1
|
Takemura H, Kruper JA, Miyata T, Rokem A. Tractometry of Human Visual White Matter Pathways in Health and Disease. Magn Reson Med Sci 2024; 23:316-340. [PMID: 38866532 PMCID: PMC11234945 DOI: 10.2463/mrms.rev.2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Diffusion-weighted MRI (dMRI) provides a unique non-invasive view of human brain tissue properties. The present review article focuses on tractometry analysis methods that use dMRI to assess the properties of brain tissue within the long-range connections comprising brain networks. We focus specifically on the major white matter tracts that convey visual information. These connections are particularly important because vision provides rich information from the environment that supports a large range of daily life activities. Many of the diseases of the visual system are associated with advanced aging, and tractometry of the visual system is particularly important in the modern aging society. We provide an overview of the tractometry analysis pipeline, which includes a primer on dMRI data acquisition, voxelwise model fitting, tractography, recognition of white matter tracts, and calculation of tract tissue property profiles. We then review dMRI-based methods for analyzing visual white matter tracts: the optic nerve, optic tract, optic radiation, forceps major, and vertical occipital fasciculus. For each tract, we review background anatomical knowledge together with recent findings in tractometry studies on these tracts and their properties in relation to visual function and disease. Overall, we find that measurements of the brain's visual white matter are sensitive to a range of disorders and correlate with perceptual abilities. We highlight new and promising analysis methods, as well as some of the current barriers to progress toward integration of these methods into clinical practice. These barriers, such as variability in measurements between protocols and instruments, are targets for future development.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - John A Kruper
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| | - Toshikazu Miyata
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Kruper J, Richie-Halford A, Benson NC, Caffarra S, Owen J, Wu Y, Egan C, Lee AY, Lee CS, Yeatman JD, Rokem A. Convolutional neural network-based classification of glaucoma using optic radiation tissue properties. COMMUNICATIONS MEDICINE 2024; 4:72. [PMID: 38605245 PMCID: PMC11009254 DOI: 10.1038/s43856-024-00496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Sensory changes due to aging or disease can impact brain tissue. This study aims to investigate the link between glaucoma, a leading cause of blindness, and alterations in brain connections. METHODS We analyzed diffusion MRI measurements of white matter tissue in a large group, consisting of 905 glaucoma patients (aged 49-80) and 5292 healthy individuals (aged 45-80) from the UK Biobank. Confounds due to group differences were mitigated by matching a sub-sample of controls to glaucoma subjects. We compared classification of glaucoma using convolutional neural networks (CNNs) focusing on the optic radiations, which are the primary visual connection to the cortex, against those analyzing non-visual brain connections. As a control, we evaluated the performance of regularized linear regression models. RESULTS We showed that CNNs using information from the optic radiations exhibited higher accuracy in classifying subjects with glaucoma when contrasted with CNNs relying on information from non-visual brain connections. Regularized linear regression models were also tested, and showed significantly weaker classification performance. Additionally, the CNN was unable to generalize to the classification of age-group or of age-related macular degeneration. CONCLUSIONS Our findings indicate a distinct and potentially non-linear signature of glaucoma in the tissue properties of optic radiations. This study enhances our understanding of how glaucoma affects brain tissue and opens avenues for further research into how diseases that affect sensory input may also affect brain aging.
