1
|
Yang J, Li X, Dai C, Teng Y, Xie L, Tian H, Hong S. Living Conditions Alter Ketogenic Diet-induced Metabolic Consequences in Mice through Modulating Gut Microbiota. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:313-326. [PMID: 39583308 PMCID: PMC11584838 DOI: 10.1007/s43657-024-00161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 11/26/2024]
Abstract
Many laboratories have demonstrated that the ketogenic diet (KD) can lead to weight loss and reduced fasting glucose levels, while also increasing total serum cholesterol levels. However, it's worth noting that the specific outcomes induced by KD can vary across different research settings. Certain studies have indicated that environmental factors, such as housing conditions and the acidity of drinking water, can influence physiological parameters and gut microbes in mice. Thus, our current study aimed to investigate whether differences in housing conditions and pH levels of drinking water contribute to variations in KD-induced phenotypes and gut microbes. Our findings revealed that mice housed in conventional (CV) conditions experienced more significant weight loss, lower fasting blood glucose levels, and a greater elevation of blood cholesterol levels compared to those in the specific pathogen-free (SPF) condition. Additionally, similar differences were observed when comparing mice fed with non-acidified water versus acidified water. Furthermore, we analyzed cecum content samples using 16S rRNA sequencing to assess gut microbial composition and found that the tested environmental variables also had an impact on the gut microbial composition of KD-fed mice, which was correlated with their phenotypic alterations. In summary, both housing conditions and the pH of drinking water were identified as crucial environmental factors that influenced KD-induced changes in metabolic phenotypes and gut microbes. Our study emphasizes the importance of considering these factors in animal studies related to KD and gut microbes, as well as in other types of animal research. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-024-00161-1.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Xiao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Chen Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Yongduan Teng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Linshan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438 China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
2
|
Gozalo AS, Elkins WR. A Review of the Effects of Some Extrinsic Factors on Mice Used in Research. Comp Med 2023; 73:413-431. [PMID: 38217072 PMCID: PMC10752364 DOI: 10.30802/aalas-cm-23-000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Animals have been used in research for over 2,000 y. From very crude experiments conducted by ancient scholars, animal research, as a science, was refined over hundreds of years to what we know it as today. However, the housing conditions of animals used for research did not improve significantly until less than 100 years ago when guidelines for housing research animals were first published. In addition, it was not until relatively recently that some extrinsic factors were recognized as a research variable, even when animals were housed under recommended guidelines. For example, temperature, humidity, light, noise, vibration, diet, water, caging, bedding, etc., can all potentially affect research using mice, contributing the inability of others to reproduce published findings. Consequently, these external factors should be carefully considered in the design, planning, and execution of animal experiments. In addition, as recommended by others, the housing and husbandry conditions of the animals should be described in detail in publications resulting from animal research to improve study reproducibility. Here, we briefly review some common, and less common, external factors that affect research in one of the most popular animal models, the mouse.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Kovács AD, Gonzalez Hernandez JL, Pearce DA. Acidified drinking water improves motor function, prevents tremors and changes disease trajectory in Cln2 R207X mice, a model of late infantile Batten disease. Sci Rep 2023; 13:19229. [PMID: 37932327 PMCID: PMC10628098 DOI: 10.1038/s41598-023-46283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Batten disease is a group of mostly pediatric neurodegenerative lysosomal storage disorders caused by mutations in the CLN1-14 genes. We have recently shown that acidified drinking water attenuated neuropathological changes and improved motor function in the Cln1R151X and Cln3-/- mouse models of infantile CLN1 and juvenile CLN3 diseases. Here we tested if acidified drinking water has beneficial effects in Cln2R207X mice, a nonsense mutant model of late infantile CLN2 disease. Cln2R207X mice have motor deficits, muscle weakness, develop tremors, and die prematurely between 4 and 6 months of age. Acidified water administered to Cln2R207X male mice from postnatal day 21 significantly improved motor function, restored muscle strength and prevented tremors as measured at 3 months of age. Acidified drinking water also changed disease trajectory, slightly delaying the death of Cln2R207X males and females. The gut microbiota compositions of Cln2R207X and wild-type male mice were markedly different and acidified drinking water significantly altered the gut microbiota of Cln2R207X mice. This suggests that gut bacteria might contribute to the beneficial effects of acidified drinking water. Our study demonstrates that drinking water is a major environmental factor that can alter disease phenotypes and disease progression in rodent disease models.
