1
|
Bassetti M, Vena A, Larosa B, Giacobbe DR. New antibiotics in clinical pipeline for treating infections caused by metallo-β-lactamases producing Gram-negative bacteria. Curr Opin Infect Dis 2024; 37:582-588. [PMID: 39106036 DOI: 10.1097/qco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
PURPOSE OF REVIEW To discuss novel antibiotics under clinical development, focusing on agents showing in-vitro activity against metallo-β-lactamases (MBL)-producing carbapenem-resistant Gram-negative bacteria (CR-GNB). RECENT FINDINGS Currently, only a few approved agents show activity, alone or in synergistic combinations, against MBL-producing CR-GNB. If approved by regulatory agencies in case of favorable results from ongoing (and, for some agents, already completed) phase-3 studies, some novel β-lactam/β-lactamase inhibitor (BL/BLI) combinations could become available in the next few years as additional important options for treating MBL-producing CR-GNB infections. Additional interesting agents that belong both to BL/BLI combinations and to antibiotic classes other than BL and BL/BLI combinations have also shown activity against MBL-producing CR-GNB, with most of them being in early phases of clinical development. SUMMARY Improving the use of these novel agents through virtuous antimicrobial stewardship frameworks able to guarantee both the efficacious treatment of infections requiring their use and the avoidance of their use whenever not necessary remains a challenge of utmost importance that should not be overlooked.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Melchiorri D, Rocke T, Alm RA, Cameron AM, Gigante V. Addressing urgent priorities in antibiotic development: insights from WHO 2023 antibacterial clinical pipeline analyses. THE LANCET. MICROBE 2024:100992. [PMID: 39454608 DOI: 10.1016/j.lanmic.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/28/2024]
Abstract
Antimicrobial resistance continues to evolve and remains a leading cause of death worldwide, with children younger than 5 years being among those at the highest risk. Addressing antimicrobial resistance requires a comprehensive response, including infection prevention efforts, surveillance, stewardship, therapy appropriateness and access, and research and development. However, antimicrobial research and development is limited and lags behind the output of other fields, such as that of cancer or HIV research. The 2023 WHO analysis of the global antibacterial clinical pipeline serves as a tool to monitor and guide research and development efforts. The analysis emphasises the remaining gaps in developing a robust and effective antibacterial drug pipeline, drawing insights from trend analyses and assessment of the innovation potential of candidate antimicrobials. In the present analysis, we evaluated the activity of antibiotics against the new WHO bacterial priority pathogens list 2024, which reflects changing trends in resistance patterns, distribution of bacterial infections, and the emergence of new resistance mechanisms.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; AMR Division, World Health Organization, Geneva, Switzerland.
| | - Tamarie Rocke
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Richard A Alm
- AMR Division, World Health Organization, Geneva, Switzerland; Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator, Boston, MA, USA
| | | | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
3
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Liu X, Ding Y, Shen Y, Liu S, Liu Y, Wang Y, Wang S, Gualerzi CO, Fabbretti A, Guan L, Kong L, Zhang H, Ma H, He C. Prokaryotic Expression and Functional Verification of Antimicrobial Peptide LR GG. Int J Mol Sci 2024; 25:7072. [PMID: 39000180 PMCID: PMC11241267 DOI: 10.3390/ijms25137072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The antimicrobial peptide LRGG (LLRLLRRGGRRLLRLL-NH2) was designed and chemically synthesized in a study conducted by Jia et al. Gram-negative bacteria were found to be sensitive to LRGG and exhibited a high therapeutic index. Genetic engineering methods were used to create the prokaryotic fusion expression vector pQE-GFP-LRGG, and the resulting corresponding fusion protein GFP-LRGG was subsequently expressed and purified. The precursor GFP was then removed by TEV proteolysis, and pure LRGG was obtained after another round of purification and endotoxin removal. The prokaryotic-expressed antimicrobial peptide LRGG displays a broad-spectrum antibacterial effect on Gram-negative bacteria, and its minimum inhibitory activity (MIC) against Escherichia coli can reach 2 μg/mL. Compared to the chemically synthesized LRGG, the prokaryotic-expressed LRGG exhibits similar temperature, pH, salt ion, serum stability, and cell selectivity. Furthermore, prokaryotic-expressed LRGG showed excellent therapeutic effects in both the infection model of cell selectivity and no embryotoxicity in a Galleria mellonella infection model. The mechanism by which LRGG causes bacterial death was found to be the disruption of the Gram-negative cell membrane.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yining Ding
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yuhan Shen
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Sizhuo Liu
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yuehua Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yuting Wang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Shikun Wang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | | | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Lili Guan
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Lingcong Kong
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Haipeng Zhang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Hongxia Ma
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Chengguang He
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| |
Collapse
|
5
|
Paterson DL. Antibacterial agents active against Gram Negative Bacilli in phase I, II, or III clinical trials. Expert Opin Investig Drugs 2024; 33:371-387. [PMID: 38445383 DOI: 10.1080/13543784.2024.2326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.