Collapse
Affiliation(s)
- John Kruper
- Department of Psychology, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Adam Richie-Halford
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Sendy Caffarra
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
- University of Modena and Reggio Emilia, Modena, Italy
| | - Julia Owen
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Yue Wu
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | | | - Aaron Y Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Jason D Yeatman
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Cooper AC, Tchernykh M, Shmuel A, Mendola JD. Diffusion tensor imaging of optic neuropathies: a narrative review. Quant Imaging Med Surg 2024; 14:1086-1107. [PMID: 38223128 PMCID: PMC10784057 DOI: 10.21037/qims-23-779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
Background and Objective Diffusion tensor imaging (DTI) has been implemented in a breadth of scientific investigations of optic neuropathies, though it has yet to be fully adopted for diagnosis or prognosis. This is potentially due to a lack of standardization and weak replication of results. The aim of this investigation was to review DTI results from studies specific to three distinct optic neuropathies in order to probe its current clinical utility. Methods We reviewed the DTI literature specific to primary open-angle glaucoma (POAG), optic neuritis (ON), and traumatic optic neuropathy (TON) by systematically searching the PubMed database on March 1st, 2023. Four distinct DTI metrics are considered: fractional anisotropy (FA), along with mean diffusivity (MD, axial diffusivity (AD), and radial diffusivity (RD). Results from within-group, between-group, and correlational studies were thoroughly assessed. Key Content and Findings POAG studies most consistently report a decrease in FA, especially in the optic radiations, followed in prevalence by an increase in RD and then MD, whilst AD yields conflicting results between studies. It is notable that there is not an equal distribution of investigated DTI metrics, with FA utilized the most, followed by MD, RD, and AD. Studies of ON are similar in that the most consistent findings are specific to FA, RD, and MD. These results are specific to the optic nerve and radiation since only one study measured the intermediary regions. More studies are needed to assess the effect that ON has on the tracts of the visual system. Finally, only three studies assessing DTI of TON have been performed to date, displaying low to moderate replicability of results. To improve the level of agreement between studies assessing each optic neuropathy, an increased level of standardization is recommended. Conclusions Both POAG and ON studies have yielded some prevalent DTI findings, both for contrast and correlation-based assessments. Although the clinical need is high for TON, considering the limitations of the current diagnostic tools, too few studies exist to make confident conclusions. Future use of standardized and longitudinal DTI, along with the foreseen methodological and technical improvements, is warranted to effectively study optic neuropathies.
Collapse
Affiliation(s)
- Austin C. Cooper
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Maxim Tchernykh
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
| | - Amir Shmuel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Physiology and Biomedical Engineering, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Janine D. Mendola
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Hayashi S, Caron BA, Heinsfeld AS, Vinci-Booher S, McPherson B, Bullock DN, Bertò G, Niso G, Hanekamp S, Levitas D, Ray K, MacKenzie A, Kitchell L, Leong JK, Nascimento-Silva F, Koudoro S, Willis H, Jolly JK, Pisner D, Zuidema TR, Kurzawski JW, Mikellidou K, Bussalb A, Rorden C, Victory C, Bhatia D, Baran Aydogan D, Yeh FCF, Delogu F, Guaje J, Veraart J, Bollman S, Stewart A, Fischer J, Faskowitz J, Chaumon M, Fabrega R, Hunt D, McKee S, Brown ST, Heyman S, Iacovella V, Mejia AF, Marinazzo D, Craddock RC, Olivetti E, Hanson JL, Avesani P, Garyfallidis E, Stanzione D, Carson J, Henschel R, Hancock DY, Stewart CA, Schnyer D, Eke DO, Poldrack RA, George N, Bridge H, Sani I, Freiwald WA, Puce A, Port NL, Pestilli F. brainlife.io: A decentralized and open source cloud platform to support neuroscience research. ARXIV 2023:arXiv:2306.02183v3. [PMID: 37332566 PMCID: PMC10274934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels. Using community software and hardware infrastructure, the platform provides open-source data standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and transparency in neuroscience research. Here brainlife.io's technology and data services are described and evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and 3,200 participants, we demonstrate that brainlife.io's services produce outputs that adhere to best practices in modern neuroscience research.
