1
|
Jaffe JE, Metzger S, Mätz-Rensing K, Ribas A, Wittig RM, Leendertz FH. Oesophagostomum stephanostomum causing parasitic granulomas in wild chimpanzees (Pan troglodytes verus) of Taï National Park, Côte d'Ivoire. Am J Primatol 2024; 86:e23652. [PMID: 38807168 DOI: 10.1002/ajp.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Nematodes belonging to the genus Oesophagostomum frequently infect wild chimpanzees (Pan troglodytes) across widely separated field sites. Nodular lesions (granulomas) containing Oesophagostomum are commonly seen in the abdomen of infected chimpanzees post-mortem. At Taï National Park, Côte d'Ivoire, previous studies have identified larvae of a variety of Oesophagostomum spp. in wild chimpanzee stool, based on sequencing of larval DNA, and nodular lesions associated with Oesophagostomum, identified morphologically to the genus level but not sequenced. Here we present three recent cases of parasitic granulomas found post-mortem in chimpanzees at Taï. We complement descriptions of gross pathology, histopathology and parasitology with PCR and sequencing of DNA isolated from the parasitic nodules and from adult worms found inside the nodules. In all three cases, we identify Oesophagostomum stephanostomum as the causative agent. The sequences from this study were identical to the only other published sequences from nodules in nonhuman primates-those from the wild chimpanzees of Gombe, Tanzania.
Collapse
Affiliation(s)
- Jenny E Jaffe
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Epidemiology of Highly Infectious Pathogens, Robert Koch Institute, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität, Berlin, Germany
| | - Sonja Metzger
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Epidemiology of Highly Infectious Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kerstin Mätz-Rensing
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Alexis Ribas
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
| | - Roman M Wittig
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Ape Social Mind Lab, Institute of Cognitive Sciences Marc Jeannerod, Bron, France
| | - Fabian H Leendertz
- Epidemiology of Highly Infectious Pathogens, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, Greifswald, Germany
| |
Collapse
|
2
|
Bertzbach LD, Seddar L, von Stromberg K, Ip WH, Dobner T, Hidalgo P. The adenovirus DNA-binding protein DBP. J Virol 2024; 98:e0188523. [PMID: 38197632 PMCID: PMC10878046 DOI: 10.1128/jvi.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Adenoviruses are a group of double-stranded DNA viruses that can mainly cause respiratory, gastrointestinal, and eye infections in humans. In addition, adenoviruses are employed as vector vaccines for combatting viral infections, including SARS-CoV-2, and serve as excellent gene therapy vectors. These viruses have the ability to modulate the host cell machinery to their advantage and trigger significant restructuring of the nuclei of infected cells through the activity of viral proteins. One of those, the adenovirus DNA-binding protein (DBP), is a multifunctional non-structural protein that is integral to the reorganization processes. DBP is encoded in the E2A transcriptional unit and is highly abundant in infected cells. Its activity is unequivocally linked to the formation, structure, and integrity of virus-induced replication compartments, molecular hubs for the regulation of viral processes, and control of the infected cell. DBP also plays key roles in viral DNA replication, transcription, viral gene expression, and even host range specificity. Notably, post-translational modifications of DBP, such as SUMOylation and extensive phosphorylation, regulate its biological functions. DBP was first investigated in the 1970s, pioneering research on viral DNA-binding proteins. In this literature review, we provide an overview of DBP and specifically summarize key findings related to its complex structure, diverse functions, and significant role in the context of viral replication. Finally, we address novel insights and perspectives for future research.