Collapse
Affiliation(s)
- David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
6
|
Rossino G, Marchese E, Galli G, Verde F, Finizio M, Serra M, Linciano P, Collina S. Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era. Molecules 2023; 28:7165. [PMID: 37894644 PMCID: PMC10609221 DOI: 10.3390/molecules28207165] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Peptides are at the cutting edge of contemporary research for new potent, selective, and safe therapeutical agents. Their rise has reshaped the pharmaceutical landscape, providing solutions to challenges that traditional small molecules often cannot address. A wide variety of natural and modified peptides have been obtained and studied, and many others are advancing in clinical trials, covering multiple therapeutic areas. As the demand for peptide-based therapies grows, so does the need for sustainable and environmentally friendly synthesis methods. Traditional peptide synthesis, while effective, often involves environmentally draining processes, generating significant waste and consuming vast resources. The integration of green chemistry offers sustainable alternatives, prioritizing eco-friendly processes, waste reduction, and energy conservation. This review delves into the transformative potential of applying green chemistry principles to peptide synthesis by discussing relevant examples of the application of such approaches to the production of active pharmaceutical ingredients (APIs) with a peptide structure and how these efforts are critical for an effective green transition era in the pharmaceutical field.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Emanuela Marchese
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Galli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Francesca Verde
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Matteo Finizio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| |
Collapse
|
7
|
Theuretzbacher U. Evaluating the innovative potential of the global antibacterial pipeline. Clin Microbiol Infect 2023:S1198-743X(23)00490-1. [PMID: 37805036 DOI: 10.1016/j.cmi.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Resistance burden varies widely among WHO regions, and the potential impact of new antibiotics differs in addressing the WHO's critical priority pathogens' resistance challenge. OBJECTIVES To analyse the current global clinical pipeline in line with public and global health concerns and define innovation in antibacterial drug discovery. SOURCES Monitoring clinical pipelines since 2006, integrating peer-reviewed MEDLINE publications on clinical development of new antibacterial agents, supplemented with disclosed data from developers. CONTENT The current clinical pipeline is dominated by derivatives of established antibiotic classes, primarily β-lactamase inhibitor combinations in Phase 3 (six of ten which also include two beta-lactams without β-lactamase inhibitor). This pattern extends to Phase 1. Although incremental improvements in susceptibility rates among derivatives benefit patients in advanced health care systems within specific geographical regions, these concepts are not adequate for carbapenem-resistant strains of Enterobacterales (especially Klebsiella and Escherichia coli), Acinetobacter, and Pseudomonas. This limitation arises from the diverse distribution of resistance mechanisms across global regions. Innovation in this context refers to absence of cross-resistance because of class-specific resistance mechanisms. This can most likely be achieved by exploring new chemical classes and new targets/binding sites, and new mode of action. An initial glimpse of progress is evident as innovative agents progressed to Phase 1 clinical trials. However, an influx of more agents advancing to clinical development is essential given the inherent risks associated with novel chemistry and targets. IMPLICATIONS The limited innovation in the global clinical pipeline inadequately serves public and global health interests. The complexities of antibacterial drug discovery, from scientific challenges to financial constraints, underscore the need for collective researcher efforts and public support to drive innovation for patients globally.
