1
|
Wang RRC, Xu SS, Monaco TA, Robbins MD. Dual Mechanisms of Salinity Tolerance in Wheat Germplasm Lines W4909 and W4910. Int J Mol Sci 2024; 25:12892. [PMID: 39684603 DOI: 10.3390/ijms252312892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Soil salinity adversely affects plant growth and development, reducing the yield of most crops, including wheat. The highly salt-tolerant wheat germplasm lines W4909 and W4910 were derived from a cross between two moderately salt-tolerant lines, the Chinese Spring (CS)/Thinopyrum junceum disomic addition line AJDAj5 (AJ) and the Ph-inhibitor line (Ph-I) derived from CS/Aegilops speltoides. Molecular markers for gene introgressions in W4909 and W4910 were not reported. Four sequence-tagged site (STS) molecular markers of Ph-I were developed and tested in the above-mentioned lines and the F2 progenies of the two crosses, Anza (AZ) × 4740 (sib of W4910) and Yecora Rojo (YR) × 4728 (sib of W4909). Additionally, homogeneity was assessed in several derivatives of W4909, 4728, W4910, and 4740 using the four markers. The four STS markers are not associated with salt tolerance, but they provide an indication of the transfer of chromatin in 3B chromosome of Ae. speltoides via Ph-I. Moreover, salt tolerance and leaf sodium concentration were determined in CS, AJ, Ph-I, 7151 (progeny of W4909), 7157 (progeny of W4910), AZ, and YR under salt treatment and control. Surprisingly, AJ had the lowest leaf sodium concentration under the control and salt treatment, indicating greater sodium exclusion than that in CS, AZ, and YR. This low level of leaf sodium concentration was heritable from 4740 to its hybrid progenies. On the other hand, the higher leaf sodium concentration, indicative of the tissue tolerance to salinity in Ph-I, had been inherited by both W4909 and W4910 and then transmitted to their hybrid progenies. One offspring line each in both W4909 and W4910 (7762 and 7159, respectively) were homozygous for the three molecular markers and lacked the marker psr1205 of Su1-Ph1 gene, making them better materials than the original lines for future research on, for example, whole-genome sequencing and gene mining. The implications of these findings for the utilization of W4909 and W4910 in breeding salt-tolerant wheat cultivars are discussed.
Collapse
Affiliation(s)
- Richard R-C Wang
- Forage & Range Research Laboratory, USDA-ARS, Logan, UT 84322-6300, USA
| | - Steven S Xu
- Crop Improvement and Genetics Research, USDA-ARS, Albany, CA 94710, USA
| | - Thomas A Monaco
- Forage & Range Research Laboratory, USDA-ARS, Logan, UT 84322-6300, USA
| | - Matthew D Robbins
- Forage & Range Research Laboratory, USDA-ARS, Logan, UT 84322-6300, USA
| |
Collapse
|
2
|
Geethanjali S, Kadirvel P, Anumalla M, Hemanth Sadhana N, Annamalai A, Ali J. Streamlining of Simple Sequence Repeat Data Mining Methodologies and Pipelines for Crop Scanning. PLANTS (BASEL, SWITZERLAND) 2024; 13:2619. [PMID: 39339594 PMCID: PMC11435353 DOI: 10.3390/plants13182619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Genetic markers are powerful tools for understanding genetic diversity and the molecular basis of traits, ushering in a new era of molecular breeding in crops. Over the past 50 years, DNA markers have rapidly changed, moving from hybridization-based and second-generation-based to sequence-based markers. Simple sequence repeats (SSRs) are the ideal markers in plant breeding, and they have numerous desirable properties, including their repeatability, codominance, multi-allelic nature, and locus specificity. They can be generated from any species, which requires prior sequence knowledge. SSRs may serve as evolutionary tuning knobs, allowing for rapid identification and adaptation to new circumstances. The evaluations published thus far have mostly ignored SSR polymorphism and gene evolution due to a lack of data regarding the precise placements of SSRs on chromosomes. However, NGS technologies have made it possible to produce high-throughput SSRs for any species using massive volumes of genomic sequence data that can be generated fast and at a minimal cost. Though SNP markers are gradually replacing the erstwhile DNA marker systems, SSRs remain