1
|
Lima LF, Oliveira KBSD, Osiro KO, Cunha VA, Franco OL. Application of antimicrobial peptides in the poultry industry. Vet Microbiol 2024; 298:110267. [PMID: 39383680 DOI: 10.1016/j.vetmic.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Poultry meat production and exportation contribute significantly to the global economy. However, various infections affect poultry production and consequently affect the economy. Nowadays, antibiotics are widely used in infection treatment and prevention. Antibiotic overuse is problematic because may cause antimicrobial resistance, which can be transferred to humans directly or indirectly, affecting public health. In addition, since antibiotics for animal growth stimulation are banned, it is important to search for new molecules to overcome these difficulties. As an alternative, antimicrobial peptides (AMPs) can show immunomodulatory, antimicrobial, and growth stimulation, which makes these molecules interesting as alternatives to antibiotic use. Studying AMPs can provide new ideas for treating the most important infections that affect poultry. Besides, this can assist in reducing the resistance problem. This review aims to examine recent studies about AMPs used against pathogens that can affect the poultry industry.
Collapse
Affiliation(s)
- Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil
| | - Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil
| | - Karen Ofuji Osiro
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil
| | - Victor Albuquerque Cunha
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil; Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília (UnB), Brasília 70910-900, Brazil.
| |
Collapse
|
2
|
Tilli G, Ngom RV, Ferreira HCDC, Apostolakos I, Paudel S, Piccirillo A. A systematic review on the role of biosecurity to prevent or control colibacillosis in broiler production. Poult Sci 2024; 103:103955. [PMID: 38917608 PMCID: PMC11255943 DOI: 10.1016/j.psj.2024.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
This systematic review aimed at investigating the role that biosecurity can have in preventing or controlling colibacillosis in broiler production. Primary studies with natural or experimental exposure to avian pathogenic Escherichia coli, evaluating any biosecurity measure to prevent or control colibacillosis in broiler chickens with at least one of the following outcomes: feed conversion ratio (FCR), condemnations at slaughter, and mortality due to colibacillosis, were included. A systematic search was carried out in 4 databases according to the Cochrane handbook and reported following the PRISMA 2020 directions. Studies (n = 3,886) were screened in a 2-phase process and data matching the inclusion criteria were extracted. Risk of bias assessment was performed. Four studies reporting biosecurity measures to prevent or control colibacillosis in broiler production were included. In all studies, only disinfection during either the pre-hatching period (n = 3) or the post-hatching period (n = 1) was evaluated as biosecurity measure in broiler production, as well as its effect on FCR (n = 2) and mortality (n = 4) due to colibacillosis. No studies with effects on condemnations at slaughter were found. Due to the heterogeneity of studies in regard to interventions and outcomes, meta-analysis was not carried out. The limited findings of this systematic review do not provide a comprehensive evidence to statistically evaluate the efficacy of biosecurity to prevent or control colibacillosis in broiler production. The scarcity of evidence found suggests that further and deeper investigations on the topic are needed, considering the variety of interventions related to biosecurity.
Collapse
Affiliation(s)
- G Tilli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - R Vougat Ngom
- Department of Animal Production, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon; Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - I Apostolakos
- Dairy Research Institute, Hellenic Agricultural Organization "DIMITRA", Ioannina, Greece
| | - S Paudel
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary, Public Health, University of Veterinary Medicine Vienna, Vienna, Austria; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - A Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy.