Collapse
|
8
|
Rangel K, Lechuga GC, Provance DW, Morel CM, De Simone SG. An Update on the Therapeutic Potential of Antimicrobial Peptides against Acinetobacter baumannii Infections. Pharmaceuticals (Basel) 2023; 16:1281. [PMID: 37765087 PMCID: PMC10537560 DOI: 10.3390/ph16091281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The rise in antibiotic-resistant strains of clinically important pathogens is a major threat to global health. The World Health Organization (WHO) has recognized the urgent need to develop alternative treatments to address the growing list of priority pathogens. Antimicrobial peptides (AMPs) rank among the suggested options with proven activity and high potential to be developed into effective drugs. Many AMPs are naturally produced by living organisms protecting the host against pathogens as a part of their innate immunity. Mechanisms associated with AMP actions include cell membrane disruption, cell wall weakening, protein synthesis inhibition, and interference in nucleic acid dynamics, inducing apoptosis and necrosis. Acinetobacter baumannii is a critical pathogen, as severe clinical implications have developed from isolates resistant to current antibiotic treatments and conventional control procedures, such as UV light, disinfectants, and drying. Here, we review the natural AMPs representing primary candidates for new anti-A. baumannii drugs in post-antibiotic-era and present computational tools to develop the next generation of AMPs with greater microbicidal activity and reduced toxicity.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme Curty Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
| | - Salvatore G. De Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
9
|
Optimization of the Hemolysis Assay for the Assessment of Cytotoxicity. Int J Mol Sci 2023; 24:ijms24032914. [PMID: 36769243 PMCID: PMC9917735 DOI: 10.3390/ijms24032914] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In vitro determination of hemolytic properties is a common and important method for preliminary evaluation of cytotoxicity of chemicals, drugs, or any blood-contacting medical device or material. The method itself is relatively straightforward, however, protocols used in the literature vary substantially. This leads to significant difficulties both in interpreting and in comparing the obtained values. Here, we examine how the different variables used under different experimental setups may affect the outcome of this assay. We find that certain key parameters affect the hemolysis measurements in a critical manner. The hemolytic effect of compounds tested here varied up to fourfold depending on the species of the blood source. The use of different types of detergents used for generating positive control samples (i.e., 100% hemolysis) produced up to 2.7-fold differences in the calculated hemolysis ratios. Furthermore, we find an expected, but substantial, increase in the number of hemolyzed erythrocytes with increasing erythrocyte concentration and with prolonged incubation time, which in turn affects the calculated hemolysis ratios. Based on our findings we propose an optimized protocol in an attempt to standardize future hemolysis studies.
Collapse
|
10
|
Michaeli J, Mandel S, Maximov S, Zazoun J, Savoia P, Kothari N, Valmont T, Ferrari L, Duncan LR, Hawser S, Cohen-Kutner M, Bachnoff N. In Vitro and In Vivo Antimicrobial Activity of the Novel Peptide OMN6 against Multidrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:antibiotics11091201. [PMID: 36139979 PMCID: PMC9494975 DOI: 10.3390/antibiotics11091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid worldwide spread of antimicrobial resistance highlights the significant need for the development of innovative treatments to fight multidrug-resistant bacteria. This study describes the potent antimicrobial activity of the novel peptide OMN6 against a wide array of drug-resistant Acinetobacter baumannii clinical isolates. OMN6 prevented the growth of all tested isolates, regardless of any pre-existing resistance mechanisms. Moreover, in vitro serial-passaging studies demonstrated that no resistance developed against OMN6. Importantly, OMN6 was highly efficacious in treating animal models of lung and blood infections caused by multidrug-resistant A. baumannii. Taken together, these results point to OMN6 as a novel antimicrobial agent with the potential to treat life-threatening infections caused by multidrug-resistant A. baumannii avoiding resistance.