Collapse
Affiliation(s)
- Attila D Kovács
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
4
|
Putnam JG, Steiner JN, Richard JC, Leis E, Goldberg TL, Dunn CD, Agbalog R, Knowles S, Waller DL. Mussel mass mortality in the Clinch River, USA: metabolomics detects affected pathways and biomarkers of stress. CONSERVATION PHYSIOLOGY 2023; 11:coad074. [PMID: 37680611 PMCID: PMC10482074 DOI: 10.1093/conphys/coad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Biologists monitoring freshwater mussel (order Unionida) populations rely on behavioral, often subjective, signs to identify moribund ("sick") or stressed mussels, such as gaping valves and slow response to probing, and they lack clinical indicators to support a diagnosis. As part of a multi-year study to investigate causes of reoccurring mortality of pheasantshell (Ortmanniana pectorosa; synonym Actinonaias pectorosa) in the Clinch River, Virginia and Tennessee, USA, we analyzed the hemolymph metabolome of a subset of mussels from the 2018 sampling period. Mussels at the mortality sites were diagnosed in the field as affected (case) or unaffected (control) based on behavioral and physical signs. Hemolymph was collected in the field by non-lethal methods from the anterior adductor muscle for analysis. We used ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectroscopy to detect targeted and untargeted metabolites in hemolymph and compared metabolomic profiles by field assessment of clinical status. Targeted biomarker analysis found 13 metabolites associated with field assessments of clinical status. Of these, increased gamma-linolenic acid and N-methyl-l-alanine were most indicative of case mussels, while adenine and inosine were the best indicators of control mussels. Five pathways in the targeted analysis differed by clinical status; two of these, purine metabolism and glycerophospholipid metabolism, were also indicated in the untargeted analysis. In the untargeted nalysis, 22 metabolic pathways were associated with clinical status. Many of the impacted pathways in the case group were catabolic processes, such as degradation of amino acids and fatty acids. Hierarchical clustering analysis matched clinical status in 72% (18 of 25) of mussels, with control mussels more frequently (5 of 16) not matching clinical status. Our study demonstrated that metabolomic analysis of hemolymph is suitable for assessing mussel condition and complements field-based indicators of health.
Collapse
Affiliation(s)
- Joel G Putnam
- Conagen, Inc., 15 Deangelo Drive, Bedford, MA 01730, USA
| | - John N Steiner
- US Geological Survey, Upper Midwest Environmental Science Center, 2630 Fanta Reed Road, La Crosse WI 54603, USA
| | - Jordan C Richard
- US Fish and Wildlife Service, Southwestern Virginia Field Office, 330 Cummings Street, Abingdon, VA 24210, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison WI 53706, USA
| | - Eric Leis
- US Fish and Wildlife Service, Midwest Fisheries Center, La Crosse Fish Health Center, 555 Lester Ave., Onalaska, WI 54650, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison WI 53706, USA
- Global Health Institute, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | - Christopher D Dunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison WI 53706, USA
| | - Rose Agbalog
- US Fish and Wildlife Service, Southwestern Virginia Field Office, 330 Cummings Street, Abingdon, VA 24210, USA
| | - Susan Knowles
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA
| | - Diane L Waller
- US Geological Survey, Upper Midwest Environmental Science Center, 2630 Fanta Reed Road, La Crosse WI 54603, USA
| |
Collapse
|
5
|
Harney DJ, Cielesh M, Roberts GE, Vila IK, Viengkhou B, Hofer MJ, Laguette N, Larance M. Dietary restriction induces a sexually dimorphic type I interferon response in mice with gene-environment interactions. Cell Rep 2023; 42:112559. [PMID: 37243595 DOI: 10.1016/j.celrep.2023.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Intermittent fasting (IF) is an established intervention to treat the growing obesity epidemic. However, the interaction between dietary interventions and sex remains a significant knowledge gap. In this study, we use unbiased proteome analysis to identify diet-sex interactions. We report sexual dimorphism in response to intermittent fasting within lipid and cholesterol metabolism and, unexpectedly, in type I interferon signaling, which was strongly induced in females. We verify that secretion of type I interferon is required for the IF response in females. Gonadectomy differentially alters the every-other-day fasting (EODF) response and demonstrates that sex hormone signaling can either suppress or enhance the interferon response to IF. IF fails to potentiate a stronger innate immune response when IF-treated animals were challenged with a viral mimetic. Lastly, the IF response changes with genotype and environment. These data reveal an interesting interaction between diet, sex, and the innate immune system.
