1
|
Naruse K. Advances in diagnostic methods for early-stage diabetic polyneuropathy. J Diabetes Investig 2024; 15:820-822. [PMID: 38581221 PMCID: PMC11215672 DOI: 10.1111/jdi.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024] Open
Abstract
Significant advancements have been made in diagnostic methods for early-stage diabetic polyneuropathy. Early and accurate diagnosis of diabetic polyneuropathy is crucial for preventing further complications and enabling timely intervention. Furthermore, there is a need for an objective numerical value to evaluate the early stage of diabetic polyneuropathy.
Collapse
Affiliation(s)
- Keiko Naruse
- Department of Internal Medicine, School of DentistryAichi Gakuin UniversityNagoyaJapan
| |
Collapse
|
2
|
Kaplan H, Yüzbaşıoğlu S, Vural G, Gümüşyayla Ş. Investigation of small fiber neuropathy in patients with diabetes mellitus by corneal confocal microscopy. Neurophysiol Clin 2024; 54:102955. [PMID: 38422588 DOI: 10.1016/j.neucli.2024.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVES Corneal confocal microscopy (CCM) is a non-invasive technique that examines the corneal cellular structure. Its use in the detection of small fiber neuropathy is being researched. In our study, we examined the role of CCM in the detection of small fiber neuropathy in diabetic patients, as well as the differences between CCM findings in diabetic patients with and without overt polyneuropathy with neuropathic symptoms. METHODS 56 Diabetes Mellitus (DM) patients and 18 healthy controls were included in the study. The individuals included in the study were divided into three groups. Patients with diabetes who were found to have polyneuropathy according to electrophysiological diagnostic criteria were classified as Group 1, patients with diabetes and neuropathic symptoms without overt polyneuropathy according to electrophysiological diagnostic criteria were classified as Group 2, and healthy individuals were classified as Group 3. Electrophysiological examination and corneal imaging with CCM were performed in all groups. RESULTS The CNFD and CNFL values of individuals in the diabetic group were discovered to be lower. CNFD values differ statistically between the groups (p = 0.047). Group 1-Group 3 differs from Group 2-Group 3 (respectively; p = 0.018, p = 0.048). CONCLUSION Our study demonstrates that CCM can be used in patients with neuropathic symptoms and no polyneuropathy detected in EMG and thought to have small fiber neuropathy. CCM provides an opportunity for early diagnosis in small fiber neuropathy.
Collapse
Affiliation(s)
| | - Sema Yüzbaşıoğlu
- Department of Ophthalmology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkiye
| | - Gönül Vural
- Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkiye
| | - Şadiye Gümüşyayla
- Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkiye.
| |
Collapse
|
3
|
Casselini CM, Parson HK, Frizzi KE, Marquez A, Smith DR, Guernsey L, Nemmani R, Tayarani A, Jolivalt CG, Weaver J, Fernyhough P, Vinik AI, Calcutt NA. A muscarinic receptor antagonist reverses multiple indices of diabetic peripheral neuropathy: preclinical and clinical studies using oxybutynin. Acta Neuropathol 2024; 147:60. [PMID: 38526612 DOI: 10.1007/s00401-024-02710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/27/2024]
Abstract
Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1-100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3-10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.