the markers of choice in orphan crops due to the lack of genomic resources at the reference level and their adaptability to resource-limited labor. Several bioinformatic approaches and tools have evolved to handle genomic sequences to identify SSRs and generate primers for genotyping applications in plant breeding projects. This paper includes the currently available methodologies for producing SSR markers, genomic resource databases, and computational tools/pipelines for SSR data mining and primer generation. This review aims to provide a 'one-stop shop' of information to help each new user carefully select tools for identifying and utilizing SSRs in genetic research and breeding programs.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Palchamy Kadirvel
- Crop Improvement Section, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India
| | - Mahender Anumalla
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Laguna, Philippines
- IRRI South Asia Hub, Patancheru, Hyderabad 502324, India
| | - Nithyananth Hemanth Sadhana
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Anandan Annamalai
- Indian Council of Agricultural Research (ICAR), Indian Institute of Seed Science, Bengaluru 560065, India
| | - Jauhar Ali
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Laguna, Philippines
| |
Collapse
|
3
|
Yihong J, Zhen L, Chang L, Ziying S, Ning Z, Meiqing S, Yuhui L, Lei W. Genome-wide identification and drought stress-induced expression analysis of the NHX gene family in potato. Front Genet 2024; 15:1396375. [PMID: 39055260 PMCID: PMC11269226 DOI: 10.3389/fgene.2024.1396375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
NHX proteins are transmembrane antiporters belonging to the cation/proton antiporter gene family, with a conserved Na+ (K+)/H+ exchange (PF00999) protein domain. NHXs play a prominent role in plant growth, development, and defense. However, the role of NHX gene family in potato (Solanum tuberosum L.) is yet to be known. In this study, we conducted a genome-wide analysis of the potato NHX gene family. A total of 25 StNHX family members were identified to be unevenly distributed on 10 chromosomes. The proteins ranged in length from 252 to 1,153 amino acids, with molecular masses ranging from 27516.32 to 127860.87 kD, and isoelectric points (pI) ranging from 4.96 to 9.3. Analyses of gene structures and conserved motifs indicated that StNHX genes in the same phylogenetic cluster are conserved. Phylogenetic analysis divided the StNHX genes into three subfamilies (Classes I, II, and III). Synteny analysis indicated that StNHX gene family Class III of NHX and all Arabidopsis thaliana NHXs shared a close evolutionary relationship. Analysis of cis-acting elements in the upstream 1,500 bp promoter region of potato NHX genes showed that these genes could be regulated by light, stress, and hormones such as abscisic acid and gibberellic acid. Protein-protein interaction network analysis indicated that StNHX proteins may participate in the regulation of potato growth and stress response. Besides, To determine a potential role of these genes in tissue development and drought response, we analyzed the RNA-seq data of different DM potato tissues. The results showed that NHX genes exhibited distinct tissue-specific expression patterns. We further examined the expression patterns of StNHX in different tissues (leaves, roots, shoots, tubers, stolons, and flowers) during the flowering stage in 'Jizhangshu NO.8.' potato. The qRT-PCR results further confirmed the importance of StNHX genes in potato plant growth and development. We further analyzed the RNA-seq data (DM potato) under different abiotic stresses (salt, drought, and heat), and found that the expression of StNHX genes was induced under abiotic stress. qRT-PCR analysis of shoots and roots of 'Jizhangshu NO.8.' potato treated for 0, 6, 12, and 24 h with 15% PEG6000 confirmed that the 25 StNHX genes are involved in the response to drought stress in potato. The results of this study may be useful for selecting appropriate candidate genes for the breeding of new drought-tolerant potato varieties. Furthermore, this study lays a foundation for prospective analysis of StNHX gene functions.
