches can offer valuable insights into the heterogeneous nature of responses and aid in the design of more effective vaccines. In order to explore the molecular signatures associated with the vaccine response, we analyzed baseline transcriptomics data from paired samples of whole blood, proteomics and glycomics data from serum, and metabolomics data from urine, obtained from influenza vaccine recipients (2019-2020 season) prior to vaccination. After integrating the data using a network-based model, we performed a subtyping analysis. The integration of multiple data modalities from 62 samples resulted in five baseline molecular subtypes with distinct molecular signatures. These baseline subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation across subtypes in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these significant differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining vaccine response and efficacy. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.
Collapse
|
7
|
Jeong HN, Lee TG, Park HJ, Yang Y, Oh SH, Kang SW, Choi YC. Transcriptome analysis of skeletal muscle in dermatomyositis, polymyositis, and dysferlinopathy, using a bioinformatics approach. Front Neurol 2023; 14:1328547. [PMID: 38125829 PMCID: PMC10731051 DOI: 10.3389/fneur.2023.1328547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Background Polymyositis (PM) and dermatomyositis (DM) are two distinct subgroups of idiopathic inflammatory myopathies. Dysferlinopathy, caused by a dysferlin gene mutation, usually presents in late adolescence with muscle weakness, degenerative muscle changes are often accompanied by inflammatory infiltrates, often resulting in a misdiagnosis as polymyositis. Objective To identify differential biological pathways and hub genes related to polymyositis, dermatomyositis and dysferlinopathy using bioinformatics analysis for understanding the pathomechanisms and providing guidance for therapy development. Methods We analyzed intramuscular ribonucleic acid (RNA) sequencing data from seven dermatomyositis, eight polymyositis, eight dysferlinopathy and five control subjects. Differentially expressed genes (DEGs) were identified by using DESeq2. Enrichment analyses were performed to understand the functions and enriched pathways of DEGs. A protein-protein interaction (PPI) network was constructed, and clarified the gene cluster using the molecular complex detection tool (MCODE) analysis to identify hub genes. Results A total of 1,048, 179 and 3,807 DEGs were detected in DM, PM and dysferlinopathy, respectively. Enrichment analyses revealed that upregulated DEGs were involved in type 1 interferon (IFN1) signaling pathway in DM, antigen processing and presentation of peptide antigen in PM, and cellular response to stimuli in dysferlinopathy. The PPI network and MCODE cluster identified 23 genes related to type 1 interferon signaling pathway in DM, 4 genes (PDIA3, HLA-C, B2M, and TAP1) related to MHC class 1 formation and quality control in PM, and 7 genes (HSPA9, RPTOR, MTOR, LAMTOR1, LAMTOR5, ATP6V0D1, and ATP6V0B) related to cellular response to stress in dysferliniopathy. Conclusion Overexpression of genes related to the IFN1 signaling pathway and major histocompatibility complex (MHC) class I formation was identified in DM and PM, respectively. In dysferlinopathy, overexpression of HSPA9 and the mTORC1 signaling pathway genes was detected.