Collapse
|
5
|
Ma G, Worthy KH, Liu C, Rosa MG, Atapour N. Parvalbumin as a neurochemical marker of the primate optic radiation. iScience 2023; 26:106608. [PMID: 37168578 PMCID: PMC10165026 DOI: 10.1016/j.isci.2023.106608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023] Open
Abstract
Parvalbumin (PV) is a calcium-binding protein that labels neuronal cell bodies in the magno and parvocellular layers of the primate lateral geniculate nucleus (LGN). Here we demonstrate that PV immunohistochemistry can also be used to trace the optic radiation (OR) of the marmoset monkey (Callithrix jacchus) from its LGN origin to its destinations in the primary visual cortex (V1), thus providing a high-resolution method for identification of the OR with single axon resolution. The emergence of fibers from LGN, their entire course and even the entry points to V1 were clearly defined in coronal, parasagittal, and horizontal sections of marmoset brain. In all cases, the trajectory revealed by PV staining paralleled that defined by high-resolution diffusion tensor imaging (DTI). We found that V1 was the exclusive target for the PV-containing fibers, with abrupt transitions in staining observed in the white matter at the border with area V2, and no evidence of PV-labeled axons feeding into other visual areas. Changes in the pattern of PV staining in the OR were detected following V1 lesions, demonstrating that this method can be used to assess the progress of retrograde degeneration of geniculocortical projections. These results suggest a technically simple approach to advance our understanding of a major white matter structure, which provides a cellular resolution suitable for the detection of microstructural variations during development, health and disease. Understanding the relationship between PV staining and DTI in non-human primates may also offer clues for improving the specificity and sensitivity of OR tractography for clinical purposes.
Collapse
Affiliation(s)
- Gaoyuan Ma
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Katrina H. Worthy
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Cirong Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Marcello G.P. Rosa
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Nafiseh Atapour
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
- Corresponding author
| |
Collapse
|
6
|
Wang J, Zhang Y, Meng X, Liu G. Application of diffusion tensor imaging technology in glaucoma diagnosis. Front Neurosci 2023; 17:1125638. [PMID: 36816120 PMCID: PMC9932933 DOI: 10.3389/fnins.2023.1125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is the first major category of irreversible blinding eye illnesses worldwide. Its leading cause is the death of retinal ganglion cells and their axons, which results in the loss of vision. Research indicates that glaucoma affects the optic nerve and the whole visual pathway. It also reveals that degenerative lesions caused by glaucoma can be found outside the visual pathway. Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that can investigate the complete visual system, including alterations in the optic nerve, optic chiasm, optic tract, lateral geniculate nuclear, and optic radiation. In order to provide a more solid foundation for the degenerative characteristics of glaucoma, this paper will discuss the standard diagnostic techniques for glaucoma through a review of the literature, describe the use of DTI technology in glaucoma in humans and animal models, and introduce these techniques. With the advancement of DTI technology and its coupling with artificial intelligence, DTI represents a potential future for MRI technology in glaucoma research.
Collapse
Affiliation(s)
| | | | | | - Gang Liu
- Department of Ophthalmology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
7
|
McDonald MA, Stevenson CH, Kersten HM, Danesh-Meyer HV. Eye Movement Abnormalities in Glaucoma Patients: A Review. Eye Brain 2022; 14:83-114. [PMID: 36105571 PMCID: PMC9467299 DOI: 10.2147/eb.s361946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is a common condition that relies on careful clinical assessment to diagnose and determine disease progression. There is growing evidence that glaucoma is associated not only with loss of retinal ganglion cells but also with degeneration of cortical and subcortical brain structures associated with vision and eye movements. The effect of glaucoma pathophysiology on eye movements is not well understood. In this review, we examine the evidence surrounding altered eye movements in glaucoma patients compared to healthy controls, with a focus on quantitative eye tracking studies measuring saccades, fixation, and optokinetic nystagmus in a range of visual tasks. The evidence suggests that glaucoma patients have alterations in several eye movement domains. Patients exhibit longer saccade latencies, which worsen with increasing glaucoma severity. Other saccadic abnormalities include lower saccade amplitude and velocity, and difficulty inhibiting reflexive saccades. Fixation is pathologically altered in glaucoma with reduced stability. Optokinetic nystagmus measures have also been shown to be abnormal. Complex visual tasks (eg reading, driving, and navigating obstacles), integrate these eye movements and result in behavioral adaptations. The review concludes with a summary of the evidence and recommendations for future research in this emerging field.