Collapse
Affiliation(s)
- Carolina M Casselini
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Henri K Parson
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Katie E Frizzi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Alex Marquez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, MB, R2H 2A6, Canada
| | - Lucie Guernsey
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Rakesh Nemmani
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Alireza Tayarani
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Corinne G Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Jessica Weaver
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, MB, R2H 2A6, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Aaron I Vinik
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Badian RA, Ekman L, Pripp AH, Utheim TP, Englund E, Dahlin LB, Rolandsson O, Lagali N. Comparison of Novel Wide-Field In Vivo Corneal Confocal Microscopy With Skin Biopsy for Assessing Peripheral Neuropathy in Type 2 Diabetes. Diabetes 2023; 72:908-917. [PMID: 37058418 PMCID: PMC10281223 DOI: 10.2337/db22-0863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes, where skin biopsy assessing intraepidermal nerve fiber density (IENFD) plays an important diagnostic role. In vivo confocal microscopy (IVCM) of the corneal subbasal nerve plexus has been proposed as a noninvasive diagnostic modality for DPN. Direct comparisons of skin biopsy and IVCM in controlled cohorts are lacking, as IVCM relies on subjective selection of images depicting only 0.2% of the nerve plexus. We compared these diagnostic modalities in a fixed-age cohort of 41 participants with type 2 diabetes and 36 healthy participants using machine algorithms to create wide-field image mosaics and quantify nerves in an area 37 times the size of prior studies to avoid human bias. In the same participants, and at the same time point, no correlation between IENFD and corneal nerve density was found. Corneal nerve density did not correlate with clinical measures of DPN, including neuropathy symptom and disability scores, nerve conduction studies, or quantitative sensory tests. Our findings indicate that corneal and intraepidermal nerves likely mirror different aspects of nerve degeneration, where only intraepidermal nerves appear to reflect the clinical status of DPN, suggesting that scrutiny is warranted concerning methodologies of studies using corneal nerves to assess DPN. ARTICLE HIGHLIGHTS Comparison of intraepidermal nerve fiber density with automated wide-field corneal nerve fiber density in participants with type 2 diabetes revealed no correlation between these parameters. Intraepidermal and corneal nerve fibers both detected neurodegeneration in type 2 diabetes, but only intraepidermal nerve fibers were associated with clinical measures of diabetic peripheral neuropathy. A lack of association of corneal nerves with peripheral neuropathy measures suggests that corneal nerve fibers may be a poor biomarker for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Reza A. Badian
- Department of Medical Biochemistry, Unit of Regenerative Medicine, Oslo University Hospital, Oslo, Norway
| | - Linnéa Ekman
- Department of Translational Medicine, Hand Surgery, Lund University, Malmö, Sweden
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elisabet Englund
- Department of Clinical Sciences, Pathology, Lund University, Lund, Sweden
| | - Lars B. Dahlin
- Department of Translational Medicine, Hand Surgery, Lund University, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Olov Rolandsson
- Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Røikjer J, Croosu SS, Frøkjær JB, Hansen TM, Arendt-Nielsen L, Ejskjaer N, Mørch CD. Perception threshold tracking: validating a novel method for assessing function of large and small sensory nerve fibers in diabetic peripheral neuropathy with and without pain. Pain 2023; 164:886-894. [PMID: 36130086 DOI: 10.1097/j.pain.0000000000002780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT It remains unknown why some people with diabetes develop painful neuropathies while others experience no pain. This study aimed to validate a novel method for assessing the function of small sensory nerves in diabetes to further elucidate this phenomenon. The function of large and small nerves was assessed using a novel perception threshold tracking technique in 3 well-characterized groups (n = 60) with type 1 diabetes, namely, (1) painful diabetic peripheral neuropathy (T1DM + PDPN), (2) painless diabetic peripheral neuropathy (T1DM + DPN), and (3) no neuropathy (T1DM - DPN), and healthy controls (n = 20). Electrical currents with different shapes, duration, and intensities were applied by 2 different skin electrodes activating large and small fibers, respectively. The minimal current needed to activate the fibers were analyzed as the rheobase of the stimulus-response function. Nerve fiber selectivity was measured by accommodation properties of stimulated nerves. The rheobase of both fiber types were highest for T1DM + PDPN, followed by T1DM + DPN, T1DM - DPN, and healthy controls, indicating that the nerve properties are specific in individuals with diabetes and pain. There was an overall significant difference between the groups ( P < 0.01). The accommodation properties of stimulated fibers were different between the 2 electrodes ( P < 0.05) apart from in the group with T1DM + PDPN, where both electrodes stimulated nerves displaying properties similar to large fibers. Perception threshold tracking reveals differences in large and small nerve fiber function between the groups with and without diabetes, DPN, and pain. This indicates that the methods have potential applications in screening DPN and explore further the features differentiating painful from nonpainful DPN.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Suganthiya Santhiapillai Croosu