Collapse
Affiliation(s)
- Ha-Neul Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taek Gyu Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Yang
- Research Institute of Women's Disease, Sookmyumg Women's University, Seoul, Republic of Korea
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam-si, Republic of Korea
| | - Seong-Woong Kang
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Ward JM, Ambatipudi M, O'Hanlon TP, Smith MA, de Los Reyes M, Schiffenbauer A, Rahman S, Zerrouki K, Miller FW, Sanjuan MA, Li JL, Casey KA, Rider LG. Shared and Distinctive Transcriptomic and Proteomic Pathways in Adult and Juvenile Dermatomyositis. Arthritis Rheumatol 2023; 75:2014-2026. [PMID: 37229703 PMCID: PMC10615891 DOI: 10.1002/art.42615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Transcript and protein expression were interrogated to examine gene locus and pathway regulation in the peripheral blood of active adult dermatomyositis (DM) and juvenile DM patients receiving immunosuppressive therapies. METHODS Expression data from 14 DM and 12 juvenile DM patients were compared to matched healthy controls. Regulatory effects at the transcript and protein level were analyzed by multi-enrichment analysis for assessment of affected pathways within DM and juvenile DM. RESULTS Expression of 1,124 gene loci were significantly altered at the transcript or protein levels across DM or juvenile DM, with 70 genes shared. A subset of interferon-stimulated genes was elevated, including CXCL10, ISG15, OAS1, CLEC4A, and STAT1. Innate immune markers specific to neutrophil granules and neutrophil extracellular traps were up-regulated in both DM and juvenile DM, including BPI, CTSG, ELANE, LTF, MPO, and MMP8. Pathway analysis revealed up-regulation of PI3K/AKT, ERK, and p38 MAPK signaling, whose central components were broadly up-regulated in DM, while peripheral upstream and downstream components were differentially regulated in both DM and juvenile DM. Up-regulated components shared by DM and juvenile DM included cytokine:receptor pairs LGALS9:HAVCR2, LTF/NAMPT/S100A8/HSPA1A:TLR4, CSF2:CSF2RA, EPO:EPOR, FGF2/FGF8:FGFR, several Bcl-2 components, and numerous glycolytic enzymes. Pathways unique to DM included sirtuin signaling, aryl hydrocarbon receptor signaling, protein ubiquitination, and granzyme B signaling. CONCLUSION The combination of proteomics and transcript expression by multi-enrichment analysis broadened the identification of up- and down-regulated pathways among active DM and juvenile DM patients. These pathways, particularly those which feed into PI3K/AKT and MAPK signaling and neutrophil degranulation, may be potential therapeutic targets.
Collapse
Affiliation(s)
- James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Mythri Ambatipudi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | - Terrance P O'Hanlon
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | | | | | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | - Saifur Rahman
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | | | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Kerry A Casey
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| |
Collapse
|
9
|
Pachman LM, Morgan G, Klein-Gitelman MS, Ahsan N, Khojah A. Nailfold capillary density in 140 untreated children with juvenile dermatomyositis: an indicator of disease activity. Pediatr Rheumatol Online J 2023; 21:118. [PMID: 37828536 PMCID: PMC10571265 DOI: 10.1186/s12969-023-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND We lack a reliable indicator of disease activity in Juvenile Dermatomyositis (JDM), a rare disease. The goal of this study is to identify the association of nailfold capillary End Row Loop (ERL) loss with disease damage in children with newly diagnosed, untreated JDM. FINDINGS We enrolled 140 untreated JDM and 46 age, race and sex matched healthy controls, ages 2-17. We selected items from the Juvenile Myositis Registry for analysis. Variables include average ERL density of 8 fingers, average capillary pattern, hemorrhages, and clinical and laboratory correlates. Laboratory data includes Myositis Specific Antibodies (MSA), disease activity scores (DAS), Childhood Myositis Assessment Scale (CMAS), and standard clinical serologic data. The reduced mean ERL density is 5.1 ± 1.5/mm for untreated JDM vs 7.9 ± 0.9/mm for healthy controls, p < 0.0001, and is associated with DAS-skin, r = -0.27 p = 0.014, which did not change within the age range tested. Untreated JDM with MSA Tif-1-γ had the lowest ERL density, (p = 0.037); their ERL patterns were primarily "open" and the presence of hemorrhages in the nailfold matrix was associated with dysphagia (p = 0.004). CONCLUSIONS Decreased JDM ERL density is associated with increased clinical symptoms; nailfold hemorrhages are associated with dysphagia. Duration of untreated disease symptoms and MSA, modify NFC shape. We speculate nailfold characteristics are useful indicators of disease activity in children with JDM before start of therapy.
Collapse
Affiliation(s)
- Lauren M Pachman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA.