Collapse
Affiliation(s)
- Dylan J Harney
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | - Michelle Cielesh
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | - Georgia E Roberts
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | | | - Barney Viengkhou
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | - Markus J Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | | | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, 2006 NSW, Australia.
| |
Collapse
|
6
|
Berryman D, Barrett J, Liu C, Maugee C, Waldbaum J, Yi D, Xing H, Yokoi F, Saxena S, Li Y. Motor deficit and lack of overt dystonia in Dlx conditional Dyt1 knockout mice. Behav Brain Res 2023; 439:114221. [PMID: 36417958 PMCID: PMC10364669 DOI: 10.1016/j.bbr.2022.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset generalized dystonia caused by a trinucleotide deletion of GAG in the TOR1A or DYT1 gene leads to the loss of a glutamic acid residue in the resulting torsinA protein. A mouse model with overt dystonia is of unique importance to better understand the DYT1 pathophysiology and evaluate preclinical drug efficacy. DYT1 dystonia is likely a network disorder involving multiple brain regions, particularly the basal ganglia. Tor1a conditional knockout in the striatum or cerebral cortex leads to motor deficits, suggesting the importance of corticostriatal connection in the pathogenesis of dystonia. Indeed, corticostriatal long-term depression impairment has been demonstrated in multiple targeted DYT1 mouse models. Pappas and colleagues developed a conditional knockout line (Dlx-CKO) that inactivated Tor1a in the forebrain and surprisingly displayed overt dystonia. We set out to validate whether conditional knockout affecting both cortex and striatum would lead to overt dystonia and whether machine learning-based video behavioral analysis could be used to facilitate high throughput preclinical drug screening. We generated Dlx-CKO mice and found no overt dystonia or motor deficits at 4 months. At 8 months, retesting revealed motor deficits in rotarod, beam walking, grip strength, and hyperactivity in the open field; however, no overt dystonia was visually discernible or through the machine learning-based video analysis. Consistent with other targeted DYT1 mouse models, we observed age-dependent deficits in the beam walking test, which is likely a better motor behavioral test for preclinical drug testing but more labor-intensive when overt dystonia is absent.
Collapse
Affiliation(s)
- David Berryman
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jake Barrett
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Canna Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Julien Waldbaum
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Daiyao Yi
- Herbert Wertheim College of Engineering, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shreya Saxena
- Herbert Wertheim College of Engineering, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160163. [PMID: 36395835 PMCID: PMC9659553 DOI: 10.1016/j.scitotenv.2022.160163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.
