1
|
Kuramochi M, Sugawara I, Shinkai Y, Mio K, Sasaki YC. Time-Resolved X-ray Observation of Intracellular Crystallized Protein in Living Animal. Int J Mol Sci 2023; 24:16914. [PMID: 38069236 PMCID: PMC10706802 DOI: 10.3390/ijms242316914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Understanding the cellular environment as molecular crowding that supports the structure-specific functional expression of biomolecules has recently attracted much attention. Time-resolved X-ray observations have the remarkable capability to capture the structural dynamics of biomolecules with subnanometre precision. Nevertheless, the measurement of the intracellular dynamics within live organisms remains a challenge. Here, we explore the potential of utilizing crystallized proteins that spontaneously form intracellular crystals to investigate their intracellular dynamics via time-resolved X-ray observations. We generated transgenic Caenorhabditis elegans specifically expressing the crystallized protein in cells and observed the formation of the protein aggregates within the animal cells. From the toxic-effect observations, the aggregates had minimal toxic effects on living animals. Fluorescence observations showed a significant suppression of the translational diffusion movements in molecules constituting the aggregates. Moreover, X-ray diffraction measurements provided diffraction signals originating from these molecules. We also observed the blinking behaviour of the diffraction spots, indicating the rotational motion of these crystals within the animal cells. A diffracted X-ray blinking (DXB) analysis estimated the rotational motion of the protein crystals on the subnanometre scale. Our results provide a time-resolved X-ray diffraction technique for the monitoring of intracellular dynamics.
Collapse
Affiliation(s)
- Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan;
| | - Ibuki Sugawara
- Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan;
| | - Yoichi Shinkai
- Molecular Neurobiology Research Group, Biomedical Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan;
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa 277-8565, Japan;
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
| |
Collapse
|
2
|
Sasaki YC. Diffracted X-ray Tracking for Observing the Internal Motions of Individual Protein Molecules and Its Extended Methodologies. Int J Mol Sci 2023; 24:14829. [PMID: 37834277 PMCID: PMC10573657 DOI: 10.3390/ijms241914829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In 1998, the diffracted X-ray tracking (DXT) method pioneered the attainment of molecular dynamics measurements within individual molecules. This breakthrough revolutionized the field by enabling unprecedented insights into the complex workings of molecular systems. Similar to the single-molecule fluorescence labeling technique used in the visible range, DXT uses a labeling method and a pink beam to closely track the diffraction pattern emitted from the labeled gold nanocrystals. Moreover, by utilizing X-rays with extremely short wavelengths, DXT has achieved unparalleled accuracy and sensitivity, exceeding initial expectations. As a result, this remarkable advance has facilitated the search for internal dynamics within many protein molecules. DXT has recently achieved remarkable success in elucidating the internal dynamics of membrane proteins in living cell membranes. This breakthrough has not only expanded our knowledge of these important biomolecules but also has immense potential to advance our understanding of cellular processes in their native environment.