| |
Collapse
|
3
|
Larsberg F, Sprechert M, Hesse D, Falker-Gieske C, Loh G, Brockmann GA, Kreuzer-Redmer S. In vitro assessment of the immunomodulatory effects of probiotic Bacillus strains on chicken PBMCs. Front Immunol 2024; 15:1415009. [PMID: 39139572 PMCID: PMC11320415 DOI: 10.3389/fimmu.2024.1415009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
The beneficial effects of feeding probiotic Bacillus subtilis DSM 32315 (BS) and Bacillus velezensis CECT 5940 (BV) to chickens in vivo are well-documented, with potential immune modulation as a key mechanism. In this study, we investigated the direct interactions of chicken peripheral blood mononuclear cells (PBMCs) with BS or BV in vitro through whole transcriptome profiling and cytokine array analysis. Transcriptome profiling revealed 20 significantly differentially expressed genes (DEGs) in response to both Bacillus treatments, with twelve DEGs identified in BS-treated PBMCs and eight in BV-treated PBMCs. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated significant regulation of immune-related pathways by both BS and BV. Notably, BS treatment upregulated genes associated with immune cell surface markers (CD4, CD25, CD28), anti-inflammatory cytokine interleukin-10 (IL-10), and C-C motif chemokine ligand 5 (CCL5), while downregulating the gene encoding pro-inflammatory IL-16. BV treatment similarly affected genes associated with immune cell surface markers, IL-16, and CCL5, with no impact on the gene encoding IL-10. Both treatments induced higher expression of the gene encoding the avian β-defensin 1 (AvBD1). The results of this in vitro study indicate an immunomodulatory effect of BS and BV in chicken PBMCs by regulating genes involved in anti-inflammatory, bacteriostatic, protective, and pro-inflammatory responses. Consequently, BS and BV may serve to augment the immune system's capacity to defend against infection by modulating immune responses and cytokine expression. Thus, the administration of these probiotics holds promise for reducing reliance on antimicrobials in farming practices.
Collapse
Affiliation(s)
- Filip Larsberg
- Albrecht Daniel Thaer-Institute, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Animal Nutrition and Animal Welfare, Nutrigenomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maximilian Sprechert
- Albrecht Daniel Thaer-Institute, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institute, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-Universität, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-Universität, Göttingen, Germany
| | - Gunnar Loh
- Research, Development and Innovation, Nutrition and Care, Evonik Operations GmbH, Halle (Westfalen), Germany
| | - Gudrun A. Brockmann
- Albrecht Daniel Thaer-Institute, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Kreuzer-Redmer
- Center for Animal Nutrition and Animal Welfare, Nutrigenomics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Oliveira GDS, McManus C, Dos Santos VM. Control of Escherichia coli in Poultry Using the In Ovo Injection Technique. Antibiotics (Basel) 2024; 13:205. [PMID: 38534640 DOI: 10.3390/antibiotics13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Pathogens, such as Escherichia coli (E. coli), have been identified as significant causes of poultry mortality. Poultry can serve as potential sources of E. coli transmission, even when asymptomatic, posing a substantial threat to food safety and human health. The in ovo administration of antimicrobials is crucial for preventing and/or effectively combating acute and chronic infections caused by poultry pathogens. To achieve this goal, it is critical that antimicrobials are properly injected into embryonic fluids, such as the amnion, to reach target tissues and trigger robust antimicrobial responses. Several protocols based on antimicrobials were evaluated to meet these requirements. This review analyzed the impacts of antimicrobial substances injected in ovo on the control of E. coli in poultry. The reduction in infection rates, resulting from the implementation of in ovo antimicrobials, combined with efforts aimed at hygienic-sanitary action plans in poultry sheds, reinforces confidence that E. coli can be contained before causing large scale damage. For example, antimicrobial peptides and probiotics have shown potential to provide protection to poultry against infections caused by E. coli. Issues related to the toxicity and bacterial resistance of many synthetic chemical compounds represent challenges that need to be overcome before the commercial application of in ovo injection protocols focused on microbiological control.
Collapse
Affiliation(s)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil
| | | |
Collapse
|
5
|
Wang S, Wang D, Bai Y, Zheng G, Han Y, Wang L, Hu J, Zhu H, Bai Y. Expression of Toll-like receptors and host defence peptides in the cecum of chicken challenged with Eimeria tenella. Parasite Immunol 2024; 46:e13022. [PMID: 38384176 DOI: 10.1111/pim.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.