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tine Maria Hansen
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G, Rocco M, Iadicicco I, Docimo G, Rinaldi L, Sardu C, Salvatore T, Marfella R, Sasso FC. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int J Mol Sci 2023; 24:ijms24043554. [PMID: 36834971 PMCID: PMC9967934 DOI: 10.3390/ijms24043554] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the main microvascular complications of both type 1 and type 2 diabetes mellitus. Sometimes, this could already be present at the time of diagnosis for type 2 diabetes mellitus (T2DM), while it appears in subjects with type 1 diabetes mellitus (T1DM) almost 10 years after the onset of the disease. The impairment can involve both somatic fibers of the peripheral nervous system, with sensory-motor manifestations, as well as the autonomic system, with neurovegetative multiorgan manifestations through an impairment of sympathetic/parasympathetic conduction. It seems that, both indirectly and directly, the hyperglycemic state and oxygen delivery reduction through the vasa nervorum can determine inflammatory damage, which in turn is responsible for the alteration of the activity of the nerves. The symptoms and signs are therefore various, although symmetrical painful somatic neuropathy at the level of the lower limbs seems the most frequent manifestation. The pathophysiological aspects underlying the onset and progression of DN are not entirely clear. The purpose of this review is to shed light on the most recent discoveries in the pathophysiological and diagnostic fields concerning this complex and frequent complication of diabetes mellitus.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Chiara Brin
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-1566-5010
| |
Collapse
|
7
|
Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers. J Clin Med 2023; 12:jcm12030912. [PMID: 36769560 PMCID: PMC9917666 DOI: 10.3390/jcm12030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular complication of diabetes mellitus, represents the leading cause of acquired blindness in the working-age population. Due to the potential absence of symptoms in the early stages of the disease, the identification of clinical biomarkers can have a crucial role in the early diagnosis of DR as well as for the detection of prognostic factors. In particular, imaging techniques are fundamental tools for screening, diagnosis, classification, monitoring, treatment planning and prognostic assessment in DR. In this context, the identification of ocular and systemic biomarkers is crucial to facilitate the risk stratification of diabetic patients; moreover, reliable biomarkers could provide prognostic information on disease progression as well as assist in predicting a patient's response to therapy. In this context, this review aimed to provide an updated and comprehensive overview of the soluble and anatomical biomarkers associated with DR.
Collapse
|
8
|
Abstract
Distal symmetric diabetic peripheral polyneuropathy (DPN) is the most common form of neuropathy in the world, affecting 30 to 50% of diabetic individuals and resulting in significant morbidity and socioeconomic costs. This review summarizes updates in the diagnosis and management of DPN. Recently updated clinical criteria facilitate bedside diagnosis, and a number of new technologies are being explored for diagnostic confirmation in specific settings and for use as surrogate measures in clinical trials. Evolving literature indicates that distinct but overlapping mechanisms underlie neuropathy in type 1 versus type 2 diabetes, and there is a growing focus on the role of metabolic factors in the development and progression of DPN. Exercise-based lifestyle interventions have shown therapeutic promise. A variety of potential disease-modifying and symptomatic therapies are in development. Innovations in clinical trial design include the incorporation of detailed pain phenotyping and biomarkers for central sensitization.
Collapse
Affiliation(s)
- Qihua Fan
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - A Gordon Smith
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Cardiac Autonomic Neuropathy in Type 1 and 2 Diabetes: Epidemiology, Pathophysiology, and Management. Clin Ther 2022; 44:1394-1416. [DOI: 10.1016/j.clinthera.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
|
10
|
Cosmo E, Midena G, Frizziero L, Bruno M, Cecere M, Midena E. Corneal Confocal Microscopy as a Quantitative Imaging Biomarker of Diabetic Peripheral Neuropathy: A Review. J Clin Med 2022; 11:5130. [PMID: 36079060 PMCID: PMC9457345 DOI: 10.3390/jcm11175130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Distal symmetric polyneuropathy (DPN), particularly chronic sensorimotor DPN, represents one of the most frequent complications of diabetes, affecting 50% of diabetic patients and causing an enormous financial burden. Whilst diagnostic methods exist to detect and monitor this condition, they have significant limitations, mainly due to their high subjectivity, invasiveness, and non-repeatability. Corneal confocal microscopy (CCM) is an in vivo, non-invasive, and reproducible diagnostic technique for the study of all corneal layers including the sub-basal nerve plexus, which represents part of the peripheral nervous system. We reviewed the current literature on the use of CCM as an instrument in the assessment of diabetic patients, particularly focusing on its role in the study of sub-basal nerve plexus alterations as a marker of DPN. CCM has been demonstrated to be a valid in vivo tool to detect early sub-basal nerve plexus damage in adult and pediatric diabetic patients, correlating with the severity of DPN. Despite its great potential, CCM has still limited application in daily clinical practice, and more efforts still need to be made to allow the dissemination of this technique among doctors taking care of diabetic patients.