Collapse
Affiliation(s)
- Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan;
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho 679-5198, Japan
| |
Collapse
|
3
|
Inamasu R, Yamaguchi H, Arai T, Chang J, Kuramochi M, Mio K, Sasaki YC. Observation of molecular motions in polymer thin films by laboratory grazing incidence diffracted X-ray blinking. Polym J 2023. [DOI: 10.1038/s41428-023-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
AbstractResearch on polymer surfaces has shown that the mobilities of polymer chains, which affect the aggregation state and thus the physical properties of the material, differ between the surface and bulk. However, the mobilities of the surface polymers have not been fully characterized. Therefore, we propose a time-resolved method for evaluating surface mobility. This measurement scheme is called grazing incidence diffracted X-ray blinking (GI-DXB) and can be used to evaluate the molecular motions occurring at polymer surfaces by continuously measuring X-ray diffraction patterns near the total reflection angle over small time periods. In this study, the crystallized polymer poly{2-(perfluorooctyl)ethyl acrylate}(PC8FA) was measured. The decay constants, which are indexes of molecular motions, were calculated to be 3.98 × 10−3 s−1 for the fluoroalkyl groups in the side chains observed along the in-plane direction and 3.36 × 10−3 s−1 for the lamellar structure observed along the out-of-plane direction when 2000 diffraction profiles of 500 ms were recorded and the incident angle was 0.07°. In contrast, transmission DXB indicated decay constants of 2.63 × 10−3 s−1 for the side chains and 2.87 × 10−3 s−1 for the lamellar structures. These results suggested that the PC8FA surface is mobile, because a larger decay constant indicates a higher mobility. GI-DXB can be used to measure surface dynamics. The authors contend that GI-DXB is a highly versatile tool because it allows the evaluation of local motions with a laboratory X-ray system, and these motions cannot be detected by conventional surface analyses. This measurement scheme may facilitate the development of high-performance polymers and discovery of new physical properties.
Collapse
|
4
|
Chang J, Arai T, Kuramochi M, Inamasu R, Lee Z, Ohkubo T, Mio K, Sasaki YC. Dynamic observations of various oligomers in amyloid β isoforms using laboratory diffracted X-ray blinking. Biochem Biophys Rep 2022; 31:101298. [PMID: 35794960 PMCID: PMC9251562 DOI: 10.1016/j.bbrep.2022.101298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Acceleration of societal ageing has increased the global incidence of geriatric diseases such as Alzheimer's disease (AD), and the demands for proper diagnosis and monitoring of those diseases are also increasing daily. We utilized diffracted X-ray blinking (DXB) for amyloid β (Aβ) isoforms, which are thought to be closely related to AD, to discriminate among the dynamics of individual particles in early and long-term oligomerisation and aggregation inhibiting environments. Among the various Aβ isoforms, the dynamics of Aβ (1–42), which is known to be the most toxic form, were the slowest (the dynamics were lower by 78% com-pared with short-term incubation), and the dynamics were restored (the dynamics increased by 105% compared with normal aggregation) in an environment that suppressed oligomerisation of Aβ (1–42). It has been confirmed that the use of DXB allows measurements of dynamics related to the functional states of the target molecules. The Dynamics of Amyloid β in early oligomerisation was measured by Diffracted X-ray Blinking, pico-meter scale method. The dynamics of Amyloid β was shrinked in more oligomerisation. The dynamics of Amyloid β (1–42) on Pd surface were recovered by 105% compared with that of normal oligomerisation. Dynamical measurement captured the recovery of Amyloid β (1–42); it is important to measure the dynamics of the oligomer.
Collapse
|
5
|
Hossain SI, Sportelli MC, Picca RA, Gentile L, Palazzo G, Ditaranto N, Cioffi N. Green Synthesis and Characterization of Antimicrobial Synergistic AgCl/BAC Nanocolloids. ACS APPLIED BIO MATERIALS 2022; 5:3230-3240. [PMID: 35738566 PMCID: PMC9297327 DOI: 10.1021/acsabm.2c00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
All over the world,
one of the major challenges is the green synthesis
of potential materials against antimicrobial resistance and viruses.
This study demonstrates a simple method like chemistry lab titration
to synthesize green, facile, scalable, reproducible, and stable synergistic
silver chloride/benzyldimethylhexadecyl-ammonium chloride (AgCl/BAC)
colloidal Nanoantimicrobials (NAMs). Nanocolloidal dispersions of
AgCl in an aqueous medium are prepared by using silver nitrate (AgNO3) as precursor and BAC as both sources of chloride and stabilizer,
holding an asymmetric molecular structure. The synthetic approach
is scalable and green. Both the morphology and stability of AgCl/BAC
nanocolloids (NCs) were investigated as a function of different molar
fractions of the reagents. AgCl/BAC NCs were characterized by transmission
electron microscopy (TEM) and X-ray photoelectron and UV–vis
spectroscopies. Zeta potential measurements revealed increasing positive
potential values at every stage of the synthesis. Size distribution
and hydrodynamic diameter of the particles were measured by dynamic
light scattering (DLS), which predicted the formation of BAC layered
structures associated with the AgCl nanoparticles (NPs). Small-angle
X-ray scattering (SAXS) experiments verify the thickness of the BAC
bilayer around AgCl. The produced AgCl/BAC NCs probably have synergistic
antimicrobial properties from the AgCl core and the biocide BAC shell.