Collapse
Affiliation(s)
- Song Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Danni Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yilin Bai
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Guijie Zheng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yanhui Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
6
|
Nicolas M, Faurie A, Girault M, Lavillatte S, Menanteau P, Chaumeil T, Riou M, Velge P, Schouler C. In ovo administration of a phage cocktail partially prevents colibacillosis in chicks. Poult Sci 2023; 102:102967. [PMID: 37639754 PMCID: PMC10477683 DOI: 10.1016/j.psj.2023.102967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the main bacterial disease in poultry leading to significant economic losses worldwide. Antibiotic treatments favor the emergence of multidrug-resistant bacteria, and preventive measures are insufficient to control the disease. There is increasing interest in using the potential of bacteriophages, not only for phage therapy but also for prevention and biocontrol. This study aimed to evaluate the efficacy of a phage cocktail administered in ovo to prevent avian colibacillosis in chicks. When 4 different phages (REC, ESCO3, ESCO47, and ESCO58), stable under avian physiological conditions, were combined and inoculated at 17 embryogenic days (ED), they were transmitted to the newly hatched chicks. In a second trial, the 4-phage cocktail was inoculated into the allantoic fluid at ED16 and after hatch 1-day-old chicks were challenged with the O2 APEC strain BEN4358 inoculated subcutaneously. Two phages (REC and ESCO3) were still detected in the ceca of surviving chicks at the end of the experiment (7-days postinfection). Chicks that received the phages in ovo did not develop colibacillosis lesions and showed a significant decrease in intestinal BEN4358 load (8.00 × 107 CFU/g) compared to the challenged chicks (4.52 × 108 CFU/g). The majority of the reisolated bacteria from the ceca of surviving chicks had developed full resistance to ESCO3 phage, and only 3 were resistant to REC phage. The partially or complete resistance of REC phage induced a considerable cost to bacterial virulence. Here, we showed that phages inoculated in ovo can partially prevent colibacillosis in 1-wk-old chicks. The reduction in the APEC load in the gut and the decreased virulence of some resistant isolates could also contribute to control the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Philippe Velge
- INRAE, University of Tours, ISP, F-37380 Nouzilly, France
| | | |
Collapse
|
7
|
Kannoth S, Ali N, Prasanth GK, Arvind K, Mohany M, Hembrom PS, Sadanandan S, Vasu DA, Grace T. Transcriptome analysis of Corvus splendens reveals a repertoire of antimicrobial peptides. Sci Rep 2023; 13:18728. [PMID: 37907616 PMCID: PMC10618271 DOI: 10.1038/s41598-023-45875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Multidrug resistance has become a global health problem associated with high morbidity and mortality. Antimicrobial peptides have been acknowledged as potential leads for prospective anti-infectives. Owing to their scavenging lifestyle, Corvus splendens is thought to have developed robust immunity to pathogens found in their diet, implying that they have evolved mechanisms to resist infection. In the current study, the transcriptome of C. splendens was sequenced, and de novo assembled to identify the presence of antimicrobial peptide genes. 72.09 million high-quality clean reads were obtained which were then de novo assembled into 3,43,503 transcripts and 74,958 unigenes. About 37,559 unigenes were successfully annotated using SwissProt, Pfam, GO, and KEGG databases. A search against APD3, CAMPR3 and LAMP databases identified 63 AMP candidates belonging to more than 20 diverse families and functional classes. mRNA of AvBD-2, AvBD-13 and CATH-2 were found to be differentially expressed between the three tested crows as well as among the tissues. We also characterized Corvus Cathelicidin 2 (CATH-2) to gain knowledge of its antimicrobial mechanisms. The CD spectroscopy of synthesized mature Corvus CATH-2 peptide displayed an amphipathic α-helical structure. Though the synthetic CATH-2 caused hemolysis of human RBC, it also exhibited antimicrobial activity against E. coli, S. aureus, and B. cereus. Docking simulation results revealed that this peptide could bind to the LPS binding site of MD-2, which may prevent LPS from entering the MD-2 binding pocket, and trigger TLR4 signaling pathway. The Corvus CATH-2 characterized in this study could aid in the development of novel therapeutics.
Collapse
Affiliation(s)
- Shalini Kannoth
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ganesh K Prasanth
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Kumar Arvind
- Neurogenetics Branch, National Institute of Neurological Disorder and Stroke, National Institute of Health, Bethesda, MD, 20892, USA
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Shemmy Sadanandan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India.