Collapse
Affiliation(s)
- Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wilson Nguyen
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029, 4072, Australia.
| |
Collapse
|
8
|
Chen GY, Wang LZ, Cui Y, Liu JC, Wang LQ, Wang LL, Sun JY, Liu C, Tan HL, Li Q, Jin YS, Xu ZC, Yu DJ. Serum metabolomic analysis reveals key metabolites in drug treatment of central precocious puberty in female children. Front Mol Neurosci 2023; 15:972297. [PMID: 36776772 PMCID: PMC9912178 DOI: 10.3389/fnmol.2022.972297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Precocious puberty (PP) is a common condition among children. According to the pathogenesis and clinical manifestations, PP can be divided into central precocious puberty (CPP, gonadotropin dependent), peripheral precocious puberty (PPP, gonadotropin independent), and incomplete precocious puberty (IPP). Identification of the variations in key metabolites involved in CPP and their underlying biological mechanisms has increased the understanding of the pathological processes of this condition. However, little is known about the role of metabolite variations in the drug treatment of CPP. Moreover, it remains unclear whether the understanding of the crucial metabolites and pathways can help predict disease progression after pharmacological therapy of CPP. In this study, systematic metabolomic analysis was used to examine three groups, namely, healthy control (group N, 30 healthy female children), CPP (group S, 31 female children with CPP), and treatment (group R, 29 female children) groups. A total of 14 pathways (the top two pathways were aminoacyl-tRNA biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis) were significantly enriched in children with CPP. In addition, two short peptides (His-Arg-Lys-Glu and Lys-Met-His) were found to play a significant role in CPP. Various metabolites associated with different pathways including amino acids, PE [19:1(9Z)0:0], tumonoic acid I, palmitic amide, and linoleic acid-biotin were investigated in the serum of children in all groups. A total of 45 metabolites were found to interact with a chemical drug [a gonadotropin-releasing hormone (GnRH) analog] and a traditional Chinese medicinal formula (DBYW). This study helps to understand metabolic variations in CPP after drug therapy, and further investigation may help develop individualized treatment approaches for CPP in clinical practice.
Collapse
Affiliation(s)
- Guo-you Chen
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China,College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing, China
| | - Li-zhe Wang
- Heilongjiang Provincial Hospital, Harbin, China
| | - Yue Cui
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China
| | - Jin-cheng Liu
- College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing, China
| | - Li-qiu Wang
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China
| | - Long-long Wang
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China
| | - Jing-yue Sun
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China
| | - Chang Liu
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China
| | - Hai-ling Tan
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China
| | - Qi Li
- College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yi-si Jin
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China,Yi-si Jin,
| | - Zhi-chun Xu
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China,Zhi-chun Xu,
| | - De-jun Yu
- The Fifth Affiliated Hospital of Harbin Medical University, Women and Children’s Healthcare Hospital, Daqing, China,*Correspondence: De-jun Yu,
| |
Collapse
|
9
|
The β-Blocker Carvedilol Prevents Benzo(a)pyrene-Induced Lung Toxicity, Inflammation and Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030583. [PMID: 36765542 PMCID: PMC9913110 DOI: 10.3390/cancers15030583] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The current study evaluated the effects of the β-blocker carvedilol on benzo(a)pyrene (B(a)P) and its active metabolite benzo(a)pyrene diol epoxide (BPDE)-induced lung toxicity, inflammation and carcinogenesis and explored the potential mechanisms. Carvedilol blocked the BPDE-induced malignant transformation of human bronchial epithelial cells BEAS-2B. In BEAS-2B cells, B(a)P strongly activated ELK-1, a transcription factor regulating serum response element (SRE) signaling, which was attenuated by carvedilol. Carvedilol also inhibited the B(a)P-induced AhR/xenobiotic responsive element (XRE) and mRNA expression of CYP1A1 and attenuated B(a)P-induced NF-κB activation. In a B(a)P-induced acute lung toxicity model in CD-1/IGS mice, pretreatment with carvedilol for 7 days before B(a)P exposure effectively inhibited the B(a)P-induced plasma levels of lactate dehydrogenase and malondialdehyde, inflammatory cell infiltration and histopathologic abnormalities in the lung, and upregulated the expression of GADD45α, caspase-3 and COX-2 in the lung. In a B(a)P-induced lung carcinogenesis model in A/J mice, carvedilol treatment for 20 weeks did not affect body weight but significantly attenuated tumor multiplicity and volume. These data reveal a previously unexplored role of carvedilol in preventing B(a)P-induced lung inflammation and carcinogenesis by inhibiting the cross-talk of the oncogenic transcription factors ELK-1, AhR and NF-κB.