AgCl/BAC NCs stability over months was investigated. The experimental
evidence supports the morphological stability of the AgCl/BAC NCs,
while higher positive zeta potential values anticipate a long-term
antimicrobial effect: a higher surface charge causes NPs to be potentially
more lethal to bacteria. AgCl/BAC antimicrobial aqueous colloidal
suspensions will be used as additives for the industrial production
of antimicrobial coatings.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Luigi Gentile
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
6
|
Kuramochi M, Dong Y, Yang Y, Arai T, Okada R, Shinkai Y, Doi M, Aoyama K, Sekiguchi H, Mio K, Tsuda S, Sasaki YC. Dynamic motions of ice-binding proteins in living Caenorhabditis elegans using diffracted X-ray blinking and tracking. Biochem Biophys Rep 2022; 29:101224. [PMID: 35146137 PMCID: PMC8819013 DOI: 10.1016/j.bbrep.2022.101224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
- Corresponding author. Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan.
| | - Yige Dong
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yue Yang
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Rio Okada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yoichi Shinkai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Kouki Aoyama
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Sakae Tsuda
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
- Corresponding author. Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan.
| |
Collapse
|
7
|
Diffracted X-ray Tracking Method for Measuring Intramolecular Dynamics of Membrane Proteins. Int J Mol Sci 2022; 23:ijms23042343. [PMID: 35216461 PMCID: PMC8880040 DOI: 10.3390/ijms23042343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins change their conformations in response to chemical and physical stimuli and transmit extracellular signals inside cells. Several approaches have been developed for solving the structures of proteins. However, few techniques can monitor real-time protein dynamics. The diffracted X-ray tracking method (DXT) is an X-ray-based single-molecule technique that monitors the internal motion of biomolecules in an aqueous solution. DXT analyzes trajectories of Laue spots generated from the attached gold nanocrystals with a two-dimensional axis by tilting (θ) and twisting (χ). Furthermore, high-intensity X-rays from synchrotron radiation facilities enable measurements with microsecond-timescale and picometer-spatial-scale intramolecular information. The technique has been applied to various membrane proteins due to its superior spatiotemporal resolution. In this review, we introduce basic principles of DXT, reviewing its recent and extended applications to membrane proteins and living cells, respectively.
Collapse
|
8
|
Superelasticity of a photo-actuating chiral salicylideneamine crystal. Commun Chem 2022; 5:4. [PMID: 36697637 PMCID: PMC9814393 DOI: 10.1038/s42004-021-00618-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
Superelasticity is a type of elastic response to an applied external force, caused by a phase transformation. Actuation of materials is also an elastic response to external stimuli such as light and heat. Although both superelasticity and actuation are deformations resulting from stimulus-induced stress, there is a phenomenological difference between the two with respect to whether force is an input or an output. Here, we report that a molecular crystal manifests superelasticity during photo-actuation under light irradiation. The crystal exhibits stepwise twisted actuation due to two effects, photoisomerization and photo-triggered phase transition, and the actuation behavior is simulated based on a dynamic multi-layer model. The simulation, in turn, reveals how the photoisomerization and phase transition progress in the crystal, indicating superelasticity induced by modest stress due to the formation of photoproducts. This work provides not only a successful simulation of stepwise twisted actuation, but also to the best of our knowledge the first indication of superelasticity induced by light.