| |
Collapse
|
8
|
Li P, Cui Y, Guo F, Guo J, Cao X, Lin J, Ding B, Xu F. Campylobacter jejuni infection induces dynamic expression of avian host defense peptides in vitro and in vivo. Vet Microbiol 2023; 277:109631. [PMID: 36543091 DOI: 10.1016/j.vetmic.2022.109631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Campylobacter jejuni is considered as the leading cause of worldwide foodborne bacterial gastroenteritis. Chicken is the main reservoir of C. jejuni. Avian innate immune responses to C. jejuni remain poorly defined. Chicken host defense peptides (HDPs) are the major components of avian innate immune system. This study aimed to characterize the chicken HDPs responses to C. jejuni in vitro and in vivo. In the HD11 macrophage cell line, the HDPs, including AvBD1-2, CATH1-3, AvBD7, AvBD4, and AvBD6, were relatively higher expressed in untreated cells, whereas the expressions were suppressed after C. jejuni infection. In contrast, C. jejuni infection significantly increased the expression of the lower expressed HDPs, such as AvBD3, AvBD5, AvBD8-14, and CATHB1, in untreated cells. In the chicken challenge experiment, the immune tissues of spleens and cecal tonsils were collected from C. jejuni-infected and uninfected chickens at 1, 3 and 15 day post inoculation (DPI). In spleens of C. jejuni-infected chickens, only AvBD14 expression was elevated at 1 DPI. The majority of avian HDPs were significantly up-regulated at 3 DPI and dramatically decreased to the levels of uninfected controls at 15 DPI. In chicken cecal tonsils, only AvBD9 and AvBD14 were significantly up-regulated at 1 DPI with C. jejuni infection. Collectively, C. jejuni infection induced dynamic expression of chicken HDPs in both macrophage HD11 and immune tissues of chickens. Suppression of chicken HDPs expression may be an evasion strategy of C. jejuni for persistent colonization in chicken intestine by circumventing the chicken immune system.
Collapse
Affiliation(s)
- Pengxiang Li
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiahui Guo
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Baoan Ding
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China.
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
9
|
Nguyen TTT, Shahin K, Allan B, Sarfraz M, Wheler C, Gerdts V, Köster W, Dar A. Enhancement of protective efficacy of innate immunostimulant based formulations against yolk sac infection in young chicks. Poult Sci 2022; 101:102119. [PMID: 36087444 PMCID: PMC9468504 DOI: 10.1016/j.psj.2022.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to characterize and compare the protective effects of various innate immune stimulants against yolk sac infection (YSI) caused by an avian pathogenic Escherichia coli in young chicks. The immune stimulants were administered alone or in various combinations of unmethylated CpG oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (Poly I:C), and avian antimicrobial peptides (AMPs). Routes included in ovo or in ovo followed by a subcutaneous (S/C) injection. CpG alone and in combination with Poly I:C, truncated avian cathelicidin (CATH)-1(6-26), avian beta defensin (AvBD)1, and CATH-1(6-26) + AvBD1, were administered in ovo to 18-day-old embryonated eggs for gene expression and challenge studies. Next, CpG alone and the potentially effective formulation of CpG + Poly I:C, were administrated via the in ovo route using 40 embryonated eggs. At 1 day post-hatch, half of each group also received their respective treatments via the S/C route. Four hours later, all chicks were challenged using E. coli strain EC317 and mortalities were recorded for 14 d. The first challenge study revealed that amongst the single use and combinations of CpG with different innate immune stimulants, a higher protection and a lower clinical score were offered by the combination of CpG + Poly I:C. The second challenge study showed that this combination (CpG + Poly I:C) provides an even higher level of protection when a second dose is administered via the S/C route at 1 day post-hatch. The current research highlights the efficacy of a combination of CpG + Poly I:C administered either in ovo or in ovo along with a S/C injection and its potential use as an alternative to antibiotics against yolk sac infection in young chicks.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada.