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Gabrielle Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA
| | - Marisa S Klein-Gitelman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Najah Ahsan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA
| | - Amer Khojah
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
10
|
Duvvuri B, Pachman LM, Hermanson P, Wang T, Moore R, Ding-Hwa Wang D, Long A, Morgan GA, Doty S, Tian R, Sancak Y, Lood C. Role of mitochondria in the myopathy of juvenile dermatomyositis and implications for skeletal muscle calcinosis. J Autoimmun 2023; 138:103061. [PMID: 37244073 PMCID: PMC10330803 DOI: 10.1016/j.jaut.2023.103061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVES To elucidate mechanisms contributing to skeletal muscle calcinosis in patients with juvenile dermatomyositis. METHODS A well-characterized cohorts of JDM (n = 68), disease controls (polymyositis, n = 7; juvenile SLE, n = 10, and RNP + overlap syndrome, n = 12), and age-matched health controls (n = 17) were analyzed for circulating levels of mitochondrial (mt) markers including mtDNA, mt-nd6, and anti-mitochondrial antibodies (AMAs) using standard qPCR, ELISA, and novel-in-house assays, respectively. Mitochondrial calcification of affected tissue biopsies was confirmed using electron microscopy and energy dispersive X-ray analysis. A human skeletal muscle cell line, RH30, was used to generate an in vitro calcification model. Intracellular calcification is measured by flow cytometry and microscopy. Mitochondria were assessed for mtROS production and membrane potential by flow cytometry and real-time oxygen consumption rate by Seahorse bioanalyzer. Inflammation (interferon-stimulated genes) was measured by qPCR. RESULTS In the current study, patients with JDM exhibited elevated levels of mitochondrial markers associated with muscle damage and calcinosis. Of particular interest are AMAs predictive of calcinosis. Human skeletal muscle cells undergo time- and dose-dependent accumulation of calcium phosphate salts with preferential localization to mitochondria. Calcification renders skeletal muscle cells mitochondria stressed, dysfunctional, destabilized, and interferogenic. Further, we report that inflammation induced by interferon-alpha amplifies mitochondrial calcification of human skeletal muscle cells via the generation of mitochondrial reactive oxygen species (mtROS). CONCLUSIONS Overall, our study demonstrates the mitochondrial involvement in the skeletal muscle pathology and calcinosis of JDM and mtROS as a central player in the calcification of human skeletal muscle cells. Therapeutic targeting of mtROS and/or upstream inducers, such as inflammation, may alleviate mitochondrial dysfunction, leading to calcinosis. AMAs can potentially identify patients with JDM at risk for developing calcinosis.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Lauren M Pachman
- Division of Pediatric Rheumatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; CureJM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago and the Stanley Manne Simpson-Quarrey Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Ting Wang
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Richard Moore
- Cedars Sinai Med Ctr, Division of Rheumatology, Los Angeles, CA, USA
| | | | - Aaron Long
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Gabrielle A Morgan
- Division of Pediatric Rheumatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; CureJM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago and the Stanley Manne Simpson-Quarrey Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Papadopoulou C, Chew C, Wilkinson MGL, McCann L, Wedderburn LR. Juvenile idiopathic inflammatory myositis: an update on pathophysiology and clinical care. Nat Rev Rheumatol 2023; 19:343-362. [PMID: 37188756 PMCID: PMC10184643 DOI: 10.1038/s41584-023-00967-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
The childhood-onset or juvenile idiopathic inflammatory myopathies (JIIMs) are a heterogenous group of rare and serious autoimmune diseases of children and young people that predominantly affect the muscles and skin but can also involve other organs, including the lungs, gut, joints, heart and central nervous system. Different myositis-specific autoantibodies have been identified that are associated with different muscle biopsy features, as well as with different clinical characteristics, prognoses and treatment responses. Thus, myositis-specific autoantibodies can be used to subset JIIMs into sub-phenotypes; some of these sub-phenotypes parallel disease seen in adults, whereas others are distinct from adult-onset idiopathic inflammatory myopathies. Although treatments and management have much improved over the past decade, evidence is still lacking for many of the current treatments and few validated prognostic biomarkers are available with which to predict response to treatment, comorbidities (such as calcinosis) or outcome. Emerging data on the pathogenesis of the JIIMs are leading to proposals for new trials and tools for monitoring disease.
