1
|
Rüster V, Werner H, Avramidis G, Wieneke S, Strube C, Schnabel C, Bartels T. Morphological changes in plasma-exposed poultry red mites (Dermanyssus gallinae) using high-resolution video camera and optical coherence tomography (OCT). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:339-352. [PMID: 38937375 PMCID: PMC11269420 DOI: 10.1007/s10493-024-00934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Dermanyssus gallinae, the poultry red mite (PRM), is a hematophagous temporary ectoparasite that causes serious economic losses and animal health impairment on laying hen farms worldwide. Control is limited by the parasite's hidden lifestyle, restrictions on the use of chemical acaricides and the development of resistance against certain drug classes. As a result, research was conducted to explore alternative control methods. In recent years, atmospheric pressure plasma has been increasingly reported as an alternative to chemical acaricides for pest control. This physical method has also shown promising against PRM under laboratory conditions. However, the detailed mechanisms of action have not yet been elucidated. In the present study, the effects of cold atmospheric pressure plasma on PRM were investigated using digital videography and optical coherence tomography (OCT), an imaging technique that visualizes the topography of surfaces and internal structures. Digital videography showed that a redistribution of the contents of the intestinal tract and excretory organs (Malpighian tubules) occurred immediately after plasma exposure. The body fluids reached the distal leg segments of PRM and parts of the haemocoel showed whiter and denser clumps, indicating a coagulation of the haemocoel components. OCT showed a loss of the boundaries of the hollow organs in transverse and sagittal sectional images as well as in the three-dimensional image reconstruction. In addition, a dorso-ventral shrinkage of the idiosoma was observed in plasma-exposed mites, which had shrunk to 44.0% of its original height six minutes after plasma exposure.
Collapse
Affiliation(s)
- Vanessa Rüster
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Henrik Werner
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
| | - Georg Avramidis
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
| | - Stephan Wieneke
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christian Schnabel
- Departement of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Thomas Bartels
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany.
| |
Collapse
|
2
|
Dittfeld C, Winkelkotte M, Scheer A, Voigt E, Schmieder F, Behrens S, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Challenges of aortic valve tissue culture - maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system. J Biol Eng 2023; 17:60. [PMID: 37770970 PMCID: PMC10538250 DOI: 10.1186/s13036-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany.
| | - Maximilian Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Anna Scheer
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Emmely Voigt
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| |
Collapse
|
3
|
Tashman JW, Shiwarski DJ, Coffin B, Ruesch A, Lanni F, Kainerstorfer JM, Feinberg AW. In situvolumetric imaging and analysis of FRESH 3D bioprinted constructs using optical coherence tomography. Biofabrication 2022; 15. [PMID: 36195056 DOI: 10.1088/1758-5090/ac975e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
As 3D bioprinting has grown as a fabrication technology, so too has the need for improved analytical methods to characterize engineered constructs. This is especially challenging for engineered tissues composed of hydrogels and cells, as these materials readily deform when trying to assess print fidelity and other properties non-destructively. Establishing that the 3D architecture of the bioprinted construct matches its intended anatomic design is critical given the importance of structure-function relationships in most tissue types. Here we report development of a multimaterial bioprinting platform with integrated optical coherence tomography forin situvolumetric imaging, error detection, and 3D reconstruction. We also report improvements to the freeform reversible embedding of suspended hydrogels bioprinting process through new collagen bioink compositions, gelatin microparticle support bath optical clearing, and optimized machine pathing. This enables quantitative 3D volumetric imaging with micron resolution over centimeter length scales, the ability to detect a range of print defect types within a 3D volume, and real-time imaging of the printing process at each print layer. These advances provide a comprehensive methodology for print quality assessment, paving the way toward the production and process control required for achieving regulatory approval and ultimately clinical translation of engineered tissues.