Collapse
|
10
|
Zhang H, Xia Y, Chang Q, Zhang X, Zhao Y. Association between water source and chronic gastrointestinal diseases in Chinese: A cross-sectional and longitudinal study. Front Public Health 2022; 10:992462. [PMID: 36438297 PMCID: PMC9685615 DOI: 10.3389/fpubh.2022.992462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Background Gastrointestinal health is closely associated with the quality of the water supply. However, long-term associations between the water supply type and chronic gastrointestinal disease (CGD) are unclear. Method The water supply was categorized as "tap-water" or "non-tap water" use. Changes in water source use were categorized into four types: "non-tap water both at baseline and in follow-ups," "non-tap water at baseline and tap-water in follow-ups," "tap-water at baseline and non-tap water in follow-ups," or "tap-water at baseline and in follow-ups." We explored the association between tap-water use (and changes therein) and the risk of CGD in a cross-sectional and longitudinal population study based on national cohort data from 2011 to 2018. Results After the inclusion and exclusion process, 13,332 and 9,688 participants were included in the cross-sectional and longitudinal analyses, respectively. Tap-water use was associated with fewer CGD cases at baseline (OR = 0.98, 95% CI: 0.90, 1.07). Tap-water use at baseline was associated with significantly lower incidence of CGD in follow-ups (HR = 0.70, 95% CI: 0.70, 0.90). Compared with consistent non-tap water use in both baseline and follow-ups, switching from non-tap water to tap-water use in follow-ups was associated with a lower risk of CGD (HR = 0.79, 95% CI: 0.64, 0.97), tap water use at both baseline and in follow-ups was associated with a lower risk of CGD (HR = 0.72, 95% CI: 0.59, 0.88). The decreased risk of CGD followed a linear trend (P fortrend < 0.01). Adjustment for indoor solid fuel use and outdoor air pollution exposure to PM2.5 did not change the association between tap water use and CGD. Conclusion Tap water use was associated with a reduced risk of incident CGD. The results from this study should aid in effect assessment for water purification strategies and public decision support for gastrointestinal health management.
Collapse
Affiliation(s)
- Hehua Zhang
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangsu Zhang
- International Education School, China Medical University, Shenyang, China
| | - Yuhong Zhao
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China,Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Yuhong Zhao ;
| |
Collapse
|
11
|
Bartochowski P, Gayrard N, Bornes S, Druart C, Argilés A, Cordaillat-Simmons M, Duranton F. Gut–Kidney Axis Investigations in Animal Models of Chronic Kidney Disease. Toxins (Basel) 2022; 14:toxins14090626. [PMID: 36136564 PMCID: PMC9502418 DOI: 10.3390/toxins14090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is an incurable disease in which renal function gradually declines, resulting in no noticeable symptoms during the early stages and a life-threatening disorder in the latest stage. The changes that accompany renal failure are likely to influence the gut microbiota, or the ecosystem of micro-organisms resident in the intestine. Altered gut microbiota can display metabolic changes and become harmful to the host. To study the gut–kidney axis in vivo, animal models should ideally reproduce the disorders affecting both the host and the gut microbiota. Murine models of CKD, but not dog, manifest slowed gut transit, similarly to patient. Animal models of CKD also reproduce altered intestinal barrier function, as well as the resulting leaky gut syndrome and bacterial translocation. CKD animal models replicate metabolic but not compositional changes in the gut microbiota. Researchers investigating the gut–kidney axis should pay attention to the selection of the animal model (disease induction method, species) and the setting of the experimental design (control group, sterilization method, individually ventilated cages) that have been shown to influence gut microbiota.