Collapse
Affiliation(s)
- Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Laura Seddar
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Paloma Hidalgo
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
3
|
Ndiaye EHI, Diarra AZ, Diouf FS, Bouganali C, Almeras L, Sokhna C, Diatta G, Parola P. Ornithodoros sonrai Soft Ticks and Associated Bacteria in Senegal. Pathogens 2023; 12:1078. [PMID: 37764886 PMCID: PMC10534570 DOI: 10.3390/pathogens12091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The soft ticks, Ornithodoros sonrai, are known as vectors of the tick-borne relapsing fever caused by Borrelia spp. and have also been reported to carry other micro-organisms. The objective of this study was to collect and to identify O. sonrai ticks and to investigate the micro-organisms associated with them. In 2019, an investigation of burrows within human dwellings was conducted in 17 villages in the Niakhar area and in 15 villages in the Sine-Saloum area in the Fatick region of Senegal. Ticks collected from the burrows were identified morphologically and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Micro-organism screening was performed by bacteria-specific qPCR and some identifications were made by standard PCR and gene sequencing. O. sonrai ticks were found in 100% (17/17) of the villages surveyed in the Niakhar area and in 66% (10/15) of the villages in the Sine-Saloum area. A total of 1275 soft tick specimens were collected from small mammal burrows. The ticks collected were morphologically identified as O. sonrai. About 20% (259/1275) of the specimens were also submitted to MALDI-TOF MS for identification. Among the resulting MS profiles, 87% (139/159) and 95% (95/100) were considered good quality specimens, preserved in alcohol and silica gel, respectively. All spectra of good quality were tested against our MALDI-TOF MS arthropod spectra database and identified as O. sonrai species, corroborating the morphological classification. The carriage of four micro-organisms was detected in the ticks with a high prevalence of Bartonella spp., Anaplasmataceae, and Borrelia spp. of 35, 28, and 26%, respectively, and low carriage of Coxiella burnetii (2%). This study highlights the level of tick infestation in domestic burrows, the inventory of pathogens associated with the O. sonrai tick, and the concern about the potential risk of tick involvement in the transmission of these pathogens in Senegal.
Collapse
Affiliation(s)
- El Hadji Ibrahima Ndiaye
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Adama Zan Diarra
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Fatou Samba Diouf
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Charles Bouganali
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Lionel Almeras
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| | - Cheikh Sokhna
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Georges Diatta
- VITROME, Campus International IRD-UCAD Hann, Dakar 1386, Senegal; (C.B.); (G.D.)
| | - Philippe Parola
- Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ IRD, AP-HM, SSA, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.H.I.N.); (A.Z.D.); (F.S.D.); (L.A.); (C.S.)
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
4
|
El Hadji Ibrahima N, Diatta G, Adama Zan D, Bassene H, Sokhna C, Parola P. Quantitative Polymerase Chain Reaction from Malaria Rapid Diagnostic Tests to Detect Borrelia crocidurae, the Agent of Tick-Borne Relapsing Fever, in Febrile Patients in Senegal. Am J Trop Med Hyg 2023; 108:968-976. [PMID: 36913922 PMCID: PMC10160891 DOI: 10.4269/ajtmh.22-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/29/2022] [Indexed: 03/14/2023] Open
Abstract
In endemic malaria areas, Plasmodium is currently diagnosed mainly through the use of rapid diagnostic tests (RDTs). However, in Senegal, many causes of fever remain unknown. Tick-borne relapsing fever, an often-neglected public health problem, is the main cause of consultation for acute febrile illness after malaria and flu in rural areas. Our objective was to test the feasibility of extracting and amplifying DNA fragments by quantitative polymerase chain reaction (qPCR) from malaria-negative RDTs for Plasmodium falciparum (malaria Neg RDTs P.f) to detect Borrelia spp. and other bacteria. Between January and December 2019, malaria Neg RDTs P.f were collected on a quarterly basis in 12 health facilities in four regions of Senegal. The DNA extracted from the malaria Neg RDTs P.f was tested using qPCR and the results were confirmed by standard PCR and sequencing. Only Borrelia crocidurae DNA was detected in 7.22% (159/2,202) of RDTs. The prevalence of B. crocidurae DNA was higher in July (16.47%, 43/261) and August (11.21%, 50/446). The annual prevalence was 9.2% (47/512) and 5.0% (12/241) in Ngayokhem and Nema-Nding, respectively, health facilities in the Fatick region. Our study confirms that B. crocidurae infection is a frequent cause of fever in Senegal, with a high prevalence of cases in health facilities in the regions of Fatick and Kaffrine. Malaria Neg RDTs P.f are potentially a good source of pathogen sampling for the molecular identification of other causes of fever of unknown origin, even in the most remote areas.