Collapse
Affiliation(s)
- Ji Yihong
- Potato Research Centre, Hebei North University, Zhangjiakou, China
| | - Liu Zhen
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Liu Chang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Shao Ziying
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zhang Ning
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Suo Meiqing
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Liu Yuhui
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Wang Lei
- Potato Research Centre, Hebei North University, Zhangjiakou, China
| |
Collapse
|
4
|
Hemasai B, Kumbha DK, Modem VN, Gannavarapu SK, Bommaka RR, Mallapuram S, Chintala S, Sreevalli MD, Ramireddy E, Vemireddy LR. Development of miRNA-SSR and target-SSR markers from yield-associate genes and their applicability in the assessment of genetic diversity and association mapping in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:30. [PMID: 38634111 PMCID: PMC11018576 DOI: 10.1007/s11032-024-01462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/25/2024] [Indexed: 04/19/2024]
Abstract
The gene-derived functional markers are considered effective to use in marker-assisted breeding and genetic diversity analysis. As of now, no functional markers have been identified from miRNAs regulating yield traits. The miRNAs play a key role as regulators in controlling the candidate genes involved in grain yield improvement in rice. In this study, 13 miRNA-SSR and their target gene SSR markers were mined from 29 yield-responsive miRNA along with their 29 target genes in rice. The validation of these markers showed that four miRNA-SSRs and one target gene SSR markers had shown polymorphism among 120 diverse rice genotypes. The PIC values ranged from 0.25 (OsARF18-SSR) to 0.72 (miR408-SSR, miR172b-SSR, and miR396f-SSR) with an average value of 0.57. These polymorphic markers grouped 120 rice genotypes into 3 main clusters based on the levels of high genetic diversity. These markers also showed significant association with key yield traits. Among all, miR172b-SSR showed a strong association with plant height in two seasons. This investigation suggests that this new class of molecular markers has great potential in the characterization of rice germplasm by genetic diversity and population structure and in marker-assisted breeding for the development of high-yielding varieties. Supplementary information The online version contains supplementary material available at 10.1007/s11032-024-01462-z.
Collapse
Affiliation(s)
- Bavisetti Hemasai
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Dinesh K. Kumbha
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Vinodkumar Naik Modem
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Srividya K. Gannavarapu
- Dept. of Molecular Biology and Biotechnology, S. V. Agricultural College, ANGRAU, Tirupati, 517 502 Andhra Pradesh India
| | - Rupeshkumar R. Bommaka
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Shanthipriya Mallapuram
- Dept. of Genetics and Plant Breeding, Agricultural Research Station, ANGRAU, Perumallapalle, Tirupati, 517 502 Andhra Pradesh India
| | | | - Muga D. Sreevalli
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Eswarayya Ramireddy
- Department of Biology, Indian Institutes of Science Education and Research, Tirupati, 517507 Andhra Pradesh India
| | - Lakshminarayana R. Vemireddy
- Dept. of Molecular Biology and Biotechnology, S. V. Agricultural College, ANGRAU, Tirupati, 517 502 Andhra Pradesh India
| |
Collapse
|
5
|
Fandade V, Singh P, Singh D, Sharma H, Thakur G, Saini S, Kumar P, Mantri S, Bishnoi OP, Roy J. Genome-wide identification of microsatellites for mapping, genetic diversity and cross-transferability in wheat (Triticum spp). Gene 2024; 896:148039. [PMID: 38036075 DOI: 10.1016/j.gene.2023.148039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Wheat (Triticum aestivum L.) is a crucial global staple crop, and is consistently being improved to enhance yield, disease resistance, and quality traits. However, the development of molecular markers is a challenging task due to its hexaploid genome. Molecular marker system such as simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) are helpful for breeding, but SNP has limitations due to its development cost and its conversion to breeder markers. The study proposed an in-silico approach, by utilizing the low-cost transcriptome sequencing of two parental lines, 'TAC 75' and 'WH 1105', to identify polymorphic SSRs for mapping in a recombinant inbred line (RIL) population. This study introduces a new approach to bridge wheat genetics intricacies and next-generation sequencing potential. It presents a comprehensive genome-wide SSR distribution using IWGSC CS RefSeq v2.1 genome assembly and to identify 189 polymorphic loci through in-silico strategy. Of these, 54.76% showed polymorphism between parents, surpassing the traditional low polymorphic success rate. A RIL population screening validated these markers, demonstrating the fitness of identified markers through chi-square tests. The designed SSRs were also validated for genetic diversity analysis in a subset of 37 Indian wheat genotypes and cross-transferability in the wild/relative wheat species. In diversity analysis, a subset of 38 markers revealed 95 alleles (2.5 allele/locus), indicating substantial genetic variation. Population structure analysis unveiled three distinct groups, supported by phylogenetic and PCoA analyses. Further the polymorphic SSRs were also analyzed for SSR-gene association using gene ontology analysis. By utilizing the developing seed transcriptome data within parental lines, the study has enhanced the polymorphic SSR identification precision and facilitated in the RIL population. The undertaken study pioneers the use of transcriptome sequencing and genetic mapping to overcome challenges posed by the intricate wheat genome. This approach offers a cost-effective, less labour-intensive alternative to conventional methods, providing a platform for advancing wheat breeding research.