Collapse
Affiliation(s)
- Piotr Bartochowski
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| | - Nathalie Gayrard
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
- Correspondence:
| | - Stéphanie Bornes
- Université Clermont Auvergne, Inrae, Vetagro Sup, UMRF0545, 15000 Aurillac, France
| | - Céline Druart
- Pharmabiotic Research Institute (PRI), 11100 Narbonne, France
| | - Angel Argilés
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| | | | - Flore Duranton
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
12
|
Quantitative behavioral models for high-resolution measurement and characterization of tremor in rodents. Brain Res Bull 2022; 186:8-15. [PMID: 35487386 DOI: 10.1016/j.brainresbull.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 01/25/2023]
Abstract
Tremor is an involuntary, rhythmic movement disorder. Despite its prevalence, the underlying pathophysiology remains poorly understood and effective treatment options are limited. Animal models are essential in enhancing our understanding of the mechanisms of tremorogenesis and developing new therapeutic interventions. Although tremor is amenable to measurement by automated systems, visual observation is still the most prevalent method for recording tremor in animal studies. This review gives a brief summary of two behavioral methods that enable quantitative measurement of forelimb tremor (the press-while-licking task) and whole-body tremor (the force-plate actometer) in rodents. These methods utilize force transducer and computing technologies to generate high-resolution force-time waveforms for automated detection and characterization of tremor. The focus will be on the sensitive, precise, and quantitative measurement of tremors induced in rodents by low-dose pharmacological agents, brain lesion, physical training, and genetic mutations. The methods reviewed here provide new tools that can facilitate preclinical assessment of treatment strategies for tremor.
Collapse
|
13
|
Soares JRA, Pereira E Silva A, de Souza Oliveira AL, Guimarães IM, das Neves Faccini CRJ, de Aquino Mattos EB, Rodrigues SKPM, Marmello BO, Teixeira GAPB. Allergen extraction: Factors influencing immunogenicity and sensitivity of immunoassays. J Immunol Methods 2021; 498:113125. [PMID: 34450115 DOI: 10.1016/j.jim.2021.113125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Food allergy prevalence is increasing worldwide, therefore there is a high demand for reliable tests to correctly diagnose this disease. Knowledge of proteins allergenicity and how they react both in the body and in diagnostic tests is necessary to adequately assess the potential immunogenicity of both natural foods and those produced through biotechnological processes. Thus, our aim was to analyze the factors that influence the protein extraction of foods in terms of, immunogenicity and immunoassays sensitivity. Peanut proteins were extracted using four distinct extraction buffers with different pH values (physiological saline, tris buffer, borate buffer with and without β-mercaptoethanol), the protein concentration was determined by the Lowry method and polyacrylamide electrophoresis (SDS-PAGE) was used to compare the protein profile of each extract. The immunogenicity of each extract was verified by sensitizing two mouse strains (Balb/c and C57Bl/6) with a solution containing 100 μg of the extracted proteins and was determined by ELISA. Results show that extraction with the distinct buffers resulted in protein solutions with different yields and profiles. The immunogenicity of the different extracts also demonstrated distinct patterns that varied depending on the extraction methods, mouse strain and in vitro test. Immunoreactivity varied in accordance with the protein extract used to coat the microtitration plates. In conclusion, the protein profile in the extracts is critically influenced by the salt composition and pH of the extraction buffers, this in turn influences both in vivo immunogenicity and in vitro immunoreactivity.
Collapse
Affiliation(s)
- João Ricardo Almeida Soares
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Airton Pereira E Silva
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Ana Luísa de Souza Oliveira
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Isabelle Mazza Guimarães
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Claudia Regina Josetti das Neves Faccini
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Erika Bertozzi de Aquino Mattos
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Sónia Kristy Pinto Melo Rodrigues
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Bárbara Oliveira Marmello
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Gerlinde Agate Platais Brasil Teixeira
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-141, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil.