Collapse
Affiliation(s)
- Ndiaye El Hadji Ibrahima
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), APHM, SSA, Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
- VITROME, IRD UMR 257, Campus International IRD-UCAD Hann, Dakar, Sénégal
| | - Georges Diatta
- VITROME, IRD UMR 257, Campus International IRD-UCAD Hann, Dakar, Sénégal
| | - Diarra Adama Zan
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), APHM, SSA, Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Hubert Bassene
- VITROME, IRD UMR 257, Campus International IRD-UCAD Hann, Dakar, Sénégal
| | - Cheikh Sokhna
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
- VITROME, IRD UMR 257, Campus International IRD-UCAD Hann, Dakar, Sénégal
| | - Philippe Parola
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), APHM, SSA, Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| |
Collapse
|
5
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Kosoltanapiwat N, Tongshoob J, Ampawong S, Reamtong O, Prasittichai L, Yindee M, Tongthainan D, Tulayakul P, Boonnak K. Simian adenoviruses: Molecular and serological survey in monkeys and humans in Thailand. One Health 2022; 15:100434. [PMID: 36277107 PMCID: PMC9582551 DOI: 10.1016/j.onehlt.2022.100434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
|
7
|
Köster PC, Lapuente J, Cruz I, Carmena D, Ponce-Gordo F. Human-Borne Pathogens: Are They Threatening Wild Great Ape Populations? Vet Sci 2022; 9:356. [PMID: 35878373 PMCID: PMC9323791 DOI: 10.3390/vetsci9070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Climate change and anthropic activities are the two main factors explaining wild great ape habitat reduction and population decline. The extent to which human-borne infectious diseases are contributing to this trend is still poorly understood. This is due to insufficient or fragmented knowledge on the abundance and distribution of current wild great ape populations, the difficulty obtaining optimal biological samples for diagnostic testing, and the scarcity of pathogen typing data of sufficient quality. This review summarises current information on the most clinically relevant pathogens of viral, bacterial, parasitic, and fungal nature for which transmission from humans to wild great apes is suspected. After appraising the robustness of available epidemiological and/or molecular typing evidence, we attempt to categorise each pathogen according to its likelihood of truly being of human origin. We further discuss those agents for which anthroponotic transmission is more likely. These include two viral (Human Metapneumovirus and Respiratory Syncytial Virus), one bacterial (diarrhoeagenic Escherichia coli), and two parasitic (Cryptosporidium spp. and Giardia duodenalis) pathogens. Finally, we identify the main drawbacks impairing research on anthroponotic pathogen transmission in wild great apes and propose research lines that may contribute to bridging current knowledge gaps.