Collapse
Affiliation(s)
- Matthew A McDonald
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Clark H Stevenson
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Hannah M Kersten
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.,Eye Institute, Auckland, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Eye Institute, Auckland, New Zealand
| |
Collapse
|
8
|
Mendoza M, Shotbolt M, Faiq MA, Parra C, Chan KC. Advanced Diffusion MRI of the Visual System in Glaucoma: From Experimental Animal Models to Humans. BIOLOGY 2022; 11:454. [PMID: 35336827 PMCID: PMC8945790 DOI: 10.3390/biology11030454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a group of ophthalmologic conditions characterized by progressive retinal ganglion cell death, optic nerve degeneration, and irreversible vision loss. While intraocular pressure is the only clinically modifiable risk factor, glaucoma may continue to progress at controlled intraocular pressure, indicating other major factors in contributing to the disease mechanisms. Recent studies demonstrated the feasibility of advanced diffusion magnetic resonance imaging (dMRI) in visualizing the microstructural integrity of the visual system, opening new possibilities for non-invasive characterization of glaucomatous brain changes for guiding earlier and targeted intervention besides intraocular pressure lowering. In this review, we discuss dMRI methods currently used in visual system investigations, focusing on the eye, optic nerve, optic tract, subcortical visual brain nuclei, optic radiations, and visual cortex. We evaluate how conventional diffusion tensor imaging, higher-order diffusion kurtosis imaging, and other extended dMRI techniques can assess the neuronal and glial integrity of the visual system in both humans and experimental animal models of glaucoma, among other optic neuropathies or neurodegenerative diseases. We also compare the pros and cons of these methods against other imaging modalities. A growing body of dMRI research indicates that this modality holds promise in characterizing early glaucomatous changes in the visual system, determining the disease severity, and identifying potential neurotherapeutic targets, offering more options to slow glaucoma progression and to reduce the prevalence of this world's leading cause of irreversible but preventable blindness.
Collapse
Affiliation(s)
- Monica Mendoza
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Max Shotbolt
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Kevin C. Chan
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
- Department of Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
| |
Collapse
|
9
|
Kang L, Wan C. Application of advanced magnetic resonance imaging in glaucoma: a narrative review. Quant Imaging Med Surg 2022; 12:2106-2128. [PMID: 35284278 PMCID: PMC8899967 DOI: 10.21037/qims-21-790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/26/2021] [Indexed: 04/02/2024]
Abstract
Glaucoma is a group of eye diseases characterized by progressive degeneration of the optic nerve head and retinal ganglion cells and corresponding visual field defects. In recent years, mounting evidence has shown that glaucoma-related damage may not be limited to the degeneration of retinal ganglion cells or the optic nerve head. The entire structure of the visual pathway may be degraded, and the degradation may even extend to some non-visual brain regions. We know that advanced morphological, functional, and metabolic magnetic resonance technologies provide a means to observe quantitatively and in real time the state of brain function. Advanced magnetic resonance imaging (MRI) techniques provide additional diagnostic markers for glaucoma, which are related to known potential histopathological changes. Many researchers in China and globally have conducted clinical and imaging studies on glaucoma. However, they are scattered, and we still need to systematically sort out the advanced MRI related to glaucoma. We reviewed literature published in any language and included all studies that were able to be translated into English from 1 January 1980 to 31 July 2021. Our literature search focused on emerging magnetic resonance neuroimaging techniques for the study of glaucoma. We then identified each functional area of the brain of glaucoma patients through the integration of anatomy, image, and function. The aim was to provide more information about the occurrence and development of glaucoma diseases. From the perspective of neuroimaging, our study provides a research basis to explain the possible mechanism of the occurrence and development of glaucoma. This knowledge gained from these techniques enables us to more clearly observe the damage glaucoma causes to the whole visual pathway. Our study provides new insights into glaucoma-induced changes to the brain. Our findings may enable the progress of these changes to be analyzed and inspire new neuroprotective therapeutic strategies for patients with glaucoma in the future.