Collapse
Affiliation(s)
| | | | - Luisa Frizziero
- Department of Neuroscience-Ophthalmology, University of Padova, 35128 Padova, Italy
| | | | | | - Edoardo Midena
- IRCCS—Fondazione Bietti, 00198 Rome, Italy
- Department of Neuroscience-Ophthalmology, University of Padova, 35128 Padova, Italy
| |
Collapse
|
11
|
Malik RA. Corneal confocal microscopy meets continuous glucose monitoring: a tale of two technologies. Chin Med J (Engl) 2022; 135:1891-1893. [PMID: 36148585 PMCID: PMC9746738 DOI: 10.1097/cm9.0000000000002254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 01/26/2023] Open
Affiliation(s)
- Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Ponirakis G, Al-Janahi I, Elgassim E, Gad H, Petropoulos IN, Khan A, Ali H, Siddique MA, Gul W, Ferdousi M, Kalteniece A, Mohamed FF, Ahmed LH, Dakroury Y, El Shewehy AM, Al-Mohamedi A, AlMarri F, Homssi M, Qazi M, Hadid NH, Al-Khayat F, Mahfoud ZR, Azmi S, Alam U, Zirie MA, Al-Ansari Y, Jayyousi A, Rigby AS, Kilpatrick ES, Atkin SL, Malik RA. Progressive loss of corneal nerve fibers is associated with physical inactivity and glucose lowering medication associated with weight gain in type 2 diabetes. J Diabetes Investig 2022; 13:1703-1710. [PMID: 35652859 PMCID: PMC9533053 DOI: 10.1111/jdi.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Aims/Introduction Limited studies have identified risk factors linked to the progression of diabetic peripheral neuropathy (DPN) in type 2 diabetes. This study examined the association of risk factors with change in neuropathy measures over 2 years. Materials and Methods Participants with type 2 diabetes (n = 78) and controls (n = 26) underwent assessment of clinical and metabolic parameters and neuropathy using corneal confocal microscopy (CCM), vibration perception threshold (VPT), and the DN4 questionnaire at baseline and 2 year follow‐up. Results Participants with type 2 diabetes had a lower corneal nerve fiber density (CNFD), branch density (CNBD), and fiber length (CNFL) (P ≤ 0.0001) and a higher VPT (P ≤ 0.01) compared with controls. Over 2 years, despite a modest reduction in HbA1c (P ≤ 0.001), body weight (P ≤ 0.05), and LDL (P ≤ 0.05) the prevalence of DPN (P = 0.28) and painful DPN (P = 0.21) did not change, but there was a significant further reduction in CNBD (P ≤ 0.0001) and CNFL (P ≤ 0.05). CNFD, CNBD, and CNFL decreased significantly in physically inactive subjects (P < 0.05–0.0001), whilst there was no change in CNFD (P = 0.07) or CNFL (P = 0.85) in physically active subjects. Furthermore, there was no change in CNFD (P = 0.82), CNBD (P = 0.08), or CNFL (P = 0.66) in patients treated with glucose lowering medication associated with weight loss, whilst CNBD (P = 0.001) decreased in patients on glucose lowering medication associated with weight gain. Conclusions In participants with type 2 diabetes, despite a modest improvement in HbA1c, body weight, and LDL there was a progressive loss of corneal nerve fibers; except in those who were physically active or on glucose lowering medication associated with weight loss.