Collapse
Affiliation(s)
- Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.
| | - Pradeep Singh
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| | - Dalwinder Singh
- Department of Anatomy and cell biology, University of Western Ontario, London, Canada.
| | - Himanshu Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| | - Garima Thakur
- Protection for Plant Varieties and Farmers Rights Authority, New Delhi, India.
| | - Shivangi Saini
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| | - Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.
| | - Shrikant Mantri
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| | - O P Bishnoi
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar- 125004, India.
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| |
Collapse
|
6
|
Sah RP, Nayak AK, Chandrappa A, Behera S, Azharudheen Tp M, Lavanya GR. cgSSR marker-based genome-wide association study identified genomic regions for panicle characters and yield in rice (Oryza sativa L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:720-728. [PMID: 36054367 DOI: 10.1002/jsfa.12183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND To improve production efficiency, positive alleles corresponding to yield-related attributes must be accumulated in a single elite background. We designed and used cgSSR markers, which are superior to random SSR markers in genome-wide association study, to identify genomic regions that contribute to panicle characters and grain yield in this study. RESULTS As evidenced by the high polymorphic information content value and gene diversity coefficient, the new cgSSR markers were determined to be highly informative. These cgSSR markers were employed to generate genotype data for an association panel evaluated for four panicle characters and grain yield over three seasons. For five traits, 17 significant marker-trait associations on six chromosomes were discovered. The percentage of phenotypic variance that could be explained ranged from 4% to 13%. Unrelated gene-derived markers had a strong association with target traits as well. CONCLUSION Trait-associated cgSSR markers derived from corresponding or related genes ensure their utility in direct allele selection, while other linked markers aid in allele selection indirectly by altering the phenotype of interest. Through a marker-assisted breeding approach, these marker-trait associations can be leveraged to accumulate favourable alleles for yield enhancement in rice. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rameswar Prasad Sah
- Crop Improvement Division, ICAR - National Rice Research Institute, Cuttack, India
| | - Amrit Kumar Nayak
- Department of Genetics and Plant breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| | - Anilkumar Chandrappa
- Crop Improvement Division, ICAR - National Rice Research Institute, Cuttack, India
| | - Sasmita Behera
- Crop Improvement Division, ICAR - National Rice Research Institute, Cuttack, India
| | | | - G Roopa Lavanya
- Department of Genetics and Plant breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| |
Collapse
|
7
|
Sabana AA, Antony G, Rajesh MK, Gangaraj KP, Niral V, Sudha R, Jerard BA. Development and characterization of non-coding RNA-derived simple sequence repeat markers in coconut (Cocos nucifera L.). Funct Integr Genomics 2022; 22:1243-1251. [DOI: 10.1007/s10142-022-00911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
|
8
|
Gahlaut V, Samtani H, Gautam T, Khurana P. Identification and Characterization of DNA Demethylase Genes and Their Association With Thermal Stress in Wheat (Triticum aestivum L.). Front Genet 2022; 13:894020. [PMID: 35938005 PMCID: PMC9355123 DOI: 10.3389/fgene.2022.894020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
DNA demethylases (dMTases) are essential proteins in plants that regulate DNA methylation levels. The dMTase genes have been explored in a number of plant species, however, members of this family have not been reported in wheat. We identified 12 wheat dMTase genes divided into two subfamilies: repressor of silencing 1 (ROS1) and DEMETER-Like (DML). The TadMTases in the same subfamily or clade in the phylogenetic tree have similar gene structures, protein motifs, and domains. The promoter sequence contains multiple cis-regulatory elements (CREs) that respond to abiotic stress, hormones, and light, suggesting that the majority of TadMTase genes play a role in wheat growth, development, and stress response. The nuclear localization signals (NLSs), subcellular localization, and SRR motifs were also analyzed. The expression profile analyses revealed that TadMTase genes showed differential gene expression patterns in distinct developmental stages and tissues as well as under heat stress (HS). Furthermore, the qRT-PCR analysis revealed that TadMTase gene expression differed amongst wheat cultivars with varying degrees of HS tolerance. Overall, this work contributes to the understanding of the biological function of wheat dMTases and lays the foundation for future investigations.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- *Correspondence: Vijay Gahlaut,