Collapse
|
9
|
Arai T, Inamasu R, Yamaguchi H, Sasaki D, Sato-Tomita A, Sekiguchi H, Mio K, Tsuda S, Kuramochi M, Sasaki YC. Laboratory diffracted x-ray blinking to monitor picometer motions of protein molecules and application to crystalline materials. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:044302. [PMID: 34258327 PMCID: PMC8270646 DOI: 10.1063/4.0000112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
In recent years, real-time observations of molecules have been required to understand their behavior and function. To date, we have reported two different time-resolved observation methods: diffracted x-ray tracking and diffracted x-ray blinking (DXB). The former monitors the motion of diffracted spots derived from nanocrystals labeled onto target molecules, and the latter measures the fluctuation of the diffraction intensity that is highly correlated with the target molecular motion. However, these reports use a synchrotron x-ray source because of its high average flux, resulting in a high time resolution. Here, we used a laboratory x-ray source and DXB to measure the internal molecular dynamics of three different systems. The samples studied were bovine serum albumin (BSA) pinned onto a substrate, antifreeze protein (AFP) crystallized as a single crystal, and poly{2-(perfluorooctyl)ethyl acrylate} (PC8FA) polymer between polyimide sheets. It was found that not only BSA but also AFP and PC8FA molecules move in the systems. In addition, the molecular motion of AFP molecules was observed to increase with decreasing temperature. The rotational diffusion coefficients (DR) of BSA, AFP, and PC8FA were estimated to be 0.73 pm2/s, 0.65 pm2/s, and 3.29 pm2/s, respectively. Surprisingly, the DR of the PC8FA polymer was found to be the highest among the three samples. This is the first report that measures the molecular motion of a single protein crystal and polymer by using DXB with a laboratory x-ray source. This technique can be applied to any kind of crystal and crystalline polymer and provides atomic-order molecular information.
Collapse
Affiliation(s)
- Tatsuya Arai
- Authors to whom correspondence should be addressed:; ; and
| | - Rena Inamasu
- Technology and Innovation Center, Daikin Industries, Ltd., 1-1 Nishi Hitotsuya, Settsu-shi, Osaka 566-8585, Japan
| | - Hiroki Yamaguchi
- Technology and Innovation Center, Daikin Industries, Ltd., 1-1 Nishi Hitotsuya, Settsu-shi, Osaka 566-8585, Japan
| | - Daisuke Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo cho, Sayo gun, Hyogo 679-5198, Japan
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa 277-0882, Japan
| | | | | | - Yuji C. Sasaki
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
10
|
Mio K, Fujimura S, Ishihara M, Kuramochi M, Sekiguchi H, Kubo T, Sasaki YC. Living-Cell Diffracted X-ray Tracking Analysis Confirmed Internal Salt Bridge Is Critical for Ligand-Induced Twisting Motion of Serotonin Receptors. Int J Mol Sci 2021; 22:ijms22105285. [PMID: 34067933 PMCID: PMC8157010 DOI: 10.3390/ijms22105285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Serotonin receptors play important roles in neuronal excitation, emotion, platelet aggregation, and vasoconstriction. The serotonin receptor subtype 2A (5-HT2AR) is a Gq-coupled GPCR, which activate phospholipase C. Although the structures and functions of 5-HT2ARs have been well studied, little has been known about their real-time dynamics. In this study, we analyzed the intramolecular motion of the 5-HT2AR in living cells using the diffracted X-ray tracking (DXT) technique. The DXT is a very precise single-molecular analytical technique, which tracks diffraction spots from the gold nanocrystals labeled on the protein surface. Trajectory analysis provides insight into protein dynamics. The 5-HT2ARs were transiently expressed in HEK 293 cells, and the gold nanocrystals were attached to the N-terminal introduced FLAG-tag via anti-FLAG antibodies. The motions were recorded with a frame rate of 100 μs per frame. A lifetime filtering technique demonstrated that the unliganded receptors contain high mobility population with clockwise twisting. This rotation was, however, abolished by either a full agonist α-methylserotonin or an inverse agonist ketanserin. Mutation analysis revealed that the “ionic lock” between the DRY motif in the third transmembrane segment and a negatively charged residue of the sixth transmembrane segment is essential for the torsional motion at the N-terminus of the receptor.