Collapse
Affiliation(s)
- Charalampia Papadopoulou
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust (GOSH), London, UK
- Rare Diseases Theme NIHR Biomedical Research Centre at GOSH, London, UK
| | - Christine Chew
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Meredyth G Ll Wilkinson
- Rare Diseases Theme NIHR Biomedical Research Centre at GOSH, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, UK
- Infection Immunity and Inflammation Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
| | - Liza McCann
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Lucy R Wedderburn
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust (GOSH), London, UK.
- Rare Diseases Theme NIHR Biomedical Research Centre at GOSH, London, UK.
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, UK.
- Infection Immunity and Inflammation Research and Teaching Department, UCL GOS Institute of Child Health, London, UK.
| |
Collapse
|
12
|
Gibbs E, Khojah A, Morgan G, Ehwerhemuepha L, Pachman LM. The von Willebrand Factor Antigen Reflects the Juvenile Dermatomyositis Disease Activity Score. Biomedicines 2023; 11:biomedicines11020552. [PMID: 36831088 PMCID: PMC9953073 DOI: 10.3390/biomedicines11020552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE This study determined if an accessible, serologic indicator of vascular disease activity, the von Willebrand factor antigen (vWF:Ag), was useful to assess disease activity in children with juvenile dermatomyositis (JDM), a rare disease, but the most common of the pediatric inflammatory myopathies. METHODS A total of 305 children, median age 10 years, 72.5% female, 76.5% white, with definite/probable JDM at diagnosis, were enrolled in the Ann & Robert H. Lurie Cure JM Juvenile Myositis Repository, a longitudinal database. Disease Activity Score (DAS) and vWF:Ag data were obtained at each visit. These data were analyzed using generalized estimating equation (GEE) models (both linear and logistic) to determine if vWF:Ag reflects disease severity in children with JDM. A secondary analysis was performed for untreated active JDM to exclude the effect of medications on vWF:Ag. RESULT The vWF:Ag test was elevated in 25% of untreated JDM. We found that patients with elevated vWF:Ag had a 2.55-fold higher DAS total (CI95: 1.83-3.27, p < 0.001). Patients with difficulty swallowing had 2.57 higher odds of elevated vWF:Ag (CI95: 1.5-4.38, p < 0.001); those with more generalized skin involvement had 2.58-fold higher odds of elevated vWF:Ag (CI95: 1.27-5.23, p = 0.006); and those with eyelid peripheral blood vessel dilation had 1.32-fold higher odds of elevated vWF:Ag (CI95: 1.01-1.72, p = 0.036). Untreated JDM with elevated vWF:Ag had more muscle weakness and higher muscle enzymes, neopterin and erythrocyte sedimentation rate compared to JDM patients with a normal vWF:Ag. CONCLUSION vWF:Ag elevation is a widely accessible concomitant of active disease in 25% of JDM.