Collapse
Affiliation(s)
- Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Brian Coffin
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Alexander Ruesch
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America.,Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
4
|
Meador WD, Mathur M, Kakaletsis S, Lin CY, Bersi MR, Rausch MK. Biomechanical phenotyping of minuscule soft tissues: An example in the rodent tricuspid valve. EXTREME MECHANICS LETTERS 2022; 55:101799. [PMID: 39474062 PMCID: PMC11521389 DOI: 10.1016/j.eml.2022.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The biomechanical phenotype of soft tissues - i.e., the sum of spatially- and directionally-varying mechanical properties - is a critical marker of tissue health and disease. While biomechanical phenotyping is always challenging, it is particularly difficult with miniscule tissues. For example, tissues from small animal models are often only millimeters in size, which prevents the use of traditional test methods, such as uniaxial tensile testing. To overcome this challenge, our current work describes and tests a novel experimental and numerical pipeline. First, we introduce a micro-bulge test device with which we pressurize and inflate miniscule soft tissues. We combine this microbulge device with an optical coherence tomography device to also image the samples during inflation. Based on pressure data and images we then perform inverse finite element simulations to identify our tissues' unknown material parameters. For validation, we identify the material parameters of a thin sheet of latex rubber via both uniaxial tensile testing and via our novel pipeline. Next, we demonstrate our pipeline against anterior tricuspid valve leaflets from rats. The resulting material parameters for these tissues compare excellently with data collected in sheep via standard planar biaxial testing. Additionally, we show that our device is compatible with other imaging modalities such as 2-Photon microscopy. To this end, we image the in-situ microstructural changes of the leaflets during inflation using second harmonic generation imaging. In summary, we introduce a novel pipeline to biomechanically phenotype miniscule soft tissues and demonstrate its value by phenotyping the biomechanics of the anterior tricuspid valve leaflets from rats.
Collapse
Affiliation(s)
- William D Meador
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Mrudang Mathur
- University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Sotirios Kakaletsis
- University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX, United States of America
| | - Chien-Yu Lin
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Matthew R Bersi
- Washington University in St. Louis, Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, St. Louis, 63130, MO, United States of America
| | - Manuel K Rausch
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
- University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
- University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX, United States of America
| |
Collapse
|
5
|
Dittfeld C, Winkelkotte M, Behrens S, Schmieder F, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Establishment of a resazurin-based aortic valve tissue viability assay for dynamic culture in a microphysiological system. Clin Hemorheol Microcirc 2021; 79:167-178. [PMID: 34487029 DOI: 10.3233/ch-219112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIM Tissue pathogenesis of aortic valve (AV) stenosis is research focus in cardiac surgery. Model limitations of conventional 2D culture of human or porcine valvular interstitial/endothelial cells (VIC/VECs) isolated from aortic valve tissues but also limited ability of (small) animal models to reflect human (patho)physiological situation in AV position raise the need to establish an in vitro setup using AV tissues. Resulting aim is to approximate (patho)physiological conditions in a dynamic pulsatile Microphysiological System (MPS) to culture human and porcine AV tissue with preservation of tissue viability but also defined ECM composition. MATERIALS/METHODS A tissue incubation chamber (TIC) was designed to implement human or porcine tissues (3×5 mm2) in a dynamic pulsatile culture in conventional cell culture ambience in a MPS. Cell viability assays based on lactate dehydrogenase (LDH)-release or resazurin-conversion were tested for applicability in the system and applied for a culture period of 14 days with interval evaluation of tissue viability on every other day. Resazurin-assay setup was compared in static vs. dynamic culture using varying substance saturation settings (50-300μM), incubation times and tissue masses and was consequently adapted. RESULTS Sterile dynamic culture of human and porcine AV tissue segments was established at a pulsatile flow rate range of 0.9-13.4μl/s. Implementation of tissues was realized by stitching the material in a thermoplastic polyurethane (TPU)-ring and insertion in the TIC-MPS-system. Culture volume of 2 ml caused LDH dilution not detectable in standard membrane integrity assay setup. Therefore, detection of resazurin-conversion of viable tissue was investigated. Optimal incubation time for viability conversion was determined at two hours at a saturated concentration of 300μM resazurin. Measurement in static conditions was shown to offer comparable results as dynamic condition but allowing optimal handling and TIC sterilization protocols for long term culture. Preliminary results revealed favourable porcine AV tissue viability over a 14 day period confirmed via resazurin-assay comparing statically cultured tissue counterparts. CONCLUSIONS Human and porcine AV tissue can be dynamically cultured in a TIC-MPS with monitoring of tissue viability using an adapted resazurin-assay setup. Preliminary results reveal advantageous viability of porcine AV tissues after dynamic TIC-MPS culture compared to static control.