Collapse
Affiliation(s)
- Janna Michaeli
- Omnix Medical Ltd., High-Tech Village, Givat-Ram Campus, Jerusalem 9270401, Israel
| | - Shira Mandel
- Omnix Medical Ltd., High-Tech Village, Givat-Ram Campus, Jerusalem 9270401, Israel
| | - Shelly Maximov
- Omnix Medical Ltd., High-Tech Village, Givat-Ram Campus, Jerusalem 9270401, Israel
| | - Jonathan Zazoun
- Omnix Medical Ltd., High-Tech Village, Givat-Ram Campus, Jerusalem 9270401, Israel
| | - Paola Savoia
- Evotec Anti-Infective, Department of Microbiology Discovery, Aptuit (Verona) Srl, an Evotec Company, Via A. Fleming 4, 37135 Verona, Italy
| | - Nimmi Kothari
- IHMA Europe Sàrl, Route de l’Ile-au-Bois 1A, 1870 Monthey, Switzerland
| | - Thomas Valmont
- IHMA Europe Sàrl, Route de l’Ile-au-Bois 1A, 1870 Monthey, Switzerland
| | - Livia Ferrari
- Evotec Anti-Infective, Department of Microbiology Discovery, Aptuit (Verona) Srl, an Evotec Company, Via A. Fleming 4, 37135 Verona, Italy
| | - Leonard R. Duncan
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | - Stephen Hawser
- IHMA Europe Sàrl, Route de l’Ile-au-Bois 1A, 1870 Monthey, Switzerland
| | - Moshe Cohen-Kutner
- Omnix Medical Ltd., High-Tech Village, Givat-Ram Campus, Jerusalem 9270401, Israel
| | - Niv Bachnoff
- Omnix Medical Ltd., High-Tech Village, Givat-Ram Campus, Jerusalem 9270401, Israel
- Correspondence:
| |
Collapse
|
11
|
Chetty T, Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. Novel CA(1-7)M(2-9) Analogs: Synthesis, Characterization, and Antibacterial Evaluation. ACS Med Chem Lett 2022; 13:1370-1377. [PMID: 35978681 PMCID: PMC9377004 DOI: 10.1021/acsmedchemlett.2c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Hybrid peptides from cecropin A and melittin have attracted the interest of the research community for decades. Here we synthesized several new analogs of the pentadecapeptide CA(1-7)M(2-9) and studied their antibacterial and hemolytic activity and tryptic stability. Single substitution of the Lys residues by Arg did not have a significant impact on the antibacterial activity of these analogs, but the substitution of the five Lys residues by Arg resulted in an increment in hemolytic activity. In contrast, the substitution of Lys residues by Orn conserved the antibacterial activity, with even lower hemolysis, and improved the enzymatic stability. The disulfide cyclic version of CA(1-7)M(2-9) was obtained by adding a Cys residue to each end of the peptide and carrying out a chemoselective thiol-disulfide interchange using sec-isoamylmecaptan as protecting group of one of these residues. This cyclic peptide showed good antibacterial activity with low hemolysis and improved enzymatic stability.
Collapse
Affiliation(s)
- Talia Chetty
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South
Africa
| | - Jessica T. Mhlongo
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South
Africa
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South
Africa
| | - Ayman Y. Waddad
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South
Africa
| | - Fernando Albericio
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South
Africa
- Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
and Department of Organic Chemistry, University
of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G. de la Torre
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South
Africa
| |
Collapse
|
12
|
Vazquez-Rodriguez JA, Shaqour B, Guarch-Pérez C, Choińska E, Riool M, Verleije B, Beyers K, Costantini VJA, Święszkowski W, Zaat SAJ, Cos P, Felici A, Ferrari L. A Niclosamide-releasing hot-melt extruded catheter prevents Staphylococcus aureus experimental biomaterial-associated infection. Sci Rep 2022; 12:12329. [PMID: 35854044 PMCID: PMC9296466 DOI: 10.1038/s41598-022-16107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Biomaterial-associated infections are a major healthcare challenge as they are responsible for high disease burden in critically ill patients. In this study, we have developed drug-eluting antibacterial catheters to prevent catheter-related infections. Niclosamide (NIC), originally an antiparasitic drug, was incorporated into the polymeric matrix of thermoplastic polyurethane (TPU) via solvent casting, and catheters were fabricated using hot-melt extrusion technology. The mechanical and physicochemical properties of TPU polymers loaded with NIC were studied. NIC was released in a sustained manner from the catheters and exhibited in vitro antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis. Moreover, the antibacterial efficacy of NIC-loaded catheters was validated in an in vivo biomaterial-associated infection model using a methicillin-susceptible and methicillin-resistant strain of S. aureus. The released NIC from the produced catheters reduced bacterial colonization of the catheter as well as of the surrounding tissue. In summary, the NIC-releasing hot-melt extruded catheters prevented implant colonization and reduced the bacterial colonization of peri-catheter tissue by methicillin sensitive as well as resistant S. aureus in a biomaterial-associated infection mouse model and has good prospects for preclinical development.