Collapse
Affiliation(s)
- Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Juan Lapuente
- Comoé Chimpanzee Conservation Project (CCCP) Comoé N.P., Kakpin, Côte d’Ivoire;
| | - Israel Cruz
- National School of Public Health, Health Institute Carlos III, 28029 Madrid, Spain;
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain;
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Francisco Ponce-Gordo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Sanchez CR, Hidalgo-Hermoso E. Mycobacterium tuberculosis sensu stricto in African Apes, What Is Its True Health Impact? Pathogens 2022; 11:484. [PMID: 35631005 PMCID: PMC9145341 DOI: 10.3390/pathogens11050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Since the Symposium on Mycobacterial Infections of Zoo Animals held at the National Zoological Park, Smithsonian Institution in 1976, our understanding of tuberculosis (TB) in non-domestic animals has greatly expanded. Throughout the past decades, this knowledge has resulted in improved zoo-habitats and facilities design, stricter biosecurity measures, and advanced diagnostic methods, including molecular techniques, that have significantly decreased the number of clinical disease caused by Mycobacterium tuberculosis in apes under human care settings. In the other hand, exponential growth of human populations has led to human encroachment in wildlife habitat which has resulted in increased inter-species contact and recurrent conflict between humans and wild animals. Although it is widely accepted that non-human primates are susceptible to M. tb infection, opinions differ with regard to the susceptibility to develop disease amongst different taxa. Specifically, some authors suggest that African apes are less susceptible to clinical tuberculosis than other species of primates. The aim of this review article is to evaluate the current scientific literature to determine the actual health impact of disease caused by Mycobacterium tuberculosis and more specifically Mycobacterium tuberculosis sensu stricto in African apes. The literature review included literature databases: Web of Science, Pubmed, Scopus, Wiley, Springer and Science direct, without temporal limit and proceedings of annual conferences in the field of wildlife health. Our general inclusion criteria included information about serological, molecular, pathological (macroscopic and/or microscopic), and clinical evidence of TB in African apes; while our, our more stringent inclusion selection criteria required that in addition to a gross pathology, a molecular test confirmed Mycobacterium tuberculosis sensu stricto as the cause of disease or death. We identified eleven reports of tuberculosis in African apes; of those, only four reports met the more stringent selection criteria that confirmed M. tb sensu stricto in six individuals. All reports that confirmed M. tb sensu stricto originated from zoological collections. Our review suggests that there is little evidence of disease or mortality caused by M. tb in the different species of African apes both under human care and free ranging populations. Additional studies are needed in free-ranging, semi-captive populations (sanctuaries) and animals under human care (zoos and rescue centers) to definitely conclude that this mycobacteria has a limited health effect in African ape species.
Collapse
Affiliation(s)
- Carlos R. Sanchez
- Veterinary Medical Center, Oregon Zoo, Portland, 4001 SW Canyon Rd., Portland, OR 97221, USA
| | - Ezequiel Hidalgo-Hermoso
- Conservation and Research Department, Parque Zoologico Buin Zoo, Panamericana Sur Km 32, Buin 01730, Chile;
| |
Collapse
|
9
|
Bertzbach LD, Ip WH, Dobner T. Animal Models in Human Adenovirus Research. BIOLOGY 2021; 10:biology10121253. [PMID: 34943168 PMCID: PMC8698265 DOI: 10.3390/biology10121253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Animal models are widely used to study various aspects of human diseases and disorders. Likewise, they are indispensable for preclinical testing of medicals and vaccines. Human adenovirus infections are usually self-limiting, and can cause mild respiratory symptoms with fever, eye infection or gastrointestinal symptoms, but occasional local outbreaks with severe disease courses have been reported. In addition, adenovirus infections pose a serious risk for children and patients with a weakened immune system. Human adenovirus research in animal models to study adenovirus-induced disease and tumor development started in the 1950s. Various animal species have been tested for their susceptibility to human adenovirus infection since then, and some have been shown to mimic key characteristics of the infection in humans, including persistent infection. Furthermore, some rodent species have been found to develop tumors upon human adenovirus infection. Our review summarizes the current knowledge on animal models in human adenovirus research, describing the pros and cons along with important findings and future perspectives. Abstract Human adenovirus (HAdV) infections cause a wide variety of clinical symptoms, ranging from mild upper respiratory tract disease to lethal outcomes, particularly in immunocompromised individuals. To date, neither widely available vaccines nor approved antiadenoviral compounds are available to efficiently deal with HAdV infections. Thus, there is a need to thoroughly understand HAdV-induced disease, and for the development and preclinical evaluation of HAdV therapeutics and/or vaccines, and consequently for suitable standardizable in vitro systems and animal models. Current animal models to study HAdV pathogenesis, persistence, and tumorigenesis include rodents such as Syrian hamsters, mice, and cotton rats, as well as rabbits. In addition, a few recent studies on other species, such as pigs and tree shrews, reported promising data. These models mimic (aspects of) HAdV-induced pathological changes in humans and, although they are relevant, an ideal HAdV animal model has yet to be developed. This review summarizes the available animal models of HAdV infection with comprehensive descriptions of virus-induced pathogenesis in different animal species. We also elaborate on rodent HAdV animal models and how they contributed to insights into adenovirus-induced cell transformation and cancer.