Collapse
Affiliation(s)
- Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (S.F.); (M.I.); (M.K.); (T.K.)
- Correspondence: (K.M.); (Y.C.S.)
| | - Shoko Fujimura
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (S.F.); (M.I.); (M.K.); (T.K.)
| | - Masaki Ishihara
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (S.F.); (M.I.); (M.K.); (T.K.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Masahiro Kuramochi
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (S.F.); (M.I.); (M.K.); (T.K.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan;
| | - Tai Kubo
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (S.F.); (M.I.); (M.K.); (T.K.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Yuji C. Sasaki
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (S.F.); (M.I.); (M.K.); (T.K.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan;
- Correspondence: (K.M.); (Y.C.S.)
| |
Collapse
|
11
|
Chang J, Baek Y, Lee I, Sekiguchi H, Ichiyanagi K, Mio K, Nozawa S, Fukaya R, Adachi SI, Kuramochi M, Sasaki YC. Diffracted X-ray blinking measurements of interleukin 15 receptors in the inner/outer membrane of living NK cells. Biochem Biophys Res Commun 2021; 556:53-58. [PMID: 33839414 DOI: 10.1016/j.bbrc.2021.03.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Interleukin 15 receptor (IL-15R) is a transmembrane signalling protein consisting of 3 subsets: α, β (IL-15Rβ), and γ (γc). IL-2 and IL-15 share the signalling domains IL-15Rβ and γc, although they bind to intrinsic α-subsets and non-signalling domains. Additionally, IL-2 and IL-15 play different roles; therefore, there have been many observations of the dynamic behaviours of IL-15R, which are linked to physiological functions. For more practical discrimination between IL-2 and IL-15, a study was designed and carried out in which α-subsets were removed and a cytoplasmic inhibitor was applied to create a simplified environment in which secondary signalling molecules were reduced. We also applied a new measurement method, diffracted X-ray blinking (DXB), to achieve higher accuracy (<0.01 Å). The dynamics of IL-2 binding (confined motion, max range = 0.71 Å) and IL-15 binding (normal motion) in live natural killer cells were different. We also confirmed. that DXB was a suitable method to quantitatively evaluate the transmembrane protein dynamics of inner/outer live cell membranes by labeling the extracellular domain since the measurements were dependent on the cytosolic environment.
Collapse
Affiliation(s)
- Jaewon Chang
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan
| | - Yonugseok Baek
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang, Seongnam, 13488, Gyeonggi, Republic of Korea; Immunotherapy Team, NBE, R&D Division, CHA BIOTECH, 335, Pangyo-ro, Bundang, Seongnam, 13488, Gyeonggi, Republic of Korea
| | - Injee Lee
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang, Seongnam, 13488, Gyeonggi, Republic of Korea; Immunotherapy Team, NBE, R&D Division, CHA BIOTECH, 335, Pangyo-ro, Bundang, Seongnam, 13488, Gyeonggi, Republic of Korea
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, 679-5198, Hyogo, Japan
| | - Kouhei Ichiyanagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 305-0801, Ibaraki, Japan; Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| | - Kazuhiro Mio
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, 135-0064, Tokyo, Japan; AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan
| | - Shunsuke Nozawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 305-0801, Ibaraki, Japan
| | - Ryo Fukaya
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 305-0801, Ibaraki, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 305-0801, Ibaraki, Japan
| | - Masahiro Kuramochi
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan; AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan.
| | - Yuji C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan; Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, 679-5198, Hyogo, Japan; AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan.
| |
Collapse
|