Collapse
Affiliation(s)
- Jesus Augusto Vazquez-Rodriguez
- Discovery Microbiology, Aptuit S.R.L., an Evotec Company, via A. Fleming 4, 37135, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Bahaa Shaqour
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 S.7, 2610, Antwerp, Belgium.,Mechanical and Mechatronics Engineering Department, Faculty of Engineering & Information Technology, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Clara Guarch-Pérez
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Emilia Choińska
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Bart Verleije
- Voxdale BV, Bijkhoevelaan 32C, 2110, Wijnegem, Belgium
| | - Koen Beyers
- Voxdale BV, Bijkhoevelaan 32C, 2110, Wijnegem, Belgium
| | - Vivian J A Costantini
- Discovery Microbiology, Aptuit S.R.L., an Evotec Company, via A. Fleming 4, 37135, Verona, Italy
| | - Wojciech Święszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 S.7, 2610, Antwerp, Belgium
| | - Antonio Felici
- Discovery Microbiology, Aptuit S.R.L., an Evotec Company, via A. Fleming 4, 37135, Verona, Italy
| | - Livia Ferrari
- Discovery Microbiology, Aptuit S.R.L., an Evotec Company, via A. Fleming 4, 37135, Verona, Italy
| |
Collapse
|
13
|
Topalova Y, Belouhova M, Velkova L, Dolashki A, Zheleva N, Daskalova E, Kaynarov D, Voelter W, Dolashka P. Effect and Mechanisms of Antibacterial Peptide Fraction from Mucus of C. aspersum against Escherichia coli NBIMCC 8785. Biomedicines 2022; 10:biomedicines10030672. [PMID: 35327474 PMCID: PMC8945727 DOI: 10.3390/biomedicines10030672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Peptides isolated from the mucus of Cornu aspersum could be prototypes for antibiotics against pathogenic bacteria. Information regarding the mechanisms, effective concentration, and methods of application is an important tool for therapeutic, financial, and ecological regulation and a holistic approach to medical treatment. A peptide fraction with MW < 10 kDa was analyzed by MALDI-TOF-TOF using Autoflex™ III. The strain Escherichia coli NBIMCC 8785 (18 h and 48 h culture) was used. The changes in bacterial structure and metabolic activity were investigated by SEM, fluorescent, and digital image analysis. This peptide fraction had high inhibitory effects in surface and deep inoculations of E. coli of 1990.00 and 136.13 mm2/mgPr/µMol, respectively, in the samples. Thus, it would be effective in the treatment of infections involving bacterial biofilms and homogenous cells. Various deformations of the bacteria and inhibition of its metabolism were discovered and illustrated. The data on the mechanisms of impact of the peptides permitted the formulation of an algorithm for the treatment of infections depending on the phase of their development. The decrease in the therapeutic concentrations will be more sparing to the environment and will lead to a decrease in the cost of the treatment.
Collapse
Affiliation(s)
- Yana Topalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
- Correspondence: or (Y.T.); or (P.D.); Tel.: +359-887193423 (P.D.)
| | - Mihaela Belouhova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Nellie Zheleva
- Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Elmira Daskalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Wolfgang Voelter
- Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, D-72076 Tübingen, Germany;
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
- Correspondence: or (Y.T.); or (P.D.); Tel.: +359-887193423 (P.D.)
| |
Collapse
|
14
|
Zhang S, Luo L, Sun X, Ma A. Bioactive Peptides: A Promising Alternative to Chemical Preservatives for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12369-12384. [PMID: 34649436 DOI: 10.1021/acs.jafc.1c04020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioactive peptides used for food preservation can prolong the shelf life through bacteriostasis and antioxidation. On the one hand, bioactive peptides can inhibit lipid oxidation by scavenging free radicals, interacting with metal ions, and inhibiting lipid peroxidation. On the other hand, bioactive peptides can fundamentally inhibit the growth and reproduction of microorganisms by destroying their cell membranes or targeting intracellular components. Besides, bioactive peptides are biocompatible and biodegradable in vivo. Therefore, they are regarded as a promising alternative to chemical preservatives. However, bioactive peptides are easily affected by the external environment in practical application, which hinders their commercialization. Currently, the studies to overcome the weakness focus on encapsulation and chemical synthesis. Bioactive peptides have been applied to the preservation of various foods in experimental research, with good results. In the future, with the deepening understanding of their safety and structure-activity relationship, there may be more bioactive peptides as food preservatives.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|