Collapse
Affiliation(s)
- Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Ibrahim Al-Janahi
- National Diabetes Center, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Einas Elgassim
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Hoda Gad
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | | | - Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Hamda Ali
- National Diabetes Center, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mashhood A Siddique
- National Diabetes Center, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Wajiha Gul
- National Diabetes Center, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alise Kalteniece
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fatima Fs Mohamed
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Lina Hm Ahmed
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Youssra Dakroury
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Abeer Mm El Shewehy
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | | | - Fatema AlMarri
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Moayad Homssi
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Murtaza Qazi
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Nebras H Hadid
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Fatima Al-Khayat
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Ziyad R Mahfoud
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, UK
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine and the Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Mahmoud A Zirie
- National Diabetes Center, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Yousuf Al-Ansari
- National Diabetes Center, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Amin Jayyousi
- National Diabetes Center, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Alan S Rigby
- Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, UK.,Hull York Medical School, University of Hull, Kingston Upon Hull, UK
| | - Eric S Kilpatrick
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, UK.,Hull York Medical School, University of Hull, Kingston Upon Hull, UK
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
13
|
Bu Y, Shih KC, Tong L. The ocular surface and diabetes, the other 21st Century epidemic. Exp Eye Res 2022; 220:109099. [DOI: 10.1016/j.exer.2022.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
14
|
Newlin Lew K, Arnold T, Cantelmo C, Jacque F, Posada-Quintero H, Luthra P, Chon KH. Diabetes Distal Peripheral Neuropathy: Subtypes and Diagnostic and Screening Technologies. J Diabetes Sci Technol 2022; 16:295-320. [PMID: 34994241 PMCID: PMC8861801 DOI: 10.1177/19322968211035375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes distal symmetrical peripheral neuropathy (DSPN) is the most prevalent form of neuropathy in industrialized countries, substantially increasing risk for morbidity and pre-mature mortality. DSPN may manifest with small-fiber disease, large-fiber disease, or a combination of both. This review summarizes: (1) DSPN subtypes (small- and large-fiber disease) with attention to clinical signs and patient symptoms; and (2) technological diagnosis and screening for large- and small-fiber disease with inclusion of a comprehensive literature review of published studies from 2015-present (N = 66). Review findings, informed by the most up-to-date research, advance critical understanding of DSPN large- and small-fiber screening technologies, including those designed for point-of-care use in primary care and endocrinology practices.
Collapse
Affiliation(s)
- Kelley Newlin Lew
- School of Nursing, University of
Connecticut (UConn), Storrs, CT, USA
- Kelley Newlin Lew, School of Nursing,
University of Connecticut (UConn), 231 Glenbrook Road, Storrs, CT 06269, USA.
| | - Tracey Arnold
- School of Nursing, University of
Connecticut (UConn), Storrs, CT, USA
| | | | - Francky Jacque
- Hispanic Alliance of Southeastern
Connecticut, New London, CT, USA
| | - Hugo Posada-Quintero
- Biomedical Engineering Department,
University of Connecticut (UConn), Storrs, CT, USA
| | - Pooja Luthra
- Division of Endocrinology and
Metabolism, UConn Health, Farmington, CT, USA
| | - Ki H. Chon
- Biomedical Engineering Department,
University of Connecticut (UConn), Storrs, CT, USA
| |
Collapse
|
15
|
Riva N, Bonelli F, Lasagni Vitar RM, Barbariga M, Fonteyne P, Lopez ID, Domi T, Scarpa F, Ruggeri A, Reni M, Marcatti M, Quattrini A, Agosta F, Rama P, Ferrari G. Corneal and Epidermal Nerve Quantification in Chemotherapy Induced Peripheral Neuropathy. Front Med (Lausanne) 2022; 9:832344. [PMID: 35252263 PMCID: PMC8894874 DOI: 10.3389/fmed.2022.832344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy-induced neurotoxicity is an increasingly recognized clinical issue in oncology. in vivo confocal microscopy (IVCM) of corneal nerves has been successfully used to diagnose peripheral neuropathies, including diabetic neuropathy. The purpose of this study was to test if the combination of corneal nerve density and morphology assessed by IVCM is useful to monitor the neurotoxic effects of chemotherapy compared to epidermal nerve quantification. Overall, 95 adult patients with different cancer types were recruited from the oncology and hematology departments of the San Raffaele Hospital. Neurological examination, including clinical Total Neuropathy Score, and in vivo corneal confocal microscopy (IVCM), were performed before and after chemotherapy. In a group of 14 patients, skin biopsy was performed at the first and last visit. In the group of 14 patients who underwent both skin biopsy and corneal nerve imaging, clinical worsening (+69%, p = 0.0018) was paralleled by corneal nerve fiber (CNF) density reduction (−22%, p = 0.0457). Clinical Total neuropathy score significantly worsened from the first to the last visit (+62%, p < 0.0001). CNF length was not significantly reduced overall. However, CNF density/tortuosity ratio significantly decreased after therapy. Correlation analysis showed that the CNF density/tortuosity ratio was also correlated with the number of chemotherapy cycles (r = −0.04790, P = 0.0009). Our data confirm that in vivo corneal confocal microscopy is a helpful, non-invasive tool which shows promise for the diagnosis of chemotherapy-induced peripheral neuropathies. IVCM could allow a rapid, reproducible and non-invasive quantification of peripheral nerve pathology in chemotherapy-associated neuropathy.