Collapse
Affiliation(s)
- Ellie Gibbs
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Gabrielle Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Cure-JM Center of Excellence in Juvenile Myositis Research and Care, Chicago, IL 60611, USA
| | - Louis Ehwerhemuepha
- Computational Research, Children’s Hospital of Orange County Research Institute, Orange, CA 92868, USA
| | - Lauren M. Pachman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Cure-JM Center of Excellence in Juvenile Myositis Research and Care, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Correspondence:
| |
Collapse
|
13
|
Hilliard KA, Throm AA, Pingel JT, Saucier N, Zaher HS, French AR. Expansion of a novel population of NK cells with low ribosome expression in juvenile dermatomyositis. Front Immunol 2022; 13:1007022. [PMID: 36389718 PMCID: PMC9660249 DOI: 10.3389/fimmu.2022.1007022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a pediatric autoimmune disease associated with characteristic rash and proximal muscle weakness. To gain insight into differential lymphocyte gene expression in JDM, peripheral blood mononuclear cells from 4 new-onset JDM patients and 4 healthy controls were sorted into highly enriched lymphocyte populations for RNAseq analysis. NK cells from JDM patients had substantially greater differentially expressed genes (273) than T (57) and B (33) cells. Upregulated genes were associated with the innate immune response and cell cycle, while downregulated genes were associated with decreased ribosomal RNA. Suppressed ribosomal RNA in JDM NK cells was validated by measuring transcription and phosphorylation levels. We confirmed a population of low ribosome expressing NK cells in healthy adults and children. This population of low ribosome NK cells was substantially expanded in 6 treatment-naïve JDM patients and was associated with decreased NK cell degranulation. The enrichment of this NK low ribosome population was completely abrogated in JDM patients with quiescent disease. Together, these data suggest NK cells are highly activated in new-onset JDM patients with an increased population of low ribosome expressing NK cells, which correlates with decreased NK cell function and resolved with control of active disease.
Collapse
Affiliation(s)
- Kinsey A. Hilliard
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Allison A. Throm
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Jeanette T. Pingel
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nermina Saucier
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Hani S. Zaher
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Anthony R. French
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| |
Collapse
|
14
|
Kircher M, Chludzinski E, Krepel J, Saremi B, Beineke A, Jung K. Augmentation of Transcriptomic Data for Improved Classification of Patients with Respiratory Diseases of Viral Origin. Int J Mol Sci 2022; 23:ijms23052481. [PMID: 35269624 PMCID: PMC8910329 DOI: 10.3390/ijms23052481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
To better understand the molecular basis of respiratory diseases of viral origin, high-throughput gene-expression data are frequently taken by means of DNA microarray or RNA-seq technology. Such data can also be useful to classify infected individuals by molecular signatures in the form of machine-learning models with genes as predictor variables. Early diagnosis of patients by molecular signatures could also contribute to better treatments. An approach that has rarely been considered for machine-learning models in the context of transcriptomics is data augmentation. For other data types it has been shown that augmentation can improve classification accuracy and prevent overfitting. Here, we compare three strategies for data augmentation of DNA microarray and RNA-seq data from two selected studies on respiratory diseases of viral origin. The first study involves samples of patients with either viral or bacterial origin of the respiratory disease, the second study involves patients with either SARS-CoV-2 or another respiratory virus as disease origin. Specifically, we reanalyze these public datasets to study whether patient classification by transcriptomic signatures can be improved when adding artificial data for training of the machine-learning models. Our comparison reveals that augmentation of transcriptomic data can improve the classification accuracy and that fewer genes are necessary as explanatory variables in the final models. We also report genes from our signatures that overlap with signatures presented in the original publications of our example data. Due to strict selection criteria, the molecular role of these genes in the context of respiratory infectious diseases is underlined.
Collapse
Affiliation(s)
- Magdalena Kircher
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Buenteweg 17p, 30559 Hannover, Germany; (M.K.); (J.K.); (B.S.)
| | - Elisa Chludzinski
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany; (E.C.); (A.B.)
| | - Jessica Krepel
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Buenteweg 17p, 30559 Hannover, Germany; (M.K.); (J.K.); (B.S.)
| | - Babak Saremi
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Buenteweg 17p, 30559 Hannover, Germany; (M.K.); (J.K.); (B.S.)
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany; (E.C.); (A.B.)
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Buenteweg 17p, 30559 Hannover, Germany; (M.K.); (J.K.); (B.S.)
- Correspondence: ; Tel.: +49-511-953-8878
| |
Collapse
|