Collapse
Affiliation(s)
- C Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| | - M Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| | - S Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - F Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - A Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| | - K Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| | - F Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - S M Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden,Germany
| |
Collapse
|
6
|
Jannasch A, Rix J, Welzel C, Schackert G, Kirsch M, König U, Koch E, Matschke K, Tugtekin SM, Dittfeld C, Galli R. Brillouin confocal microscopy to determine biomechanical properties of SULEEI-treated bovine pericardium for application in cardiac surgery. Clin Hemorheol Microcirc 2021; 79:179-192. [PMID: 34487036 DOI: 10.3233/ch-219119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Heart valves are exposed to a highly dynamic environment and underlie high tensile and shear forces during opening and closing. Therefore, analysis of mechanical performance of novel heart valve bioprostheses materials, like SULEEI-treated bovine pericardium, is essential and usually carried out by uniaxial tensile tests. Nevertheless, major drawbacks are the unidirectional strain, which does not reflect the in vivo condition and the deformation of the sample material. An alternative approach for measurement of biomechanical properties is offered by Brillouin confocal microscopy (BCM), a novel, non-invasive and three-dimensional method based on the interaction of light with acoustic waves. OBJECTIVE BCM is a powerful tool to determine viscoelastic tissue properties and is, for the first time, applied to characterize novel biological graft materials, such as SULEEI-treated bovine pericardium. Therefore, the method has to be validated as a non-invasive alternative to conventional uniaxial tensile tests. METHODS Vibratome sections of SULEEI-treated bovine pericardium (decellularized, riboflavin/UV-cross-linked and low-energy electron irradiated) as well as native and GA-fixed controls (n = 3) were analyzed by BCM. In addition, uniaxial tensile tests were performed on equivalent tissue samples and Young's modulus as well as length of toe region were analyzed from stress-strain diagrams. The structure of the extracellular matrix (ECM), especially collagen and elastin, was investigated by multiphoton microscopy (MPM). RESULTS SULEEI-treated pericardium exhibited a significantly higher Brillouin shift and hence higher tissue stiffness in comparison to native and GA-fixed controls (native: 5.6±0.2 GHz; GA: 5.5±0.1 GHz; SULEEI: 6.3±0.1 GHz; n = 3, p < 0.0001). Similarly, a significantly higher Young's modulus was detected in SULEEI-treated pericardia in comparison to native tissue (native: 30.0±10.4 MPa; GA: 31.8±10.7 MPa; SULEEI: 42.1±7.0 MPa; n = 3, p = 0.027). Native pericardia showed wavy and non-directional collagen fibers as well as thin, linear elastin fibers generating a loose matrix. The fibers of GA-fixed and SULEEI-treated pericardium were aligned in one direction, whereat the SULEEI-sample exhibited a much denser matrix. CONCLUSION BCM is an innovative and non-invasive method to analyze elastic properties of novel pericardial graft materials with special mechanical requirements, like heart valve bioprostheses.
Collapse
Affiliation(s)
- Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Jan Rix
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Cindy Welzel
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Klinik für Neurochirurgie, Asklepios Kliniken Schildautal, Seesen, Germany
| | - Ulla König
- Department of Medical and Biotechnological Applications, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Sems Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Roberta Galli
- Department of Medical Physics and Biomedical Technology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Tandon I, Quinn KP, Balachandran K. Label-Free Multiphoton Microscopy for the Detection and Monitoring of Calcific Aortic Valve Disease. Front Cardiovasc Med 2021; 8:688513. [PMID: 34179147 PMCID: PMC8226007 DOI: 10.3389/fcvm.2021.688513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease. CAVD results in a considerable socio-economic burden, especially considering the aging population in Europe and North America. The only treatment standard is surgical valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. Novel diagnostic techniques and biomarkers for early detection and monitoring of CAVD progression are thus a pressing need. Additionally, non-destructive tools are required for longitudinal in vitro and in vivo assessment of CAVD initiation and progression that can be translated into clinical practice in the future. Multiphoton microscopy (MPM) facilitates label-free and non-destructive imaging to obtain quantitative, optical biomarkers that have been shown to correlate with key events during CAVD progression. MPM can also be used to obtain spatiotemporal readouts of metabolic changes that occur in the cells. While cellular metabolism has been extensively explored for various cardiovascular disorders like atherosclerosis, hypertension, and heart failure, and has shown potential in elucidating key pathophysiological processes in heart valve diseases, it has yet to gain traction in the study of CAVD. Furthermore, MPM also provides structural, functional, and metabolic readouts that have the potential to correlate with key pathophysiological events in CAVD progression. This review outlines the applicability of MPM and its derived quantitative metrics for the detection and monitoring of early CAVD progression. The review will further focus on the MPM-detectable metabolic biomarkers that correlate with key biological events during valve pathogenesis and their potential role in assessing CAVD pathophysiology.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|