| | - Khalid Shahin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Mishal Sarfraz
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Arshud Dar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| |
Collapse
|
10
|
Choi J, Singh AK, Chen X, Lv J, Kim WK. Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens. Animals (Basel) 2022; 12:ani12172178. [PMID: 36077897 PMCID: PMC9454433 DOI: 10.3390/ani12172178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to evaluate the effects of OAs and EOs on growth performance, serum biochemistry, antioxidant enzyme activities, intestinal morphology, and digestive enzyme activities to replace AGP in broilers. Six hundred one-day-old broilers were allotted to five treatments with six replicates: (1) negative control (NC; basal diet); (2) positive control (PC; NC + 50 mg/kg bacitracin methylene disalicylate); (3) organic acids (OA; NC + 2000 mg/kg OA); (4) essential oils (EO; NC + 300 mg/kg EO); and (5) OA + EO (NC + 2000 mg/kg OA + 300 mg/kg EO). In the starter phase, the PC, EO, and OA + EO groups had a significantly lower feed conversion ratio (FCR) compared to the NC group. While the final body weight (BW) of broilers fed OAs was similar compared to broilers fed PC (p > 0.1), the FCR of the OA group tended to be lower than the PC group on D 42 (p = 0.074). The OA group had the higher serum GLOB:ALB (albumin) and ileal villus height and crypt depth (VH:CD) ratios compared to the EO group. Thus, the supplementation of EOs and OAs could substitute AGP in the starter and finisher phase, respectively.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Xi Chen
- Nutribins, Walnut, CA 91789, USA
| | - Jirong Lv
- DadHank (Chengdu) Biotech Corp, Chengdu 611130, China
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-1346
| |
Collapse
|
11
|
Wellawa DH, Lam PKS, White AP, Allan B, Köster W. Characterization of colonization kinetics and virulence potential of Salmonella Enteritidis in chickens by photonic detection. Front Vet Sci 2022; 9:948448. [PMID: 35982923 PMCID: PMC9378992 DOI: 10.3389/fvets.2022.948448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The light emitting module lux operon (luxCDABE) of Photorhabdus luminescens can be integrated into a “dark” bacterium for expression under a suitable promoter. The technique has been used to monitor kinetics of infection, e.g., by studying gene expression in Salmonella using mouse models in vivo and ex vivo. Here, we applied the bioluminescence imaging (BLI) technique to track Salmonella Enteritidis (SEn) strains carrying the lux operon expressed under a constitutive promoter sequence (sigma 70) in chicken after oral challenge. Detectable photon signals were localized in the crop, small intestine, cecum, and yolk sac in orally gavaged birds. The level of colonization was determined by quantification of signal intensity and SEn prevalence in the cecum and yolk sac. Furthermore, an isogenic SEn mutant strain tagged with the lux operon allowed for us to assess virulence determinants regarding their role in colonization of the cecum and yolk sac. Interestingly, mutations of SPI-1(Salmonella Pathogenicity Island 1) and fur (ferric uptake regulator) showed significantly decreased colonization in yolk sac that was correlated with the BLI data. A similar trend was detected in a ΔtonB strain by analyzing enrichment culture data. The inherently low quantum yield, light scattering, and absorption by tissues did not facilitate detection of signals from live birds. However, the detection limit of lux operon has the potential to be improved by resonance energy transfer to a secondary molecule. As a proof-of-concept, we were able to show that sensitization of a fluorescent-bound molecule known as the lumazine protein (LumP) improved the limit of detection to a certain extent.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Po-King S. Lam
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Wolfgang Köster
| |
Collapse
|
12
|
Lu Y, Tian H, Chen R, Liu Q, Jia K, Hu DL, Chen H, Ye C, Peng L, Fang R. Synergistic Antimicrobial Effect of Antimicrobial Peptides CATH-1, CATH-3, and PMAP-36 With Erythromycin Against Bacterial Pathogens. Front Microbiol 2022; 13:953720. [PMID: 35910608 PMCID: PMC9335283 DOI: 10.3389/fmicb.2022.953720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