| |
Collapse
|
14
|
Cushion MT, Ashbaugh A. The Long-Acting Echinocandin, Rezafungin, Prevents Pneumocystis Pneumonia and Eliminates Pneumocystis from the Lungs in Prophylaxis and Murine Treatment Models. J Fungi (Basel) 2021; 7:jof7090747. [PMID: 34575785 PMCID: PMC8468546 DOI: 10.3390/jof7090747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023] Open
Abstract
Rezafungin is a novel echinocandin in Phase 3 development for prevention of invasive fungal disease caused by Candida spp., Aspergillus spp. and Pneumocystis jirovecii in blood and marrow transplantation patients. For such patients, standard antifungal prophylaxis currently comprises an azole for Candida and Aspergillus plus trimethoprim-sulfamethoxazole (TMP-SMX) for Pneumocystis pneumonia (PCP) despite drug-drug-interactions and intolerability that may limit their use, thus, alternatives are desirable. Rezafungin demonstrates a favorable safety profile and pharmacokinetic properties that allow for once-weekly dosing in addition, to antifungal activity against these predominant pathogens. Herein, the in vivo effects of rezafungin against Pneumocystis murina pneumonia were evaluated in immunosuppressed mouse models of prophylaxis and treatment using microscopy and qPCR assessments. In the prophylaxis model, immunosuppressed mice inoculated with P. murina were administered TMP-SMX (50/250 mg/kg 1×/week or 3×/week), caspofungin (5 mg/kg 3×/week), rezafungin (20 mg/kg, 1×/week or 3×/week; 5 mg/kg, 3×/week) intraperitoneally for 2, 4, 6 and 8 weeks, then immunosuppressed for an additional 6 weeks. Rezafungin administered for 4 weeks prevented P. murina from developing infection after rezafungin was discontinued. In the treatment model, immunosuppressed mice with P. murina pneumonia were treated with rezafungin 20 mg/kg 3×/week intraperitoneally for 2, 4, 6 and 8 weeks. Treatment with rezafungin for 8 weeks resulted in elimination of P. murina. Collectively, these studies showed that rezafungin could both prevent infection and eliminate P. murina from the lungs of mice. These findings support the obligate role of sexual reproduction for survival and growth of Pneumocystis spp. and warrant further investigation for treatment of P. jirovecii pneumonia in humans.
Collapse
Affiliation(s)
- Melanie T. Cushion
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH 45220, USA
- Correspondence:
| | - Alan Ashbaugh
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH 45220, USA
| |
Collapse
|
15
|
Induction of food tolerance is dependent on intestinal inflammatory state. Immunol Lett 2021; 234:33-43. [PMID: 33915190 DOI: 10.1016/j.imlet.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Food allergies are usually managed by food avoidance. Hidden allergens in food, due to cross-contamination and/or allergenic additives added during production, place an important concern in today's increasing food allergy cases worldwide. Previous studies showed that the introduction of unacquainted food components, in an inflamed intestine, results in sensitization to this food. Thus, our aim was to evaluate the kinetics of multiple food allergy induction. Adult male C57BL/6 mice were divided into five groups, four of which were submitted to an intestinal inflammation induction protocol to peanuts. Egg white (OVA) diluted 1:5 v/v in distilled water was instilled by gavage 6h-before (PRIOR), concomitant (AT) and 6h-after (DURING) the onset of the peanut challenge diet. Positive control (POS CONT) and NEG CONT received saline per gavage. Finally, animals were challenged with subcutaneous injections of OVA. Results showed no changes in diet intake were observed. Anti-OVA polyisotypic IgG antibody titers significantly increased in AT. Flow cytometry revealed significant decrease in CD4+CD25+Foxp3+ and significant increase in TCD8+ in AT. Histomorphometrically, AT and DURING were classified as Infiltrative and Partial Destruction stages. PRIOR was classified as Infiltrative, while POS CONT was classified as Partial Destruction. NEG CONT was classified as Normal. Together, our results confirm that the introduction of unfamiliar food only a few hours before the initiation of a gut inflammation process is able to induce oral tolerance, however the introduction of a dietary protein concomitant to the onset or during an ongoing gut inflammation may induce multiple allergies.
Collapse
|