Collapse
Affiliation(s)
- Longdan Kang
- Department of Ophthalmology, the First Hospital of China Medical University, Shenyang, China
| | | |
Collapse
|
10
|
Ogawa S, Takemura H, Horiguchi H, Miyazaki A, Matsumoto K, Masuda Y, Yoshikawa K, Nakano T. Multi-Contrast Magnetic Resonance Imaging of Visual White Matter Pathways in Patients With Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:29. [PMID: 35201263 PMCID: PMC8883150 DOI: 10.1167/iovs.63.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Glaucoma is a disorder that involves visual field loss caused by retinal ganglion cell damage. Previous diffusion magnetic resonance imaging (dMRI) studies have demonstrated that retinal ganglion cell damage affects tissues in the optic tract (OT) and optic radiation (OR). However, because previous studies have used a simple diffusion tensor model to analyze dMRI data, the microstructural interpretation of white matter tissue changes remains uncertain. In this study, we used a multi-contrast MRI approach to further clarify the type of microstructural damage that occurs in patients with glaucoma. Methods We collected dMRI data from 17 patients with glaucoma and 30 controls using 3-tesla (3T) MRI. Using the dMRI data, we estimated three types of tissue property metrics: intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (IsoV). Quantitative T1 (qT1) data, which may be relatively specific to myelin, were collected from all subjects. Results In the OT, all four metrics showed significant differences between the glaucoma and control groups. In the OR, only the ICVF showed significant between-group differences. ICVF was significantly correlated with qT1 in the OR of the glaucoma group, although qT1 did not show any abnormality at the group level. Conclusions Our results suggest that, at the group level, tissue changes in OR caused by glaucoma might be explained by axonal damage, which is reflected in the intracellular diffusion signals, rather than myelin damage. The significant correlation between ICVF and qT1 suggests that myelin damage might also occur in a smaller number of severe cases.
Collapse
Affiliation(s)
- Shumpei Ogawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kenji Matsumoto
- Brain Science Institute, Tamagawa University, Machida, Japan
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiji Yoshikawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
- Yoshikawa Eye Clinic, Machida, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Faskowitz J, Betzel RF, Sporns O. Edges in brain networks: Contributions to models of structure and function. Netw Neurosci 2022; 6:1-28. [PMID: 35350585 PMCID: PMC8942607 DOI: 10.1162/netn_a_00204] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Network models describe the brain as sets of nodes and edges that represent its distributed organization. So far, most discoveries in network neuroscience have prioritized insights that highlight distinct groupings and specialized functional contributions of network nodes. Importantly, these functional contributions are determined and expressed by the web of their interrelationships, formed by network edges. Here, we underscore the important contributions made by brain network edges for understanding distributed brain organization. Different types of edges represent different types of relationships, including connectivity and similarity among nodes. Adopting a specific definition of edges can fundamentally alter how we analyze and interpret a brain network. Furthermore, edges can associate into collectives and higher order arrangements, describe time series, and form edge communities that provide insights into brain network topology complementary to the traditional node-centric perspective. Focusing on the edges, and the higher order or dynamic information they can provide, discloses previously underappreciated aspects of structural and functional network organization.
Collapse
Affiliation(s)
- Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Richard F. Betzel
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| |
Collapse
|
12
|
Imaging biomarkers for Alzheimer's disease and glaucoma: Current and future practices. Curr Opin Pharmacol 2022; 62:137-144. [PMID: 34995895 DOI: 10.1016/j.coph.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Glaucoma is a leading cause of blindness worldwide. Although intraocular pressure is the main risk factor for glaucoma, several intraocular pressure independent factors have been associated with the risk of developing the disease and its progression. The diagnosis of glaucoma relies on clinical features of the optic nerve, visual field test, and optical coherence tomography. However, the multidisciplinary aspect of the disease suggests that other biomarkers may be useful for the diagnosis, thus underling the importance of novel imaging techniques supporting clinicians. This review analyzes the common pathogenic mechanisms between glaucoma and Alzheimer's disease and the possible novel approaches for diagnosis and follow up.
Collapse
|