With the increasing bacterial resistance to traditional antibiotics, there is an urgent need for the development of alternative drugs or adjuvants of antibiotics to enhance antibacterial efficiency. The combination of antimicrobial peptides (AMPs) and traditional antibiotics is a potential alternative to enhance antibacterial efficiency. In this study, we investigated the synergistic bactericidal effect of AMPs, including chicken (CATH-1,−2,−3, and -B1), mice (CRAMP), and porcine (PMAP-36 and PR-39) in combination with conventional antibiotics containing ampicillin, tetracycline, gentamicin, and erythromycin against Staphylococcus aureus, Salmonella enteritidis, and Escherichia coli. The results showed that the minimum bactericidal concentration (MBC) of CATH-1,−3 and PMAP-36 was lower than 10 μM, indicating that these three AMPs had good bacterial activity against S. aureus, S. enteritidis, and E. coli. Then, the synergistic antibacterial activity of AMPs and antibiotics combination was determined by the fractional bactericidal concentration index (FBCI). The results showed that the FBCI of AMPs (CATH-1,−3 and PMAP-36) and erythromycin was lower than 0.5 against bacterial pathogens, demonstrating that they had a synergistic bactericidal effect. Furthermore, the time-killing kinetics of AMPs (CATH-1,−3 and PMAP-36) in combination with erythromycin showed that they had a continuous killing effect on bacteria within 3 h. Notably, the combination showed lower hemolytic activity and cytotoxicity to mammal cells compared to erythromycin and peptide alone treatment. In addition, the antibacterial mechanism of CATH-1 and erythromycin combination against E. coli was studied. The results of the scanning electron microscope showed that CATH-1 enhanced the antibacterial activity of erythromycin by increasing the permeability of bacterial cell membrane. Moreover, the results of bacterial migration movement showed that the combination of CATH-1 and erythromycin significantly inhibits the migration of E. coli. Finally, drug resistance analysis was performed and the results showed that CATH-1 delayed the emergence of E. coli resistance to erythromycin. In conclusion, the combination of CATH-1 and erythromycin has synergistic antibacterial activity and reduces the emergence of bacterial drug resistance. Our study provides valuable information to develop AMPs as potential substitutes or adjuvants for traditional antibiotics.
Collapse
Affiliation(s)
- Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Runqiu Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qian Liu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - Hongwei Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
- Lianci Peng
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- *Correspondence: Rendong Fang
| |
Collapse
|
13
|
Chang Y, Mei J, Yang T, Zhang Z, Liu G, Zhao H, Chen X, Tian G, Cai J, Wu B, Wu F, Jia G. Effect of Dietary Zinc Methionine Supplementation on Growth Performance, Immune Function and Intestinal Health of Cherry Valley Ducks Challenged With Avian Pathogenic Escherichia coli. Front Microbiol 2022; 13:849067. [PMID: 35602082 PMCID: PMC9115567 DOI: 10.3389/fmicb.2022.849067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to evaluate the effects of supplemental zinc methionine (Zn-Met) on growth performance, immune function, and intestinal health of meat ducks challenged with avian pathogenic Escherichia coli (APEC). A total of 480 1-day-old Cherry Valley male ducks were randomly assigned to 8 treatments with 10 replicates, each replicate containing 10 ducks. A 4 × 2 factor design was used with four dietary zinc levels (0, 30, 60, 120 mg Zn/kg in the form Zn-Met was added to the corn-soybean basal diet) and challenged with or without APEC at 8-days-old ducks. The trial lasted for 14 days. The results showed that a dietary Zn-Met supplementation significantly increased body weight (BW) of 14 days and BW gain, and decreased mortality during 7-14-days-old ducks (p < 0.05). Furthermore, dietary 30, 60, 120 mg/kg Zn-Met supplementation noticeably increased the thymus index at 2 days post-infection (2 DPI) and 8 DPI (p < 0.05), and 120 mg/kg Zn-Met enhanced the serum IgA at 2 DPI and IgA, IgG, IgM, C3 at 8 DPI (p < 0.05). In addition, dietary 120 mg/kg Zn-Met supplementation dramatically increased villus height and villus height/crypt depth (V/C) of jejunum at 2 DPI and 8 DPI (p < 0.05). The TNF-α and IFN-γ mRNA expression were downregulated after supplemented with 120 mg/kg Zn-Met in jejunum at 8 DPI (p < 0.05). Moreover, dietary 120 mg/kg Zn-Met supplementation stimulated ZO-3, OCLN mRNA expression at 2 DPI and ZO-2 mRNA expression in jejunum at 8 DPI (p < 0.05), and improved the MUC2 concentration in jejunum at 2 DPI and 8 DPI (p < 0.05). At the same time, the cecal Bifidobacterium and Lactobacillus counts were increased (p < 0.05), and Escherichia coli counts were decreased (p < 0.05) after supplemented with Zn-Met. In conclusion, inclusion of 120 mg/kg Zn-Met minimizes the adverse effects of APEC challenge on meat ducks by improving growth performance and enhancing immune function and intestinal health.
Collapse
Affiliation(s)
- Yaqi Chang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jia Mei
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ting Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhenyu Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Wu
- Chelota Group, Guanghan, China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|