Collapse
|
16
|
Abstract
Diabetic painless and painful peripheral neuropathy remains the most frequent complication of diabetes mellitus, but the pathophysiology remains undescribed, there are no robust clinical endpoints and no efficient treatment exists. This hampers good clinical practice, fruitful clinical research and successful pharmacological trials, necessary for the development of early detection, prevention and treatment. This chapter supplies an update on background and treatment of diabetic peripheral neuropathy. Goals and perspectives for future clinical and scientific approaches are also described.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Faculty of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
17
|
Fan Q, Gordon Smith A. Recent updates in the treatment of diabetic polyneuropathy. Fac Rev 2022. [PMID: 36311537 DOI: 10.1270/r/11-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Distal symmetric diabetic peripheral polyneuropathy (DPN) is the most common form of neuropathy in the world, affecting 30 to 50% of diabetic individuals and resulting in significant morbidity and socioeconomic costs. This review summarizes updates in the diagnosis and management of DPN. Recently updated clinical criteria facilitate bedside diagnosis, and a number of new technologies are being explored for diagnostic confirmation in specific settings and for use as surrogate measures in clinical trials. Evolving literature indicates that distinct but overlapping mechanisms underlie neuropathy in type 1 versus type 2 diabetes, and there is a growing focus on the role of metabolic factors in the development and progression of DPN. Exercise-based lifestyle interventions have shown therapeutic promise. A variety of potential disease-modifying and symptomatic therapies are in development. Innovations in clinical trial design include the incorporation of detailed pain phenotyping and biomarkers for central sensitization.
Collapse
Affiliation(s)
- Qihua Fan
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - A Gordon Smith
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Bitirgen G, Kucuk A, Ergun MC, Baloglu R, Gharib MH, Al Emadi S, Ponirakis G, Malik RA. Subclinical Corneal Nerve Fiber Damage and Immune Cell Activation in Systemic Lupus Erythematosus: A Corneal Confocal Microscopy Study. Transl Vis Sci Technol 2021; 10:10. [PMID: 34905000 PMCID: PMC8684301 DOI: 10.1167/tvst.10.14.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the utility of corneal confocal microscopy (CCM) in identifying small nerve fiber damage and immune cell activation in patients with systemic lupus erythematosus (SLE). Methods This cross-sectional comparative study included 39 consecutive patients with SLE and 30 healthy control participants. Central corneal sensitivity was assessed using a Cochet-Bonnet contact corneal esthesiometer and a laser scanning CCM (Heidelberg, Germany) was used to quantify corneal nerve fiber density (CNFD), nerve branch density (CNBD), nerve fiber length (CNFL), and Langerhans cell (LC) density. Results Age was comparable among patients with SLE (33.7 ± 12.7) and controls (35.0 ± 13.7 years, P = 0.670) and the median duration of disease was 3.0 years (2.0–10.0 years). CNBD (P = 0.003) and CNFL (P = 0.019) were lower and mature LC density (P = 0.002) was higher, but corneal sensitivity (P = 0.178) and CNFD (P = 0.198) were comparable in patients with SLE compared with controls. The SELENA-SLEDAI score correlated with CNFD (ρ = −0.319, P = 0.048) and CNFL (ρ = −0.373, P = 0.019), and the total and immature LC densities correlated with CNBD (ρ = −0.319. P = 0.048, and ρ = −0.328, P = 0.041, respectively). Immature LC density was higher (P = 0.025), but corneal sensitivity and nerve fiber parameters were comparable between patients with (33%) and without neuropsychiatric symptoms and SLE. Conclusions Corneal confocal microscopy identifies distal corneal nerve fiber loss and increased immune cell density in patients with SLE and corneal nerve loss was associated with disease activity. Translational Relevance Corneal confocal microscopy may enable the detection of subclinical corneal nerve loss and immune cell activation in SLE.