Collapse
|
10
|
Sarabian C, Belais R, MacIntosh AJJ. Avoidance of Contaminated Food Correlates With Low Protozoan Infection in Bonobos. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.651159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intense selection pressure from parasites on free-living animals has resulted in behavioral adaptations that help potential hosts avoid sources of infection. In primates, such “behavioral immunity” is expressed in different contexts and may vary according to the ecology of the host, the nature of the infectious agent, and the individual itself. In this study, we investigated whether avoidance of contaminated food was associated with reduced parasite infection in sanctuary-housed bonobos. To do this, we used bonobos’ responses to soil- and fecally-contaminated food in behavioral experiments, and then compared the results with an estimate of protozoan infection across individuals. We found that avoidance of contaminated food correlated negatively with Balantioides coli infection, a potentially pathogenic protozoan transmitted through the fecal-oral route. The association between avoidance responses and parasitism were most evident in experiments in which subjects were offered a choice of food items falling along a gradient of fecal contamination. In the case of experiments with more limited options and a high degree of contamination, most subjects were averse to the presented food item and this may have mitigated any relationship between feeding decisions and infection. In experiments with low perceived levels of contamination, most subjects consumed previously contaminated food items, which may also have obscured such a relationship. The behavioral immunity observed may be a consequence of the direct effects of parasites (infection), reflecting the first scale of a landscape of disgust: individual responses. Indirect effects of parasites, such as modulation of feeding decisions and reduced social interactions—and their potential trade-offs with physiological immunity—are also discussed in light of individual fitness and primate evolution. This study builds on previous work by showing that avoidance behaviors may be effective in limiting exposure to a wide diversity of oro-fecally transmitted parasites.
Collapse
|
11
|
Behringer V, Deimel C, Stevens JMG, Kreyer M, Lee SM, Hohmann G, Fruth B, Heistermann M. Cell-Mediated Immune Ontogeny Is Affected by Sex but Not Environmental Context in a Long-Lived Primate Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.629094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ecoimmunology conceptualizes the role of immunity in shaping life history in a natural context. Within ecoimmunology, macroimmunology is a framework that explains the effects of habitat and spatial differences on variation in immune phenotypes across populations. Within these frameworks, immune ontogeny—the development of the immune system across an individual life span—has received little attention. Here, we investigated how immune ontogeny from birth until adulthood is affected by age, sex, and developmental environment in a long-lived primate species, the bonobo. We found a progressive, significant decline of urinary neopterin levels, a marker for the cell-mediated immune response, from birth until 5 years of age in both sexes. The overall pattern of age-related neopterin changes was sex-specific, with males having higher urinary neopterin levels than females in the first 3 years of life, and females having higher levels than males between 6 and 8 years. Environmental condition (zoo-housed vs. wild) did not influence neopterin levels, nor did age-related changes in neopterin levels differ between environments. Our data suggest that the post-natal development of cell-mediated immune ontogeny is sex-specific but does not show plasticity in response to environmental conditions in this long-lived primate species. This indicates that cell-mediated immune ontogeny in the bonobo follows a stereotypic and maybe a genetically determined pattern that is not affected by environmental differences in pathogen exposure and energy availability, but that sex is an important, yet often overlooked factor shaping patterns of immune ontogeny. Investigating the causes and consequences of variation in immunity throughout life is critical for our understanding of life-history evolution and strategies, mechanisms of sexual selection, and population dynamics with respect to pathogen susceptibility. A general description of sex-specific immune ontogeny as done here is a crucial step in this direction, particularly when it is considered in the context of a species’ ecology and evolutionary history.
Collapse
|