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
Choudhary A, Kaur N, Sharma A, Kumar A. Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. PHYSIOLOGIA PLANTARUM 2021; 173:2207-2215. [PMID: 34549444 DOI: 10.1111/ppl.13571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Salinity is one of the most important constraints for global cereal production, and breeding for salinity tolerance is a challenge. The limited gene pools, merged information regarding osmotic stress/tissue tolerance mechanism(s) including the accumulation of Na+ , over-stressed on the Na+ exclusion mechanism, and inadequate suitable screening methods further weaken the progress. In the present study, an attempt was made to evaluate the salt tolerance in Triticum aestivum lines using the membership function value (MFV) of certain traits viz., the root and shoot length (RL & SL), shoot and root fresh weight (SFW & RFW), shoot and root dry weight (SDW & RDW) and germination percentage (GP). This study screened 314 wheat lines (278 linked top cross population [LTPs] and 36 normal wheat cultivars) under lab conditions to evaluate their salt tolerance. A positive, and the highest, correlation coefficient was recorded between salt tolerance index (STI) of SL and the STI of RL.0.11 highly salt tolerant (HST), 59 salt tolerant (ST), 100 moderately salt tolerant (MST), 137 salt sensitive (SS), and seven highly salt sensitive (HSS) were observed with a distance of 2.2 between each category. The R-square value was maximum (0.836) between the STI of SFW and the mean MFV, which can be used as the most reliable trait for the salinity tolerance in T. aestivum at the germination phase. Wheat tolerant lines had higher tolerance to salt stress in comparison with the used normal wheat cultivars were detected at the seedling stage.
Collapse
Affiliation(s)
- Anuj Choudhary
- Department of Botany, Punjab Agricultural University Ludhiana, Punjab, India
| | - Nirmaljit Kaur
- Department of Botany, Punjab Agricultural University Ludhiana, Punjab, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University Ludhiana, Punjab, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University Ludhiana, Punjab, India
| |
Collapse
|
10
|
Singroha G, Sharma P, Sunkur R. Current status of microRNA-mediated regulation of drought stress responses in cereals. PHYSIOLOGIA PLANTARUM 2021; 172:1808-1821. [PMID: 33956991 DOI: 10.1111/ppl.13451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Drought is one of the most important abiotic stress factors impeding crop productivity. With the uncovering of their role as potential regulators of gene expression, microRNAs (miRNAs) have been recognized as new targets for developing stress resistance. MicroRNAs are small noncoding RNAs whose abundance is significantly altered under stress conditions. Interestingly, plant miRNAs predominantly targets transcription factors (TFs), and some of which are also the most critical drought-responsive genes that in turn could regulate the expression of numerous loci with drought-adaptive potential. The phytohormone ABA plays important roles in regulating stomatal conductance and in initiating an adaptive response to drought stress. miRNAs are implicated in regulating ABA-(abscisic acid) and non-ABA-mediated drought resistance pathways. For instance, miR159-MYB module and miR169-NFYA module participates in an ABA-dependent pathway, whereas several other ABA-independent miRNA-target modules (miR156-SPL; miR393-TIR1; miR160-ARF10, ARF16, ARF17; miR167-ARF6 and ARF8; miR390/TAS3siRNA-ARF2, ARF3, ARF4) collectively regulate drought responses in plants. Overall, miRNA-mediated drought response manifests diverse molecular, biochemical and physiological processes. Because of their immense role in controlling gene expression, miRNA manipulation has significant potential to augment plant tolerance to drought stress. This review compiles the current understanding of drought-responsive miRNAs in major cereals. Also, potential miRNA manipulation strategies currently in use along with the challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Garima Singroha
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ramanjulu Sunkur
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|