Collapse
Affiliation(s)
- Gulfidan Bitirgen
- Department of Ophthalmology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Adem Kucuk
- Division of Rheumatology, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Mustafa Cagri Ergun
- Division of Rheumatology, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Ruveyda Baloglu
- Department of Ophthalmology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Miral H Gharib
- Rheumatology Department, Hamad Medical Corporation, Doha, Qatar
| | - Samar Al Emadi
- Rheumatology Department, Hamad Medical Corporation, Doha, Qatar
| | - Georgios Ponirakis
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Doha, Qatar
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Doha, Qatar.,Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR Clinical Research Facility, Manchester, UK
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Hyperlipidaemia is associated with the development of neuropathy. Indeed, a mechanistic link between altered lipid metabolism and peripheral nerve dysfunction has been demonstrated in a number of experimental and clinical studies. Furthermore, post hoc analyses of clinical trials of cholesterol and triglyceride-lowering pharmacotherapy have shown reduced rates of progression of diabetic neuropathy. Given, there are currently no FDA approved disease-modifying therapies for diabetic neuropathy, modulation of lipids may represent a key therapeutic target for the treatment of diabetic nerve damage. This review summarizes the current evidence base on the role of hyperlipidaemia and lipid lowering therapy on the development and progression of peripheral neuropathy. RECENT FINDINGS A body of literature supports a detrimental effect of dyslipidaemia on nerve fibres resulting in somatic and autonomic neuropathy. The case for an important modulating role of hypertriglyceridemia is stronger than for low-density lipoprotein cholesterol (LDL-C) in relation to peripheral neuropathy. This is reflected in the outcomes of clinical trials with the different therapeutic agents targeting hyperlipidaemia reporting beneficial or neutral effects with statins and fibrates. The potential concern with the association between proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor therapy and cognitive decline raised the possibility that extreme LDL-C lowering may result in neurodegeneration. However, studies in murine models and data from small observational studies indicate an association between increased circulating PCSK9 levels and small nerve fibre damage with a protective effect of PCSK9i therapy against small fibre neuropathy. Additionally, weight loss with bariatric surgery leads to an improvement in peripheral neuropathy and regeneration of small nerve fibres measured with corneal confocal microscopy in people with obesity with or without type 2 diabetes. These improvements correlate inversely with changes in triglyceride levels. SUMMARY Hyperlipidaemia, particularly hypertriglyceridemia, is associated with the development and progression of neuropathy. Lipid modifying agents may represent a potential therapeutic option for peripheral neuropathy. Post hoc analyses indicate that lipid-lowering therapies may halt the progression of neuropathy or even lead to regeneration of nerve fibres. Well designed randomized controlled trials are needed to establish if intensive targeted lipid lowering therapy as a part of holistic metabolic control leads to nerve fibre regeneration and improvement in neuropathy symptoms.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bilal Bashir
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Weill-Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
20
|
Petropoulos IN, Ponirakis G, Ferdousi M, Azmi S, Kalteniece A, Khan A, Gad H, Bashir B, Marshall A, Boulton AJM, Soran H, Malik RA. Corneal Confocal Microscopy: A Biomarker for Diabetic Peripheral Neuropathy. Clin Ther 2021; 43:1457-1475. [PMID: 33965237 DOI: 10.1016/j.clinthera.2021.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Diagnosing early diabetic peripheral neuropathy remains a challenge due to deficiencies in currently advocated end points. The cornea is densely innervated with small sensory fibers, which are structurally and functionally comparable to intraepidermal nerve fibers. Corneal confocal microscopy is a method for rapid, noninvasive scanning of the living cornea with high resolution and magnification. METHODS This narrative review presents the framework for the development of biomarkers and the literature on the use and adoption of corneal confocal microscopy as an objective, diagnostic biomarker in experimental and clinical studies of diabetic peripheral neuropathy. A search was performed on PubMed and Google Scholar based on the terms "corneal confocal microscopy," "diabetic neuropathy," "corneal sensitivity," and "clinical trials." FINDINGS A substantial body of evidence underpins the thesis that corneal nerve loss predicts incident neuropathy and progresses with the severity of diabetic peripheral neuropathy. Corneal confocal microscopy also identifies early corneal nerve regeneration, strongly arguing for its inclusion as a surrogate end point in clinical trials of disease-modifying therapies. IMPLICATIONS There are sufficient diagnostic and prospective validation studies to fulfill the US Food and Drug Administration criteria for a biomarker to support the inclusion of corneal confocal microscopy as a primary end point in clinical trials of disease-modifying therapies in diabetic neuropathy.
Collapse
Affiliation(s)
| | | | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Adnan Khan
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hoda Gad
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Bilal Bashir
- Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Clinical Neurophysiology, The Walton Centre, Liverpool, United Kingdom; Division of Neuroscience and Experimental Psychology, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew J M Boulton
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar; Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|